1
|
Sun C, Bai S, Chen S, Chen J, Liu P, Wu Y, Zhao X, Wu Z. Insufficient Effective Time of Suberanilohydroxamic Acid, a Deacetylase Inhibitor, Treatment Promotes PC3 Cell Growth. Biol Pharm Bull 2024; 47:1708-1716. [PMID: 39462585 DOI: 10.1248/bpb.b24-00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Castration-resistant prostate cancer (CRPC) contributes mostly to prostate cancer-specific mortality, and conventional castration therapy is almost ineffective, new therapies are needed. As a new potential anti-cancer drug, histone deacetylases (HDACs) inhibitors were demonstrated to be effective in inhibiting drug-resistance cancers in preclinical studies, but the results from clinical trials on CRPC patients were disappointing, and the reasons are unknown. In this study, we investigated the effect of suberanilohydroxamic acid (SAHA), a broad-spectrum pan-HDAC inhibitor, on proliferation, apoptosis, cell cycle progression in PC3 cells, and found that, unlike significant inhibiting effects at high-dose, low-dose SAHA significantly promoted PC3 cell growth. Further colony formation assay showed that the inhibitory effect of SAHA is also dependent on the treatment time, high-dose SAHA also exhibited promoting effect on PC3 cells when the treatment time was insufficient. However, this effect was not observed in another CRPC cell line, DU145, or another HDAC inhibitor, Trichostatin A (TSA). Our results indicate that, instead of inhibitory effect, SAHA would promote PC3 cell growth if the dose is low or the treatment time is insufficient, but this effect has not been observed in other CRPC cell line or HDAC inhibitors.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| | - Shiting Bai
- Department of Pain Medicine, Zhejiang Hospital
| | - Sisi Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Jianglin Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Pengyuan Liu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| | - Yajun Wu
- Department of TCM Pharmacy, Zhejiang Hospital
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University
| | - Zhibing Wu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| |
Collapse
|
2
|
Li Z, Quan C, Li W, Ji M. Synergistic effect of docetaxel combined with a novel multi-target inhibitor CUDC-101 on inhibiting human prostate cancer. Pathol Res Pract 2023; 252:154938. [PMID: 37989076 DOI: 10.1016/j.prp.2023.154938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Histone deacetylases (HDACs) are commonly overexpressed in several types of human cancers, including prostate cancer (PCa). Histone deacetylase inhibitors (HDACis) are emerging as promising tools for cancer therapy. However, there is still a need to understand their anti-tumor effects and the mechanisms underlying their action. In our study, we investigated the effects of co-treatment with CUDC-101 and docetaxel (DTX) on cell growth, clonogenicity, invasion and migration of PCa cells both in vitro, and in a xenograft mouse model. We found that the combination of CUDC-101 and DTX significantly reduced tumor growth, as evidenced by lower tumor weight and volumes. Moreover, apoptotic cell death was increased in the combination group compared to either drug alone or control. Mechanistically, we observed that the combined treatment of CUDC-101 with DTX suppressed the progression of PCa cell lines through the AKT and ERK1/2 signaling pathways. Additionally, this combination treatment reversed EMT by modulating the expression of key markers such as E-cadherin, vimentin, Snail and MMP-9. To conclude, these results demonstrated that the combination of CUDC-101 with DTX had a synergistic and significantly improved anti-carcinogenic effect. This combination may serve as a potential strategy for clinical treatment and prognosis improvement in PCa.
Collapse
Affiliation(s)
- Zhenling Li
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, China.
| | - Chunji Quan
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Wenhao Li
- Department of Laboratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Meiying Ji
- Research Center of Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
3
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
4
|
Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188777. [PMID: 35963551 DOI: 10.1016/j.bbcan.2022.188777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
Microtubule targeting agents (MTAs) have attracted extensive attention for cancer treatment. However, their clinical efficacies are limited by intolerable toxicities, inadequate efficacy and acquired multidrug resistance. The combination of MTAs with other antineoplastics has become an efficient strategy to lower the toxicities, overcome resistance and improve the efficacies for cancer treatment. In this article, we review the combinations of MTAs with some other anticancer drugs, such as cytotoxic agents, kinases inhibitors, histone deacetylase inhibitors, immune checkpoints inhibitors, to overcome these obstacles. We strongly believe that this review will provide helpful information for combination therapy based on MTAs.
Collapse
|
5
|
Moreira-Silva F, Henrique R, Jerónimo C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front Oncol 2022; 12:877379. [PMID: 35686097 PMCID: PMC9170957 DOI: 10.3389/fonc.2022.877379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
6
|
Ozkan E, Bakar-Ates F. Ferroptosis: A Trusted Ally in Combating Drug Resistance in Cancer. Curr Med Chem 2021; 29:41-55. [PMID: 34375173 DOI: 10.2174/0929867328666210810115812] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
Ferroptosis, which is an iron-dependent, non-apoptotic cell death mechanism, has recently been proposed as a novel approach in cancer treatment. Bearing distinctive features and its exclusive mechanism have put forward the potential therapeutic benefit of triggering this newly discovered form of cell death. Numerous studies have indicated that apoptotic pathways are often deactivated in resistant cells, leading to a failure in therapy. Hence, alternative strategies to promote cell death are required. Mounting evidence suggests that drug-resistant cancer cells are particularly sensitive to ferroptosis. Given that cancer cells consume a higher amount of iron than healthy ones, ferroptosis not only stands as an excellent alternative to trigger cell death and reverse drug-resistance, but also provides selectivity in therapy. This review focuses specifically on overcoming drug-resistance in cancer through activating ferroptotic pathways and brings together the relevant chemotherapeutics-based and nanotherapeutics-based studies to offer a perspective for researchers regarding the potential use of this mechanism in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Erva Ozkan
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| | - Filiz Bakar-Ates
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
7
|
Shackleton EG, Ali HY, Khan M, Pockley GA, McArdle SE. Novel Combinatorial Approaches to Tackle the Immunosuppressive Microenvironment of Prostate Cancer. Cancers (Basel) 2021; 13:1145. [PMID: 33800156 PMCID: PMC7962457 DOI: 10.3390/cancers13051145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the second-most common cancer in men worldwide and treatment options for patients with advanced or aggressive prostate cancer or recurrent disease continue to be of limited success and are rarely curative. Despite immune checkpoint blockade (ICB) efficacy in some melanoma, lung, kidney and breast cancers, immunotherapy efforts have been remarkably unsuccessful in PCa. One hypothesis behind this lack of efficacy is the generation of a distinctly immunosuppressive prostate tumor microenvironment (TME) by regulatory T cells, MDSCs, and type 2 macrophages which have been implicated in a variety of pathological conditions including solid cancers. In PCa, Tregs and MDSCs are attracted to TME by low-grade chronic inflammatory signals, while tissue-resident type 2 macrophages are induced by cytokines such as IL4, IL10, IL13, transforming growth factor beta (TGFβ) or prostaglandin E2 (PGE2) produced by Th2 cells. These then drive tumor progression, therapy resistance and the generation of castration resistance, ultimately conferring a poor prognosis. The biology of MDSC and Treg is highly complex and the development, proliferation, maturation or function can each be pharmacologically mediated to counteract the immunosuppressive effects of these cells. Herein, we present a critical review of Treg, MDSC and M2 involvement in PCa progression but also investigate a newly recognized type of immune suppression induced by the chronic stimulation of the sympathetic adrenergic signaling pathway and propose targeted strategies to be used in a combinatorial modality with immunotherapy interventions such as ICB, Sipuleucel-T or antitumor vaccines for an enhanced anti-PCa tumor immune response. We conclude that a strategic sequence of therapeutic interventions in combination with additional holistic measures will be necessary to achieve maximum benefit for PCa patients.
Collapse
Affiliation(s)
- Erin G. Shackleton
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Haleema Yoosuf Ali
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
| | - Masood Khan
- Department of Urology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK;
| | - Graham A. Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.G.S.); (H.Y.A.); (G.A.P.)
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
8
|
Wu D, Qiu Y, Jiao Y, Qiu Z, Liu D. Small Molecules Targeting HATs, HDACs, and BRDs in Cancer Therapy. Front Oncol 2020; 10:560487. [PMID: 33262941 PMCID: PMC7686570 DOI: 10.3389/fonc.2020.560487] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Evidence for research over the past decade shows that epigenetic regulation mechanisms run through the development and prognosis of tumors. Therefore, small molecular compounds targeting epigenetic regulation have become a research hotspot in the development of cancer therapeutic drugs. According to the obvious abnormality of histone acetylation when tumors occur, it suggests that histone acetylation modification plays an important role in the process of tumorigenesis. Currently, as a new potential anti-cancer therapeutic drugs, many active small molecules that target histone acetylation regulatory enzymes or proteins such as histone deacetylases (HDACs), histone acetyltransferase (HATs) and bromodomains (BRDs) have been developed to restore abnormal histone acetylation levels to normal. In this review, we will focus on summarizing the changes of histone acetylation levels during tumorigenesis, as well as the possible pharmacological mechanisms of small molecules that target histone acetylation in cancer treatment.
Collapse
Affiliation(s)
- Donglu Wu
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Ye Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yunshuang Jiao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Tang S, Lian X, Jiang J, Cheng H, Guo J, Huang C, Meng H, Li X. Tumor Suppressive Maspin-Sensitized Prostate Cancer to Drug Treatment Through Negative Regulating Androgen Receptor Expression. Front Cell Dev Biol 2020; 8:573820. [PMID: 33195208 PMCID: PMC7649228 DOI: 10.3389/fcell.2020.573820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Overactivation of androgen receptor (AR)-mediated signal has been extensively implicated in prostate cancer (CaP) development, progression, and recurrence, which makes it an attractive therapeutic target. Meanwhile, as an endogenous inhibitor of histone deacetylase 1 (HDAC 1), tumor-suppressive mammary serine protease inhibitor (maspin) was reported to sensitize drug-induced apoptosis with a better therapeutic outcome in CaP, but the relationship between AR and maspin remains unclear. In the current study, treatment of 5'-Aza or MS-275/enzalutamide induced poly (ADP-ribose) polymerase (PARP) cleavage and p-H2A.X in CaP cells with an increase of maspin expression but a decrease of AR. Then, treatment with protease inhibitor MG132 did not rescue the above drug-induced loss of AR. In addition, modulation of maspin expression by gene recombinant or siRNA technology showed an inverse correlation between expression of maspin and AR, consequently affecting the AR-regulated downstream gene transcription (e.g., NKX3.1 and TMPRSS2). Bioinformatics analysis of the data extracted from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) database also revealed an inverse correlation between low maspin expression and high AR level in advanced CaP. Furthermore, chromatin immunoprecipitation (ChIP) assay using anti-maspin antibody identified that a portion of AR promoter sequence was co-precipitated and presented in the immunoprecipitated complex. Finally, maspin-mediated repression of AR was induced by treatment of MS-275, which promoted enzalutamide treatment efficacy with decrease of prostate-specific antigen (PSA) expression in LNCaP and 22RV1 cells. Taken together, the data not only demonstrated maspin-mediated repression of AR to augment drug anti-tumor activity but also provided in-depth support for combination of HDAC inhibitors with AR antagonist in CaP therapy.
Collapse
Affiliation(s)
- Sijie Tang
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Xueqi Lian
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Jiajia Jiang
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Huiying Cheng
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Jiaqian Guo
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Can Huang
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, United States
| | - Xiaohua Li
- The AoYang Cancer Institute, Jiangsu University, Suzhou, China
- The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Laboratory, Hefei, China
- National Center for Gene Testing Technology Application & Demonstration (Anhui), Hefei, China
| |
Collapse
|
10
|
Ince T, Serttas R, Demir B, Atabey H, Seferoglu N, Erdogan S, Sahin E, Erat S, Nural Y. Polysubstituted pyrrolidines linked to 1,2,3-triazoles: Synthesis, crystal structure, DFT studies, acid dissociation constant, drug-likeness, and anti-proliferative activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Chen Z, Wang X, Yang X, Xu Y, Yang Y, Wang H, Li T, Bai P, Yuan G, Chen H, Yang J, Fiedler SA, Striar R, Bernales DR, Koegel RE, Cao Q, Ran C, Xiang B, Li H, Wang C. Imaging assisted evaluation of antitumor efficacy of a new histone deacetylase inhibitor in the castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2020; 48:53-66. [PMID: 32592040 DOI: 10.1007/s00259-020-04896-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Castration-resistant prostate cancer (CRPC) is the most common cause of death in men. The effectiveness of HDAC inhibitors has been demonstrated by preclinical models, but not in clinical studies, probably due to the ineffectively accumulation of HDACI in prostate cancer cells. The purpose of this work was to evaluate effects of a novel HDACI (CN133) on CRPC xenograft model and 22Rv1 cells, and develops methods, PET/CT imaging, to detect the therapeutic effects of CN133 on this cancer. METHODS We designed and performed study to compare the effects of CN133 with SAHA on the 22Rv1 xenograft model and 22Rv1 cells. Using PET/CT imaging with [11C] Martinostat and [18F] FDG, we imaged mice bearing 22Rv1 xenografts before and after 21-day treatment with placebo and CN133 (1 mg/kg), and uptake on pre-treatment and post-treatment imaging was measured. The anti-tumor mechanisms of CN133 were investigated by qPCR, western blot, and ChIP-qPCR. RESULTS Our data showed that the CN133 treatment led to a 50% reduction of tumor volume compared to the placebo that was more efficacious than SAHA treatment in this preclinical model. [11C] Martinostat PET imaging could identify early lesions of prostate cancer and can also be used to monitor the therapeutic effect of CN133 in CRPC. Using pharmacological approaches, we demonstrated that effects of CN133 showed almost 100-fold efficacy than SAHA treatment in the experiment of cell proliferation, invasion, and migration. The anti-tumor mechanisms of CN133 were due to the inhibition of AR signaling pathway activity by decreased HDAC 2 and 3 protein expressions. CONCLUSION Taken together, these studies provide not only a novel epigenetic approach for prostate cancer therapy but also offering a potential tool, [11C] Martinostat PET/CT imaging, to detect the early phase of prostate cancer and monitor therapeutic effect of CN133. These results will likely lead to human trials in the future.
Collapse
Affiliation(s)
- Zude Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang 37, Chengdu, 610041, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xiashuang Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoshuang Yang
- Department of Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yu Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tao Li
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Gengyang Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephanie A Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Daniela R Bernales
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Robert E Koegel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Qi Cao
- Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Bo Xiang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Guoxue Xiang 37, Chengdu, 610041, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang 37, Chengdu, 610041, China.
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
12
|
Lobo J, Jerónimo C, Henrique R. Targeting the Immune system and Epigenetic Landscape of Urological Tumors. Int J Mol Sci 2020; 21:E829. [PMID: 32012885 PMCID: PMC7037817 DOI: 10.3390/ijms21030829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, we have witnessed remarkable advances in targeted therapies for cancer patients. There is a growing effort to either replace or reduce the dose of unspecific, systemic (chemo)therapies, given the associated short- and long-term side effects, by introducing more specific targeted therapies as single or combination agents. Due to the well-known implications of the immune system and epigenetic landscape in modulating cancer development, both have been explored as potential targets in several malignancies, including those affecting the genitourinary tract. As the immune system function is also epigenetically regulated, there is rationale for combining both strategies. However, this is still rather underexplored, namely in urological tumors. We aim to briefly review the use of immune therapies in prostate, kidney, bladder, and testicular cancer, and further describe studies providing supporting evidence on their combination with epigenetic-based therapies.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
13
|
Docetaxel Combined with Thymoquinone Induces Apoptosis in Prostate Cancer Cells via Inhibition of the PI3K/AKT Signaling Pathway. Cancers (Basel) 2019; 11:cancers11091390. [PMID: 31540423 PMCID: PMC6770702 DOI: 10.3390/cancers11091390] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Toxicity and the development of resistance by cancer cells are impediments for docetaxel (DTX), a primary drug for treating prostate cancer (PCa). Since the combination of DTX with natural compounds can increase its effectiveness by reducing its toxic concentrations, we evaluated a combination of thymoquinone (TQ) with DTX and determined its cytotoxicity against PCa cells (DU145 and C4-2B). This combination, in a concentration-dependent manner, resulted in synergistic cytotoxicity and apoptosis in comparison to either DTX or TQ alone. In addition, inhibition of cell survival pathways by PI3K/AKT inhibitors conferred sensitivity of DU145 and C4-2B cells to the combination as compared to the individual drugs. Moreover, the combined drugs (DTX+TQ) with inhibitors of PI3K/AKT increased the expression of pro-apoptotic markers (BAX and BID) along with caspase-3, PARP and decreased expression of the anti-apoptotic marker, BCL-XL. These data show that, for PCa cells, the cytotoxic effect of the DTX and TQ combination correlates with a block of the PI3K/AKT signaling pathway. These findings indicate that the combination of DTX and TQ, by blocking of the PI3K/AKT pathway, will improve the survival rate and quality of life of PCa patients.
Collapse
|
14
|
Fang H, Du G, Wu Q, Liu R, Chen C, Feng J. HDAC inhibitors induce proline dehydrogenase (POX) transcription and anti-apoptotic autophagy in triple negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1064-1070. [PMID: 31559416 DOI: 10.1093/abbs/gmz097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor clinical outcomes and without effective targeted therapies. Numerous studies have suggested that HDAC inhibitors (TSA/SAHA) may be effective in TNBCs. Proline oxidase, also known as proline dehydrogenase (POX/PRODH), is a key enzyme in the proline metabolism pathway and plays a vital role in tumorigenesis. In this study, we found that HDAC inhibitors (TSA/SAHA) significantly increased POX expression and autophagy through activating AMPK. Depletion of POX decreased autophagy and increased apoptosis induced by HDAC inhibitors in TNBC cells. These results suggest that POX contributes to cell survival under chemotherapeutic stresses and might serve as a potential target for treatment of TNBC.
Collapse
Affiliation(s)
- Huan Fang
- Medical College, Anhui University of Science and Technology, Huainan, China
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Qiuju Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Jing Feng
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| |
Collapse
|