1
|
Black TA, de Jourdan B, Artelle KA, Chan D, Prosser RS. Investigating adult reproduction as a potential barrier to recovery of wild Manila clam (Venerupis philippinarum) populations impacted by the Nathan E. Stewart oil spill, Central Coast, B.C. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107181. [PMID: 40318476 DOI: 10.1016/j.marenvres.2025.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Understanding the chronic effects of environmental disasters, such as oil spills, is critical to assessing long-term impacts on marine ecosystems and guiding recovery efforts. We assessed the reproductive potential of adult Manila clams (Venerupis philippinarum) from sites impacted by the Nathan E. Stewart oil spill (Central Coast, British Columbia, Haíɫzaqv Territory, October 2016) to determine if reduced reproductive capacity may be driving a delayed population recovery among the impacted clam populations. Clams from both reference and impacted sites were conditioned under controlled laboratory settings, with reproductive metrics (gonadosomatic index, progression of gamete development, fertilization success, spawning success) showing no significant differences between sites, suggesting that reproductive output in adults is not currently limiting recovery. Adult clams from all sites successfully spawned under controlled laboratory conditions. However, despite successful spawning and fertilization, larval survival was uniformly low across sites; this low survival may be attributable to methodological factors, such as temperature or handling stress rather than direct impacts of the oil spill. Findings suggest factors other than adult reproductive capacity are causing continued delay of population recovery, warranting further investigation.
Collapse
Affiliation(s)
- Tyler A Black
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | - Kyle A Artelle
- Heiltsuk Integrated Resource Management Department, Heiltsuk Territory, Bella Bella, British Columbia, V0T 1Z0, Canada; Center for Native Peoples and the Environment, And Environmental Biology Department, State University of New York, College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY, 13210, United States
| | - Diana Chan
- Heiltsuk Integrated Resource Management Department, Heiltsuk Territory, Bella Bella, British Columbia, V0T 1Z0, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
2
|
Ardura A. Species-specific markers for early detection of marine invertebrate invaders through eDNA methods: Gaps and priorities in GenBank as database example. J Nat Conserv 2019. [DOI: 10.1016/j.jnc.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Gonzalez-Romero R, Suarez-Ulloa V, Rodriguez-Casariego J, Garcia-Souto D, Diaz G, Smith A, Pasantes JJ, Rand G, Eirin-Lopez JM. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:196-204. [PMID: 28315825 DOI: 10.1016/j.aquatox.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.
Collapse
Affiliation(s)
- Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Victoria Suarez-Ulloa
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Javier Rodriguez-Casariego
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Daniel Garcia-Souto
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gabriel Diaz
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Abraham Smith
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Juan Jose Pasantes
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gary Rand
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA.
| |
Collapse
|
4
|
Suarez-Ulloa V, Gonzalez-Romero R, Eirin-Lopez JM. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. MARINE POLLUTION BULLETIN 2015; 98:5-13. [PMID: 26088539 DOI: 10.1016/j.marpolbul.2015.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans.
Collapse
Affiliation(s)
- Victoria Suarez-Ulloa
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Rodrigo Gonzalez-Romero
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Jose M Eirin-Lopez
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
5
|
Effects of freshwater pollution on the genetics of zebra mussels (Dreissena polymorpha) at the molecular and population level. BIOMED RESEARCH INTERNATIONAL 2014; 2014:795481. [PMID: 24883328 PMCID: PMC4022251 DOI: 10.1155/2014/795481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/22/2014] [Indexed: 12/02/2022]
Abstract
Revealing long-term effects of contaminants on the genetic structure of organisms inhabiting polluted environments should encompass analyses at the population, molecular, and cellular level. Following this concept, we studied the genetic constitution of zebra mussel populations from a polluted (Dp) and reference sites (Cl) at the river Drava, Croatia, and applied microsatellite and DNA damage analyses (Comet assay, micronucleus test (MNT)). Additionally, mussels from both populations were exposed to polluted wastewater in the laboratory for three days, and DNA damage was analyzed to evaluate acclimatization and genetic adaptation of the investigated populations to the polluted environment. The two populations differed in their genetic constitution. Microsatellite analysis suggested that Dp had undergone a genetic bottleneck. Comet assay did not indicate any difference in DNA damage between the two populations, but MNT revealed that Dp had an increased percentage of micronuclei in hemocytes in comparison to Cl. The laboratory experiment revealed that Dp had a lower percentage of tail DNA and a higher percentage of micronuclei than Cl. These differences between populations were possibly caused by an overall decreased fitness of Dp due to genetic drift and by an enhanced DNA repair mechanism due to acclimatization to pollution in the source habitat.
Collapse
|
6
|
Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, Gerdol M, Venier P, Eirín-López JM. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 2013; 11:4370-89. [PMID: 24189277 PMCID: PMC3853733 DOI: 10.3390/md11114370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/26/2022] Open
Abstract
The extraordinary progress experienced by sequencing technologies and bioinformatics has made the development of omic studies virtually ubiquitous in all fields of life sciences nowadays. However, scientific attention has been quite unevenly distributed throughout the different branches of the tree of life, leaving molluscs, one of the most diverse animal groups, relatively unexplored and without representation within the narrow collection of well established model organisms. Within this Phylum, bivalve molluscs play a fundamental role in the functioning of the marine ecosystem, constitute very valuable commercial resources in aquaculture, and have been widely used as sentinel organisms in the biomonitoring of marine pollution. Yet, it has only been very recently that this complex group of organisms became a preferential subject for omic studies, posing new challenges for their integrative characterization. The present contribution aims to give a detailed insight into the state of the art of the omic studies and functional information analysis of bivalve molluscs, providing a timely perspective on the available data resources and on the current and prospective applications for the biomonitoring of harmful marine compounds.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
| | - Juan Fernández-Tajes
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; E-Mail:
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Paola Venier
- Department of Biology, University of Padova, Padova 35121, Italy; E-Mail:
| | - José M. Eirín-López
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-919-4000; Fax: +1-305-919-4030
| |
Collapse
|