1
|
Beyer J, Song Y, Tollefsen KE, Berge JA, Tveiten L, Helland A, Øxnevad S, Schøyen M. The ecotoxicology of marine tributyltin (TBT) hotspots: A review. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105689. [PMID: 35777303 DOI: 10.1016/j.marenvres.2022.105689] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Tributyltin (TBT) was widely used as a highly efficient biocide in antifouling paints for ship and boat hulls. Eventually, TBT containing paints became globally banned when TBT was found to cause widespread contamination and non-target adverse effects in sensitive species, with induced pseudohermaphroditism in female neogastropods (imposex) being the best-known example. In this review, we address the history and the status of knowledge regarding TBT pollution and marine TBT hotspots, with a special emphasis on the Norwegian coastline. The review also presents a brief update on knowledge of TBT toxicity in various marine species and humans, highlighting the current understanding of toxicity mechanisms relevant for causing endocrine disruption in marine species. Despite observations of reduced TBT sediment concentrations in many marine sediments over the recent decades, contaminant hotspots are still prevalent worldwide. Consequently, efforts to monitor TBT levels and assessment of potential effects in sentinel species being potentially susceptible to TBT in these locations are still highly warranted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - John Arthur Berge
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Lise Tveiten
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | - Sigurd Øxnevad
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
2
|
Consecutive sexual maturation observed in a rock shell population in the vicinity of the Fukushima Daiichi Nuclear Power Plant, Japan. Sci Rep 2021; 11:560. [PMID: 33436968 PMCID: PMC7803997 DOI: 10.1038/s41598-020-80686-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
In 2012, after the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) that followed the Tohoku earthquake and tsunami in March 2011, no rock shell (Thais clavigera; currently recognized as Reishia clavigera; Gastropoda, Neogastropoda, Muricidae) specimens were found near the plant from Hirono to Futaba Beach (a distance of approximately 30 km). In July 2016, however, rock shells were again found to inhabit the area. From April 2017 to May 2019, we collected rock shell specimens monthly at two sites near the FDNPP (Okuma and Tomioka) and at a reference site ~ 120 km south of the FDNPP (Hiraiso). We examined the gonads of the specimens histologically to evaluate their reproductive cycle and sexual maturation. The gonads of the rock shells collected at Okuma, ~ 1 km south of the FDNPP, exhibited consecutive sexual maturation during the 2 years from April 2017 to May 2019, whereas sexual maturation of the gonads of specimens collected at Hiraiso was observed only in summer. The consecutive sexual maturation of the gonads of the specimens collected at Okuma might not represent a temporary phenomenon but rather a site-specific phenotype, possibly caused by specific environmental factors near the FDNPP.
Collapse
|
3
|
RXR Expression in Marine Gastropods with Different Sensitivity to Imposex Development. Sci Rep 2020; 10:9507. [PMID: 32528077 PMCID: PMC7289818 DOI: 10.1038/s41598-020-66402-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
The superposition of male sexual characteristics in female marine gastropods (imposex) represents one of the clearest ecological examples of organotin-mediated endocrine disruption. Recent evidences suggest that signaling pathways mediated by members of the nuclear receptor superfamily, RXR and PPARγ, are involved in the development of this pseudohermaphroditic condition. Here, we identified significant differences in RXR expression in two caenogastropod species from Nuevo Gulf, Argentina, Buccinanops globulosus and Trophon geversianus, which present clear contrast in imposex incidence. In addition, B. globulosus males from a polluted and an unpolluted area showed differences in RXR expression. Conversely, PPARγ levels were similar between both analyzed species. These findings indicate specie-specific RXR and PPARγ expression, suggesting a major role of RXR in the induction of imposex.
Collapse
|
4
|
Morales M, Martínez-Paz P, Sánchez-Argüello P, Morcillo G, Martínez-Guitarte JL. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:132-138. [PMID: 29407779 DOI: 10.1016/j.ecoenv.2018.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment.
Collapse
Affiliation(s)
- Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Dpto. de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra, La Coruña km 7, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
5
|
Ruocco N, Varrella S, Romano G, Ianora A, Bentley MG, Somma D, Leonardi A, Mellone S, Zuppa A, Costantini M. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:128-140. [PMID: 27130972 DOI: 10.1016/j.aquatox.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefano Varrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Matt G Bentley
- Faculty of Science and Technology, C227 Christchurch House, Bournemouth University, Talbot Campus, Poole, UK
| | - Domenico Somma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli, Italy
| | - Antonio Zuppa
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
6
|
Vogeler S, Galloway TS, Lyons BP, Bean TP. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 2014; 15:369. [PMID: 24885009 PMCID: PMC4070562 DOI: 10.1186/1471-2164-15-369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. RESULTS Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. CONCLUSION C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.
Collapse
Affiliation(s)
- Susanne Vogeler
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S Galloway
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Brett P Lyons
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P Bean
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| |
Collapse
|
7
|
Horiguchi T, Ohta Y, Hamada F, Urushitani H, Cho HS, Shiraishi H. Development of reproductive organs in the ivory shell Babylonia japonica: observations from wild populations and laboratory-reared juveniles. MARINE ENVIRONMENTAL RESEARCH 2014; 93:4-14. [PMID: 23921202 DOI: 10.1016/j.marenvres.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
We histologically examined normal differentiation and development of genital tract and gonad in the ivory shell Babylonia japonica (Buccinidae) to determine whether the formation of male-type genitalia in imposex-exhibiting females mimics the normal development of male genitalia in prosobranch gastropods. We used a wild-caught 2-year-old specimen and laboratory-reared juveniles aged 0-24 months. Gonad differentiation was unclear before age 14 months, but progressed after 16 months. Both sexes had complete genital tract and mature gonad at 20 months. However, differentiation and development occurred earlier in females than in males. Development of genital tract preceded gonad differentiation. Vas deferens morphogenesis in males resembled that in imposex-exhibiting females. These findings help to understand the morphogenesis of genital tract and gonad in prosobranch gastropods and will contribute to more in-depth studies of the mode of action of organotin compounds such as TBT and TPhT in imposex development in female prosobranch gastropods.
Collapse
Affiliation(s)
- Toshihiro Horiguchi
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Yasuhiko Ohta
- Laboratory of Experimental Animals, Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
| | - Fumihiko Hamada
- Tottori Prefectural Sea Farming Association, Tohaku-gun, Tottori 689-0602, Japan
| | - Hiroshi Urushitani
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hyeon-Seo Cho
- Faculty of Marine Technology, College of Ocean Science and Technology, Chonnam National University, San 96-1, Dundeok-dong, Yeosu 550-749, Republic of Korea
| | - Hiroaki Shiraishi
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
8
|
Urushitani H, Katsu Y, Ohta Y, Shiraishi H, Iguchi T, Horiguchi T. Cloning and characterization of the retinoic acid receptor-like protein in the rock shell, Thais clavigera. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:403-413. [PMID: 24096236 DOI: 10.1016/j.aquatox.2013.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
The organotin compounds have a high affinity for the retinoid X receptor (RXR), which is a transcriptional factor activated by retinoids that induce imposex in gastropods. However, the molecular mechanisms underlying the regulation of RXR and its related genes in gastropods remain unclear. We isolated a retinoic acid receptor (RAR)-like cDNA (TcRAR) in the rock shell, Thais clavigera, and examined the transcriptional activity of the TcRAR protein by using all-trans retinoic acid (ATRA). However, we did not observe any ligand-dependent transactivation by this protein. We also examined the transcriptional activity of the TcRAR-ligand binding domain fused with the GAL4-DNA binding domain by using retinoic acids, retinol, and organotins and again saw no noteworthy transcriptional induction by these chemicals. Use of a mammalian two-hybrid assay to assess the interaction of the TcRAR protein with the TcRXR isoforms suggested that TcRAR might form a heterodimer with the RXR isoforms. The transcriptional activity of domain-swapped TcRAR chimeric proteins (the A/B domain of TcRAR combined with the D-F domain of human RARα) was also examined and found to be ATRA-dependent. These results suggest that TcRAR is not activated by retinoic acids, but can form a heterodimer with TcRXR isoforms. These data contribute to our understanding of the mechanism by which RXR functions in gastropods.
Collapse
Affiliation(s)
- Hiroshi Urushitani
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Organotin Compounds from Snails to Humans. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2013. [DOI: 10.1007/978-3-319-02387-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Horiguchi T, Lee JH, Park JC, Cho HS, Shiraishi H, Morita M. Specific accumulation of organotin compounds in tissues of the rock shell, Thais clavigera. MARINE ENVIRONMENTAL RESEARCH 2012; 76:56-62. [PMID: 21955599 DOI: 10.1016/j.marenvres.2011.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/14/2011] [Accepted: 09/08/2011] [Indexed: 05/31/2023]
Abstract
Concentrations of organotin compounds (butyltins and phenyltins) were determined in gonad, accessory sex organs, penis, digestive gland, kidney, radula with sac, oesophagus with crop, stomach, hypobranchial gland, rectum, mantle, osphradium, ctenidium, heart, salivary gland, head ganglia and muscle of imposex-exhibiting female and male rock shells (Thais clavigera), by gas chromatography with flame photometric detection (GC-FPD). Different tissue distributions were observed between butyltin and phenyltin compounds. More than 1000 ng TBT/g wet wt. were observed in ovary, digestive gland, kidney, heart, ctenidium, osphradium, stomach, head ganglia and penis, of both imposex-exhibiting females and males. More than 1000 ng TPT/g wet wt. were found in almost all tissues of both sexes. Approximately one-third or more of total TBT was accumulated in the digestive glands of both females and males, respectively. Meanwhile, approximately 40-50% and one-half of total TPT accumulated in the digestive glands of females and males, respectively.
Collapse
Affiliation(s)
- Toshihiro Horiguchi
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Horiguchi T, Ohta Y, Urushitani H, Lee JH, Park JC, Cho HS, Shiraishi H. Vas deferens and penis development in the imposex-exhibiting female rock shell, Thais clavigera. MARINE ENVIRONMENTAL RESEARCH 2012; 76:71-79. [PMID: 22033069 DOI: 10.1016/j.marenvres.2011.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/24/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
The characteristics of the development of male genitalia (penis and vas deferens) in imposex-exhibiting female rock shells, Thais clavigera, were histologically examined using specimens from a wild population and tributyltin (TBT)-exposed females in the laboratory. A variety of vas deferens morphogenesis patterns were observed in wild female T. clavigera, and the characteristics were summarized. The immature vas deferens at an initial stage, however, was only observed beneath or behind the penis, and no vas deferens was observed close to the vaginal opening (i.e., vulva) of the capsule gland in TBT-exposed females, which was different from the characteristics of vas deferens formation observed in wild females. Taking into consideration both the observed results from wild female specimens and from TBT-exposed females in the laboratory, the vas deferens sequence (VDS) index for T. clavigera was proposed as VDS 1-6.
Collapse
Affiliation(s)
- Toshihiro Horiguchi
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2012; 7:e31750. [PMID: 22363721 PMCID: PMC3282763 DOI: 10.1371/journal.pone.0031750] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.
Collapse
Affiliation(s)
- Vincenzo Marrone
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail:
| |
Collapse
|
13
|
Urushitani H, Katsu Y, Ohta Y, Shiraishi H, Iguchi T, Horiguchi T. Cloning and characterization of retinoid X receptor (RXR) isoforms in the rock shell, Thais clavigera. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:101-111. [PMID: 21414284 DOI: 10.1016/j.aquatox.2011.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 02/09/2011] [Accepted: 02/12/2011] [Indexed: 05/30/2023]
Abstract
The organotin compounds tributyltin (TBT) and triphenyltin (TPT) belong to a diverse group of widely distributed environmental pollutants that induce imposex in gastropods. These organotins have high affinity for retinoid X receptor (RXR), which is a transcription factor activated by retinoids, such as 9-cis retinoic acid (9cRA), in vertebrates. However, the molecular mechanisms underlying the regulation of RXR by retinoids and organotins have not been clarified in gastropods. We isolated two isoforms of RXR cDNAs, RXR isoform 1 (TcRXR-1) and RXR isoform 2 (TcRXR-2), in the rock shell Thais clavigera. The deduced amino acid sequences of TcRXR-1 and TcRXR-2 are highly homologous with those of other gastropods. These TcRXR isoforms displayed 9cRA-dependent activation of transcription in a reporter gene assay using COS-1 cells. The transcriptional activity of TcRXR-2, the encoded protein of which has five additional amino acids in the T-box of the C domain, was significantly lower than that of TcRXR-1. Decreases of the transcriptional activity by TcRXR-1 were observed when more than equal amount of TcRXR-2 fused expression vector was existed in a co-transfection assay. Immunoblot analysis showed several shifted bands for TcRXR isoforms resulting from phosphorylation. Mutation of potential phosphorylation sites from serine to alanine in the A/B domain of TcRXR-1 showed that, in the S89A/S103A mutant, there was a band shift and significantly higher transcriptional activity than in the controls when stimulated with 9cRA. Our findings could contribute to a better understanding of the role of interactions between RXR and retinoids and organotins, not only in the induction mechanism of imposex in gastropods but also in the endocrinology of mollusks.
Collapse
Affiliation(s)
- Hiroshi Urushitani
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | |
Collapse
|