1
|
Scanes E, Kutti T, Fang JKH, Johnston EL, Ross PM, Bannister RJ. The long-lived deep-sea bivalve Acesta excavata is sensitive to the dual stressors of sediment and warming. MARINE POLLUTION BULLETIN 2024; 202:116323. [PMID: 38598927 DOI: 10.1016/j.marpolbul.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Human influence in the deep-sea is increasing as mining and drilling operations expand, and waters warm because of climate change. Here, we investigate how the long-lived deep-sea bivalve, Acesta excavata responds to sediment pollution and/or acute elevated temperatures. A. excavata were exposed to suspended sediment, acute warming, and a combination of the two treatments for 40 days. We measured O2 consumption, NH4+ release, Total Organic Carbon (TOC), and lysosomal membrane stability (LMS). We found suspended sediment and warming interacted to decrease O:N ratios, while sediment as a single stressor increased the release of TOC and warming increased NH4+ release in A. excavata. Warming also increased levels of LMS. We found A. excavata used protein catabolism to meet elevated energetic demands indicating a low tolerance to stress. A. excavata has limited capacity for physiological responses to the stressors of warming and sediment which may lead to decreased fitness of A. excavata.
Collapse
Affiliation(s)
- Elliot Scanes
- School of Life and Environmental Science, The University of Sydney, Camperdown, 2006, NSW, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, 2007, NSW, Australia.
| | - Tina Kutti
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | - James K H Fang
- Department of Food Science and Nutrition, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma L Johnston
- School of Life and Environmental Science, The University of Sydney, Camperdown, 2006, NSW, Australia; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Pauline M Ross
- School of Life and Environmental Science, The University of Sydney, Camperdown, 2006, NSW, Australia
| | | |
Collapse
|
2
|
Hook SE, Foster S, Althaus F, Bearham D, Angel BM, Revill AT, Simpson SL, Strzelecki J, Cresswell T, Hayes KR. The distribution of metal and petroleum-derived contaminants within sediments around oil and gas infrastructure in the Gippsland Basin, Australia. MARINE POLLUTION BULLETIN 2023; 193:115196. [PMID: 37421917 DOI: 10.1016/j.marpolbul.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
As oil and gas infrastructure comes to the end of its working life, a decommissioning decision must be made: should the infrastructure be abandoned in situ, repurposed, partially removed, or fully removed? Environmental contaminants around oil and gas infrastructure could influence these decisions because contaminants in sediments could degrade the value of the infrastructure as habitat, enter the seafood supply if the area is re-opened for commercial and/or recreational fishing, or be made biologically available as sediment is resuspended when the structures are moved. An initial risk hypothesis, however, may postulate that these concerns are only relevant if contaminant concentrations are above screening values that predict the possibility of environmental harm or contaminant bioaccumulation. To determine whether a substantive contaminants-based risk assessment is needed for infrastructure in the Gippsland Basin (South-eastern Australia), we measured the concentration of metals and polycyclic aromatic hydrocarbons (PAHs) in benthic sediments collected around eight platforms earmarked for decommissioning. The measurements were compared to preset screening values and to background contaminant concentrations in reference sites. Lead (Pb), zinc (Zn), PAHs and other contaminants were occasionally measured at concentrations that exceeded reference values, most often within 150 m of the platforms. The exceedance of a few screening values by contaminants at some platforms indicates that these platforms require further analysis to determine the contaminant risks associated with any decommissioning option.
Collapse
Affiliation(s)
| | | | | | | | - Brad M Angel
- CSIRO Environment, Lucas Heights, NSW, Australia
| | | | | | | | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | | |
Collapse
|
3
|
Huffman Ringwood A. Bivalves as Biological Sieves: Bioreactivity Pathways of Microplastics and Nanoplastics. THE BIOLOGICAL BULLETIN 2021; 241:185-195. [PMID: 34706207 DOI: 10.1086/716259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractOceanic and coastal sampling programs have indicated extensive plastic pollution of marine habitats and revealed the need for understanding the scope and potential impacts of plastics on marine organisms. Sampling regimes for macroplastics (>5 mm) that can be visually collected for quantification and characterization in marine habitats provide valuable environmental data for the larger plastics. But less is known about the scope or potential impacts of small micron- and nano-sized bits of plastic that result from weathering of macroplastics and inputs of manufactured particles that could profoundly affect marine invertebrates, especially suspension feeders. Essential fundamental information about bivalve biology along with current research and reviews on microplastics, nanoplastics, and engineered nanoparticles were integrated to discuss how filter-feeding bivalves can serve as valuable bioindicators of plastic pollution. Bivalves can serve as important bioaccumulators of plastic particles and exhibit processing pathways that serve as biological sieves. Mesoplastics (1-5 mm) and large microplastics (>25 µm) will have a relatively short transit time (hours to days) and will primarily be concentrated in biodeposits (pseudofeces and feces). Small microplastics (<25 µm) and nanoplastics (<1 µm) are more likely to be accumulated in digestive gland tissues and cells, and also hemocytes, and will have longer retention times. Lysosomes are a common target organelle for uptake and toxicity in both of these cell types. Therefore, bivalves can potentially act as biological sieves for characterizing relative environmental exposures and bioreactivity of microplastics and nanoplastics, based on critical particle capture and processing pathways. This framework highlights the importance of developing diagnostic approaches to characterize potential environmental risks associated with plastic particles as well as potential interactions with other anthropogenic pollutants.
Collapse
|
4
|
Maradonna F, Ancillai D, Notarstefano V, Valenti A, Leoni T, Carnevali O. An integrated approach to evaluate port sediment quality: From chemical characterization to multispecies bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141204. [PMID: 32768784 DOI: 10.1016/j.scitotenv.2020.141204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Management of dredged sediments results in an environmental and social cost. Based on their level of contamination, they can be intended for beach nourishment or for alternative uses. Sediment quality is established considering their specific chemical contamination level and setting up bioassays to evaluate their toxic effects on living organisms. The integration of these different Line of Evidence (LOE) generates toxicity indexes, the Hazard Chemical Quotient (HQc), and the Hazard Ecotoxicological Quotient (HQe), which are further elaborated using the SediQualSoft software, finally providing evidence on the levels of sediment contamination. In this study, four different dredged sediments were analysed. Except for one, which was sampled in a reference area, the others were assigned to the same class of toxicity, despite they presented different levels of chemical and ecotoxicological toxicity. As a novelty, this study introduces transcriptomics as a new LOE, to provide a new tool to better categorize sediment toxicity. C. gigas embryos were exposed to sediment elutriates, sampled at 5 and 18 h post-fertilization (hpf), and the expression of a set of genes involved in immune and stress response (hsp70, gpx, sod, dehf1, galectin, lysozyme, tg) was analysed by Real-time PCR. Molecular results suggested that the 18 hpf stage represents a sensitive window of exposure during development and can be suggested as a critical time point for ecotoxicity studies. Finally, by multivariate statistical analysis, integrating the well-established LOEs with molecular data, it was demonstrated that transcriptomics could be a useful and novel LOE with the ability to provide greater accuracy in the assessment of sediment toxicity.
Collapse
Affiliation(s)
- Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi - Consorzio Interuniversitario, Viale delle Medaglie d'Oro 305, 00136 Roma, Italy.
| | - Daniele Ancillai
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Valentina Notarstefano
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alessandra Valenti
- Agenzia Regionale per la Protezione Ambientale delle Marche, Via Federico II 41, Villa Potenza, 62100 Macerata, MC, Italy
| | - Tristano Leoni
- Agenzia Regionale per la Protezione Ambientale delle Marche, Via Federico II 41, Villa Potenza, 62100 Macerata, MC, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi - Consorzio Interuniversitario, Viale delle Medaglie d'Oro 305, 00136 Roma, Italy
| |
Collapse
|
5
|
Khan B, Ho KT, Burgess RM. Application of Biomarker Tools Using Bivalve Models Toward the Development of Adverse Outcome Pathways for Contaminants of Emerging Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1472-1484. [PMID: 32452040 PMCID: PMC7657996 DOI: 10.1002/etc.4757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 05/24/2023]
Abstract
As contaminant exposures in aquatic ecosystems continue to increase, the need for streamlining research efforts in environmental toxicology using predictive frameworks also grows. One such framework is the adverse outcome pathway (AOP). An AOP framework organizes and utilizes toxicological information to connect measurable molecular endpoints to an adverse outcome of regulatory relevance via a series of events at different levels of biological organization. Molecular endpoints or biomarkers are essential to develop AOPs and are valuable early warning signs of the toxicity of pollutants, including contaminants of emerging concern. Ecological risk-assessment approaches using tools such as biomarkers and AOPs benefit from identification of molecular targets conserved across species. Bivalve models are useful in such approaches and integral to our understanding of ecological and human health risks associated with contaminant exposures. We discuss the value of using biomarker approaches in bivalve models to meet the demands of twenty-first-century toxicology. Environ Toxicol Chem 2020;39:1472-1484. © 2020 SETAC.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental
Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27
Tarzwell Drive, Narragansett, RI 02882, USA
| | - Kay T. Ho
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| |
Collapse
|
6
|
Varea R, Piovano S, Ferreira M. Knowledge gaps in ecotoxicology studies of marine environments in Pacific Island Countries and Territories - A systematic review. MARINE POLLUTION BULLETIN 2020; 156:111264. [PMID: 32510405 DOI: 10.1016/j.marpolbul.2020.111264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The Pacific Island Countries and Territories (PICTs) are heavily dependent on the marine resources for food security, employment, government revenue and economic development, hence the concern about the potential exposure of these resources to pollutants. The main goal of this review was to identify ecotoxicology studies published that were done in PICTs. Four major gaps were identified: i) a quantitative gap, with low number of studies published on the PICTs; ii) a geographic gap, where ecotoxicology studies have unevenly covered the different PICTs; iii) a temporal gap, as no biological effect monitoring study has so far been published for the PICTs; and, iv) a pollutants gap, as all of the PICTs studies focused mainly on environmental monitoring studying on average two types of pollutants (heavy metals and pesticides) per PICT only. We suggest, therefore, the potential risk to the marine environment to be estimated by assessing the fate of pollutants via chemical and biological effect monitoring.
Collapse
Affiliation(s)
- Rufino Varea
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Susanna Piovano
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Marta Ferreira
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji; CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
7
|
Carrazco-Quevedo A, Römer I, Salamanca MJ, Poynter A, Lynch I, Valsami-Jones E. Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:127-134. [PMID: 31030055 DOI: 10.1016/j.ecoenv.2019.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The increasing production of Ag nanoparticle (AgNP) containing products has inevitably led to a growing concern about their release into the aquatic environment, along with their potential behaviour, toxicity, and bioaccumulation in marine organisms exposed to NPs released from these products. Hence, this study is focused on the effects of AgNPs in Saccostrea glomerata (rock oyster) in artificial seawater (ASW); evaluating the NP's stability, dissolution, and bioaccumulation rate. AgNPs NM300K (20 ± 5 nm) in concentrations of 12.5 μgL-1 and 125 μgL-1 were used to conduct the experiments, and were compared to a blank and a positive control of 12.5 μgL-1 AgNO3. Dissolution in ASW was measured by ICP-OES and stability was assessed by TEM after 1 h and 3, 5, and 7 days of exposure. Bioaccumulation in gills and digestive glands was measured after 7 days of exposure. The higher concentration of AgNPs induced more aggregation, underwent less dissolution, and showed less bioaccumulation, while the lower concentration showed less aggregation, more dissolution and higher bioaccumulation. Five biomarkers (EROD: ethoxyresorufin-o-deethylase, DNA strand breaks, LPO: lipid peroxidation, GST: glutathione S-transferase and GR: glutathione reductase) were analysed at 0, 3, 5 and 7 days. Significant differences compared to the initial day of exposure (day 0) were reported in DNA strand breaks after 5 and 7 days of exposure, GST, from the third day of exposure, in all the Ag samples, and in some samples for LPO and GR biomarkers, while no significant induction of EROD was observed. A combined effect for each type of treatment and time of exposure was also reported for DNA strand breaks and GST biomarkers measured at the digestive glands. In general, the significant inductions measured showed the following trend: 125 μgL-1 AgNPs >12.5 μgL-1 AgNPs ∼12.5 μgL-1 AgNO3 even though bioaccumulation followed the opposite trend.
Collapse
Affiliation(s)
- Ana Carrazco-Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isabella Römer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maria J Salamanca
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alexander Poynter
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Chan CY, Wang WX. Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:264-276. [PMID: 31082611 DOI: 10.1016/j.envpol.2019.04.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The Pearl River Estuary (PRE) is the third largest estuary in China, where estuarine organisms are under metal stress at various biological levels. Based on the metal concentrations measured in oyster Crassostrea hongkongensis, we documented a change in dominance of metal contamination from Cd, Cr, Cu, Ni and Zn to Ag, Cd, Cu and Zn. In general, metal concentrations were higher in upstream stations and displayed a clear up-downstream gradient. Compared to the historical values, we noted the reductions in Cd, Cr and Ni concentrations, and the changing inputs due to evolving industrial activities were responsible for shaping the metal contamination profile in the PRE region. Along with metal concentrations, a suite of biomarkers was analyzed. Among the metals measured in the oyster tissues, Ag, Cd, Cu, Ni and Zn showed the strongest associations with pro-oxidant and oxidative stress responses (superoxide dismutase, lipid peroxidation and lysosomal membrane destabilization) and detoxification responses (glutathione and metallothionein), suggesting that the present metal contamination still exerts significant amount of stress in biota in the PRE. Metal contamination in estuaries in China is still severe compared to other countries, therefore continuous efforts should be taken to monitor the changing metal profiles with necessary control and remediation measures.
Collapse
Affiliation(s)
- Cheuk Yan Chan
- HKUST Shenzhen Research Institute, Shenzhen, 518 057, State Key Laboratory of Marine Pollution, Department of Ocean Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- HKUST Shenzhen Research Institute, Shenzhen, 518 057, State Key Laboratory of Marine Pollution, Department of Ocean Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Chan CY, Wang WX. Seasonal and spatial variations of biomarker responses of rock oysters in a coastal environment influenced by large estuary input. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1253-1265. [PMID: 30118913 DOI: 10.1016/j.envpol.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
The present study assessed the spatial and temporal variations and the potential influences of the Pearl River discharge on trace metal bioaccumulation and biomarker responses in Hong Kong coastal waters. A suite of biomarkers including antioxidant defense, oxidative stress, metal detoxification, cellular response, neurotoxicity, and energy reserve were quantified in the rock oyster Saccostrea cucullata over spatial scale across the east and west of Hong Kong. We documented the elevated Cd, Cu and Zn concentrations in all western stations in the fall season, as a result of time-integrated accumulation during the peak discharge of the Pearl River Estuary (PRE) in summer. Lipid peroxidation and total glutathione corresponded well with the overall metal gradient and showed significant correlation with the tissue Cu bioaccumulation. The eastern station (Clear Water Bay) also exhibited high Cd and Cu concentrations with increased oxidative stress responses. In the spring, metal bioaccumulation in the oysters was reduced due to the weakened influence of PRE, with correspondingly less obvious biomarker responses. Our coupling measurements of biomarkers and tissue metal concentrations for the first time revealed that the large PRE could have latent and seasonal biological effects on the Hong Kong coastal biota. Sensitive biomarkers such as lipid peroxidation and glutathione responses might be good candidates for detecting the early biological responses in such sub-lethal contaminated environments.
Collapse
Affiliation(s)
- Cheuk Yan Chan
- Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China; Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, Hong Kong, China
| | - Wen-Xiong Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China; Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, Hong Kong, China.
| |
Collapse
|
10
|
Wang WX, Meng J, Weng N. Trace metals in oysters: molecular and cellular mechanisms and ecotoxicological impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:892-912. [PMID: 29774338 DOI: 10.1039/c8em00069g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oysters are important benthic bivalves in coastal and estuarine environments. They are widely farmed due to their rapid growth and taste; they are also widely applied in environmental monitoring of coastal pollution due to their accumulation of contaminants. Most importantly, oysters are among the few marine organisms that are considered to be hyper-accumulators of many toxic metals, such as cadmium, copper and zinc. As such, there is a tremendous call to study the interactions between metals and oysters, especially due to the increasing metal pollution in many coastal and estuarine waters. Over the past decades, many studies have focused on metal accumulation in oysters as well as the ecotoxicological effects of metals on oysters. In this review, we summarize the recent progress in our understanding of the molecular and cellular mechanisms of metal accumulation, sequestration and toxicity in oysters. Applications of modern technologies such as omics and nanoscale imaging have added significantly to our knowledge of metal biology in oysters. Variations between different metals also demonstrate the diversity of the interactions between oysters and metals. Despite this recent progress, however, there is a need for further study of the molecular mechanisms of metal uptake and toxicity as well as the joint effects of metal mixtures on oyster populations. Oysters have higher numbers of stress responsive genes than most animals, which may have been induced by gene duplication during the evolution of their intertidal environmental adaptations. The divergent expression of stress responsive genes may explain the different tolerances for metals among different species. These fundamental studies may eventually provide promising solutions for reducing toxic metal concentrations in oysters for safe consumption by humans. To conclude, the complexity of life history and metal chemistry of oysters coupled with emerging pollution and application of modern techniques represents an important and exciting research area in modern ecotoxicology.
Collapse
Affiliation(s)
- Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China.
| | | | | |
Collapse
|
11
|
Liu X, Wang WX. Physiological and cellular responses of oysters (Crassostrea hongkongensis) in a multimetal-contaminated estuary. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2577-2586. [PMID: 26970367 DOI: 10.1002/etc.3426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
The Pearl River estuary, southern China, suffers from multiple sources of metal contamination as a result of the rapid industrial development in the region; but the biological impacts of contamination remain unknown. In the present study, a euryhaline oyster, Crassostrea hongkongensis, was collected from different sites of the Pearl River estuary; and various physiological (heart rate, alkaline phosphatase as homeostatic regulation, and glycogen as energy reserve) and cytological (lysosomal membrane stability) biomarkers were quantified to assess this species as a potential bioindicator of metal pollution in contaminated areas. Large variations of metal accumulation levels in the oysters were documented, especially for copper (Cu), zinc (Zn), cadmium (Cd), chromium, and nickel (Ni). Among these metals, the authors demonstrated significant correlations between the digestive gland metal accumulation of Cu, Zn, and Ni and the cellular homeostasis (alkaline phosphatase) and glycogen reserves. Heart rate was positively correlated with Cd but negatively correlated with Cu and Zn concentrations in the gills. Lysosomal membrane stability was significantly inhibited at the most contaminated sites but had no relationship with the accumulated metal concentrations. These measurements indicate that multimetal contamination in the Pearl River estuary impacts the physiological and cytological performance of oysters. Environ Toxicol Chem 2016;35:2577-2586. © 2016 SETAC.
Collapse
Affiliation(s)
- Xuan Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.
| |
Collapse
|
12
|
Raftos DA, Melwani AR, Haynes PA, Muralidharan S, Birch GF, Amaral V, Thompson EL, Taylor DA. The biology of environmental stress: molecular biomarkers in Sydney rock oysters (Saccostrea glomerata). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1129-1139. [PMID: 27548823 DOI: 10.1039/c6em00322b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This review describes our recent work on environmental stress in Sydney rock oysters, focusing on the identification of molecular biomarkers for ecotoxicological analysis. We begin by describing the environmental pressures facing coastal estuaries in Australia, with particular reference to Sydney Harbour. After providing that context, we summarise our transcriptional and proteomic analyses of Sydney rock oysters responding to chemical contamination and other forms of environmental stress. This work has shown that the intracellular processes of oysters are highly responsive to environmental threats. Our data agree with the broader literature, which suggests that there is a highly conserved intracellular stress response in oysters involving a limited number of biological processes. We conclude that many effective molecular markers for environmental biomonitoring are likely to lie within these biological pathways.
Collapse
Affiliation(s)
- D A Raftos
- Department of Biological Sciences, Macquarie University, Sydney Institute of Marine Science, North Ryde, 2109, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ertl NG, O'Connor WA, Brooks P, Keats M, Elizur A. Combined exposure to pyrene and fluoranthene and their molecular effects on the Sydney rock oyster, Saccostrea glomerata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:136-145. [PMID: 27286571 DOI: 10.1016/j.aquatox.2016.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously detected in the water column, associated with particulate matter or in the tissue of marine organisms such as molluscs. PAH exposure and their resultant bioaccumulation in molluscs can cause a range of serious physiological effects in the affected animals. To examine the molecular response of these xenobiotics in bivalves, Sydney rock oysters (Saccostrea glomerata) were exposed to pyrene and fluoranthene for seven days. Chemical analysis of the soft-tissue of PAH stressed S. glomerata confirmed that pyrene and fluoranthene could be bioaccumulated by these oysters. RNA-Seq analysis of PAH-exposed S. glomerata showed a total of 765 transcripts differentially expressed between control and PAH-stressed oysters. Closer examination of the transcripts revealed a range genes encoding enzymes involved in PAH detoxification (e.g. cytochrome P450), innate immune responses (e.g. pathogen recognition, phagocytosis) and protein synthesis. Overall, pyrene and fluoranthene exposure appears to have resulted in a suppression of pathogen recognition and some protein synthesis processes, whereas transcripts of genes encoding proteins involved in clearance of cell debris and some transcripts of genes involved in PAH detoxification were induced in response to the stressors. Pyrene and fluoranthene exposure thus invoked a complex molecular response in S. glomerata, with results suggesting that oysters focus on removing the stressors from their system and dealing with the downstream effects of PAH exposure, potentially at the exclusion of other, less immediate concerns (e.g. protection from infection).
Collapse
Affiliation(s)
- Nicole G Ertl
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Australian Seafood Cooperative Research Centre, South Australia, Australia.
| | - Wayne A O'Connor
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Department of Primary Industries, New South Wales, Australia. wayne.o'
| | - Peter Brooks
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | - Michael Keats
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | - Abigail Elizur
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| |
Collapse
|
14
|
Ertl NG, O’Connor WA, Papanicolaou A, Wiegand AN, Elizur A. Transcriptome Analysis of the Sydney Rock Oyster, Saccostrea glomerata: Insights into Molluscan Immunity. PLoS One 2016; 11:e0156649. [PMID: 27258386 PMCID: PMC4892480 DOI: 10.1371/journal.pone.0156649] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oysters have important ecological functions in their natural environment, acting as global carbon sinks and improving water quality by removing excess nutrients from the water column. During their life-time oysters are exposed to a variety of pathogens that can cause severe mortality in a range of oyster species. Environmental stressors encountered in their habitat can increase the susceptibility of oysters to these pathogens and in general have been shown to impact on oyster immunity, making immune parameters expressed in these marine animals an important research topic. RESULTS Paired-end Illumina high throughput sequencing of six S. glomerata tissues exposed to different environmental stressors resulted in a total of 484,121,702 paired-end reads. When reads and assembled transcripts were compared to the C. gigas genome, an overall low level of similarity at the nucleotide level, but a relatively high similarity at the protein level was observed. Examination of the tissue expression pattern showed that some transcripts coding for cathepsins, heat shock proteins and antioxidant proteins were exclusively expressed in the haemolymph of S. glomerata, suggesting a role in innate immunity. Furthermore, analysis of the S. glomerata ORFs showed a wide range of genes potentially involved in innate immunity, from pattern recognition receptors, components of the Toll-like signalling and apoptosis pathways to a complex antioxidant defence mechanism. CONCLUSIONS This is the first large scale RNA-Seq study carried out in S. glomerata, showing the complex network of innate immune components that exist in this species. The results confirmed that many of the innate immune system components observed in mammals are also conserved in oysters; however, some, such as the TLR adaptors MAL, TRIF and TRAM are either missing or have been modified significantly. The components identified in this study could help explain the oysters' natural resilience against pathogenic microorganisms encountered in their natural environment.
Collapse
Affiliation(s)
- Nicole G. Ertl
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Australian Seafood Cooperative Research Centre, Bedford Park, South Australia, Australia
| | - Wayne A. O’Connor
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Primary Industries, Taylors Beach, New South Wales, Australia
| | - Alexie Papanicolaou
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ecosystem Sciences, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
| | - Aaron N. Wiegand
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Abigail Elizur
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
15
|
Edge KJ, Johnston EL, Dafforn KA, Simpson SL, Kutti T, Bannister RJ. Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:525-534. [PMID: 26970856 DOI: 10.1016/j.envpol.2016.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite. Sponges were exposed to barite, bentonite and a natural reference sediment at a range of total suspended solid concentrations (TSS = 0, 10, 50 or 100 mg/L) for 12 h after which we measured a suite of biomarker responses (lysosomal membrane stability, lipid peroxidation and glutathione). In addition, we compared biomarker responses, organic energy content and metal accumulation in sponges, which had been continuously or intermittently exposed to suspended barite and natural sediment for 14 d at relevant concentrations (10 and 30 mg TSS/L). Lysosomal membrane stability was reduced in the sponges exposed to barite at 50 and 100 mg TSS/L after just 12 h and at 30 mg TSS/L for both continuous and intermittent exposures over 14 d. Evidence of compromised cellular viability was accompanied by barite analysis revealing concentrations of Cu and Pb well above reference sediments and Norwegian sediment quality guidelines. Metal bioaccumulation in sponge tissues was low and the total organic energy content (determined by the elemental composition of organic tissue) was not affected. Intermittent exposures to barite resulted in less toxicity than continuous exposure to barite. Short term exposures to bentonite did not alter any biomarker responses. This is the first time that these biomarkers have been used to indicate contaminant exposure in an arctic-boreal sponge. Our results illustrate the potential toxicity of barite and the importance of assessments that reflect the ways in which these contaminants are delivered under environmentally realistic conditions.
Collapse
Affiliation(s)
- Katelyn J Edge
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Emma L Johnston
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Institute of Marine Science, Chowder Bay Rd, Mosman, NSW 2088, Australia
| | - Katherine A Dafforn
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Tina Kutti
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | | |
Collapse
|
16
|
Lee JH, Birch GF. The mismatch of bioaccumulated trace metals (Cu, Pb and Zn) in field and transplanted oysters (Saccostrea glomerata) to ambient surficial sediments and suspended particulate matter in a highly urbanised estuary (Sydney estuary, Australia). ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:236. [PMID: 27003401 DOI: 10.1007/s10661-016-5244-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
A significant correlation between sedimentary metals, particularly the 'bio-available' fraction, and bioaccumulated metal concentrations in the native Sydney rock oyster (Saccostrea glomerata) tissues has been successfully demonstrated previously for Cu and Zn in a number of estuaries in New South Wales, Australia. However, this relationship has been difficult to establish in a highly modified estuary (Sydney estuary, Australia) where metal contamination is of greatest concern and where a significant relationship would be most useful for environmental monitoring. The use of the Sydney rock oyster as a biomonitoring tool for metal contamination was assessed in the present study by investigating relationships between metals attached to sediments and suspended particulate matter (SPM) to bioaccumulated concentrations in oyster tissues. Surficial sediments (both total and fine-fraction), SPM and wild oysters were collected over 3 years from three embayments (Chowder Bay, Mosman Bay and Iron Cove) with each embayment representing a different physiographic region of Sydney estuary. In addition, a transplant experiment of farmed oysters was conducted in the same embayments for 3 months. No relationship was observed between sediments or SPM metals (Cu, Pb and Zn) to tissue of wild oysters; however, significant relationship was observed against transplanted oysters. The mismatch between wild and farmed, transplanted oysters is perplexing and indicates that wild oysters are unsuitable to be used as a biomonitoring tool due to the involvement of unknown complex factors while transplanted oysters hold strong potential.
Collapse
Affiliation(s)
- Jung-Ho Lee
- Environmental Geology Group, School of Geosciences, The University of Sydney, Sydney, NSW, Australia.
| | - Gavin F Birch
- Environmental Geology Group, School of Geosciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Liu X, Wang WX. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:281-290. [PMID: 26657374 DOI: 10.1016/j.scitotenv.2015.11.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The Jiulong Estuary in Southern China suffers from serious metal pollution, leading to the appearance of 'colored' oysters in this estuary. In this study, two species of oysters Crassostrea hongkongensis and Crassostrea angulata were transplanted to three sites in the Jiulong Estuary over a two-month period. The time-series changes of various biomarkers were measured, coupled with simultaneous quantification of metal bioaccumulation (Ag, Cd, Cr, Cu, Ni and Zn). Cu and Zn accumulation increased linearly and reached up to 2% and 1.5% dry tissue weight by the end of exposure. Negative correlations between the tissue Cu or Zn accumulation and catalase or superoxide dismutase activities strongly indicated that Cu and Zn in 'colored' oysters induced the adjustments of oyster antioxidant systems. Metallothionein (MT) detoxification was insufficient for sequestering all the absorbed metals and its concentrations in the oysters were suppressed following an initial increase, primarily due to the high metal accumulation in the tissues. Interestingly, gradual recoveries of lysosomal membrane stability after the initial strong inhibitions were observed in both oysters. We also documented an increasing 'watering' of oyster tissues presumably as a result of rupturing of tissue cells under metal stress. This study demonstrated the complexity of biomarker responses under field condition, therefore the time changes of biomarker responses to metals need to be considered in evaluating the biological impacts of metal pollution on estuarine organisms.
Collapse
Affiliation(s)
- Xuan Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Cain DJ, Croteau MN, Fuller CC, Ringwood AH. Dietary Uptake of Cu Sorbed to Hydrous Iron Oxide is Linked to Cellular Toxicity and Feeding Inhibition in a Benthic Grazer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1552-1560. [PMID: 26698541 DOI: 10.1021/acs.est.5b04755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Whereas feeding inhibition caused by exposure to contaminants has been extensively documented, the underlying mechanism(s) are less well understood. For this study, the behavior of several key feeding processes, including ingestion rate and assimilation efficiency, that affect the dietary uptake of Cu were evaluated in the benthic grazer Lymnaea stagnalis following 4-5 h exposures to Cu adsorbed to synthetic hydrous ferric oxide (Cu-HFO). The particles were mixed with a cultured alga to create algal mats with Cu exposures spanning nearly 3 orders of magnitude at variable or constant Fe concentrations, thereby allowing first order and interactive effects of Cu and Fe to be evaluated. Results showed that Cu influx rates and ingestion rates decreased as Cu exposures of the algal mat mixture exceeded 10(4) nmol/g. Ingestion rate appeared to exert primary control on the Cu influx rate. Lysosomal destabilization rates increased directly with Cu influx rates. At the highest Cu exposure where the incidence of lysosomal membrane damage was greatest (51%), the ingestion rate was suppressed 80%. The findings suggested that feeding inhibition was a stress response emanating from excessive uptake of dietary Cu and cellular toxicity.
Collapse
Affiliation(s)
- Daniel J Cain
- U.S. Geological Survey , Menlo Park, California 94025, United States
| | | | | | - Amy H Ringwood
- University of North Carolina - Charlotte , Charlotte, North Carolina 28223, United States
| |
Collapse
|
19
|
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs. J Invertebr Pathol 2015; 131:177-211. [PMID: 26341124 DOI: 10.1016/j.jip.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022]
Abstract
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems.
Collapse
|
20
|
Lister KN, Lamare MD, Burritt DJ. Oxidative damage and antioxidant defence parameters in the Antarctic bivalve Laternula elliptica as biomarkers for pollution impacts. Polar Biol 2015. [DOI: 10.1007/s00300-015-1739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Edge KJ, Dafforn KA, Simpson SL, Ringwood AH, Johnston EL. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1345-53. [PMID: 25677686 DOI: 10.1002/etc.2929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/28/2014] [Accepted: 02/04/2015] [Indexed: 05/05/2023]
Abstract
Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (<63 μm) from clean and contaminated field sites to create 4 treatments of increasing metal concentrations. Sydney rock oysters were then exposed to sediment treatments at different TSS concentrations for 4 d, and cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms.
Collapse
Affiliation(s)
- Katelyn J Edge
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Katherine A Dafforn
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, Commonwealth Scientific and Industrial Research Organisation Land and Water, Kirrawee, New South Wales, Australia
| | - Amy H Ringwood
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Emma L Johnston
- Evolution and Ecology Research Centre, School of Biological and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| |
Collapse
|
22
|
Schmitz HA, Maher WA, Taylor AM, Krikowa F. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:22-30. [PMID: 25577692 DOI: 10.1016/j.aquatox.2014.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93μg/g dry mass) and cadmium-enriched phytoplankton (1.6-3μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9±0.4μg/g and 23±2μg/g respectively compared to controls 0.97±0.05μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9±0.1μg/g compared to controls 1.2±0.1μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4-21μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.
Collapse
Affiliation(s)
- Helena A Schmitz
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce 2601, ACT, Australia
| | - William A Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce 2601, ACT, Australia.
| | - Anne M Taylor
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce 2601, ACT, Australia
| | - Frank Krikowa
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce 2601, ACT, Australia
| |
Collapse
|
23
|
Hook SE, Gallagher EP, Batley GE. The role of biomarkers in the assessment of aquatic ecosystem health. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2014; 10:327-41. [PMID: 24574147 PMCID: PMC4750648 DOI: 10.1002/ieam.1530] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 05/19/2023]
Abstract
Ensuring the health of aquatic ecosystems and identifying species at risk from the detrimental effects of environmental contaminants can be facilitated by integrating analytical chemical analysis with carefully selected biological endpoints measured in tissues of species of concern. These biological endpoints include molecular, biochemical, and physiological markers (i.e., biomarkers) that when integrated, can clarify issues of contaminant bioavailability, bioaccumulation, and ecological effects while enabling a better understanding of the effects of nonchemical stressors. In the case of contaminant stressors, an understanding of chemical modes of toxicity can be incorporated with diagnostic markers of aquatic animal physiology to help understand the health status of aquatic organisms in the field. Furthermore, new approaches in functional genomics and bioinformatics can help discriminate individual chemicals, or groups of chemicals among complex mixtures that may contribute to adverse biological effects. Although the use of biomarkers is not a new paradigm, such approaches have been underused in the context of ecological risk assessment and natural resource damage assessment. From a regulatory standpoint, these approaches can help better assess the complex effects from coastal development activities to assessing ecosystem integrity pre- and post development or site remediation.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Graeme E Batley
- CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| |
Collapse
|
24
|
Edge KJ, Dafforn KA, Simpson SL, Roach AC, Johnston EL. A biomarker of contaminant exposure is effective in large scale assessment of ten estuaries. CHEMOSPHERE 2014; 100:16-26. [PMID: 24468111 DOI: 10.1016/j.chemosphere.2014.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 12/01/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
Cost-effective and sensitive measures of anthropogenic stress are necessary tools in any environmental monitoring program. When implementing new monitoring tools in a region, rigorous laboratory and field studies are essential for characterizing the sensitivity and efficacy of the approach. We exposed the oyster Saccostrea glomerata to various individual contaminants through multiple exposure pathways (water- and food-borne) in the laboratory and measured two biomarker responses, lysosomal membrane stability (LMS) and lipid peroxidation (LPO). LMS was sensitive to both contaminant exposure pathways. We subsequently measured this biomarker in oysters which had been experimentally deployed at multiple sites in each of ten estuaries with varying levels of contamination associated with re-suspended sediments. There was a strong association between LMS and metal exposure, despite substantial natural variation in water quality parameters. Our results illustrate the potential use of LMS as a pragmatic indicator of biotic injury in environmental monitoring programs for re-suspended contaminated sediments.
Collapse
Affiliation(s)
- Katelyn J Edge
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Katherine A Dafforn
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Anthony C Roach
- Centre for Ecotoxicology, NSW Office of Environment and Heritage, PO Box 29, Lidcombe, NSW 1825, Australia
| | - Emma L Johnston
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Institute of Marine Science, Chowder Bay Rd, Mosman, NSW 2088, Australia
| |
Collapse
|
25
|
McCarthy MP, Carroll DL, Ringwood AH. Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 138-139:123-128. [PMID: 23728357 DOI: 10.1016/j.aquatox.2013.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Silver nanoparticle (AgNP) toxicity in eastern oysters, Crassostrea virginica, was investigated in both gill and hepatopancreas tissues, and compared to dissolved Ag exposures. Oysters were exposed to varying concentrations of AgNPs prepared with citrate coatings and dissolved Ag (AgNO₃) for 48 h and the effects on a suite of biomarkers of cellular stress were evaluated. Two biomarkers of cellular damage were evaluated-lysosomal destabilization rates of hepatopancreas cells as indicators of lysosomal damage, and lipid peroxidation as an indicator of oxidative damage. Total glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) assays were used as indicators of impacts on antioxidant capacity. The results indicated that gill tissues were more prone to oxidative damage following dissolved Ag exposures than AgNP exposures, while hepatopancreas tissues were more sensitive to AgNP exposures. Total protein levels increased in hepatopancreas tissues following AgNP exposures, but not dissolved Ag exposures. These tissue specific differences in toxicity and bioreactivity of Ag nanoparticles compared to dissolved metal ions reflect distinct nanoparticle effects. Oysters exposed to dissolved Ag would be more prone to cellular and tissue damage of gills, but oysters exposed to AgNPs could be more prone to hepatopancreas damage contributing to metabolic and reproductive impairment.
Collapse
Affiliation(s)
- Melissa P McCarthy
- University of North Carolina at Charlotte, Department of Biology, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
26
|
Rivero NK, Dafforn KA, Coleman MA, Johnston EL. Environmental and ecological changes associated with a marina. BIOFOULING 2013; 29:803-815. [PMID: 23822594 DOI: 10.1080/08927014.2013.805751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Anthropogenic modifications to waterways are common and their ecological consequences must be understood to effectively conserve local biodiversity. The facilitation of recreational boating activities often requires substantial alteration of natural areas, however the environmental and ecological consequences of such alterations are rarely described in the scientific literature. In this study, ecological and physico-chemical conditions were investigated in a recreational boating marina, located inside a marine park on the south-east coast of Australia. Recruitment panels were deployed for 8 weeks both inside and outside the marina, and differences in the composition of the developing fouling communities were observed. The recruitment of taxa, which often have short-lived larvae, was increased inside the marina (bryozoans, spirorbids and sponges) while the recruitment of taxa, which often have longer-lived larvae, was reduced or absent (barnacles, solitary ascidians and non-spirorbid polychaetes). Differences were also observed in environmental conditions inside the marina cf. directly outside. The marina environment had higher turbidity, temperature and pH along with higher concentrations of lead and copper in suspended sediments, while flow rates and trapped sediment loads were reduced inside the marina. The differences observed in the study suggest that there may be marked environmental changes associated with marina developments. The potential ecological consequences of these changes should be a primary consideration during the planning process, particularly for developments in locations of notable ecological value.
Collapse
Affiliation(s)
- Natalie K Rivero
- School of Biological, Earth and Environmental Sciences, Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|