1
|
Qu Y, Lu X, Zhu T, Yu J, Zhang Z, Sun Y, Hao Y, Wang Y, Yu Y. Application of an Antibacterial Coating Layer via Amine-Terminated Hyperbranched Zirconium-Polysiloxane for Stainless Steel Orthodontic Brackets. IET Nanobiotechnol 2024; 2024:4391833. [PMID: 38863970 PMCID: PMC11095072 DOI: 10.1049/2024/4391833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 06/13/2024] Open
Abstract
The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium-polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with Staphylococcus aureus, Escherichia coli, and Streptococcus mutans for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 μm, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (P < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 μg/mL HPZP@SST showed a better bactericidal ability than 400 μg/mL after cocultured with S. aureus, E. coli, and S. mutans, respectively (all P < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.
Collapse
Affiliation(s)
- Yaxin Qu
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang 261053, China
| | - Xinwei Lu
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Jie Yu
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Zhe Zhang
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yu Sun
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Yanling Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| |
Collapse
|
2
|
Park JY, Lee S, Kim Y, Ryu YB. Antimicrobial Activity of Morphology-Controlled Cu 2O Nanoparticles: Oxidation Stability under Humid and Thermal Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:261. [PMID: 38204113 PMCID: PMC10780029 DOI: 10.3390/ma17010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Metal oxides can be used as antimicrobial agents, especially since they can be fabricated into various forms such as films, masks, and filters. In particular, the durability of antimicrobial agents and the duration of their antimicrobial activity are important factors that determine their suitability for a specific purpose. These factors are related to the morphology and size of particles. The metal oxide Cu2O is often oxidized to CuO in various conditions, which reduces its antimicrobial activity. This study focused on the oxidation of nanoparticles of Cu2O with three morphologies, namely, spherical, octahedral, and cubic morphologies, in excessively humid and excessive-thermal environments for a specific duration and the antimicrobial activity of the NPs. Cu2O nanoparticles were prepared using the chemical reduction method, and their morphology could be varied by adjusting the molar ratio of OH- to Cu2+ and changing the reducing agent. It was found that cubic Cu2O was the most stable against oxidation and had the smallest reduction in antimicrobial activity. This study examined the antimicrobial activity and the oxidation stability of Cu2O NPs with different morphologies but similar particle sizes.
Collapse
Affiliation(s)
- Jeong Yeon Park
- Green Materials and Process R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Republic of Korea; (J.Y.P.); (S.L.)
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Siwoo Lee
- Green Materials and Process R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Republic of Korea; (J.Y.P.); (S.L.)
| | - Yangdo Kim
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Young Bok Ryu
- Green Materials and Process R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Republic of Korea; (J.Y.P.); (S.L.)
| |
Collapse
|
3
|
Kamel SM, Elgobashy SF, Omara RI, Derbalah AS, Abdelfatah M, El-Shaer A, Al-Askar AA, Abdelkhalek A, Abd-Elsalam KA, Essa T, Kamran M, Elsharkawy MM. Antifungal Activity of Copper Oxide Nanoparticles against Root Rot Disease in Cucumber. J Fungi (Basel) 2022; 8:911. [PMID: 36135636 PMCID: PMC9505343 DOI: 10.3390/jof8090911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Metal oxide nanoparticles have recently garnered interest as potentially valuable substances for the management of plant diseases. Copper oxide nanoparticles (Cu2ONPs) were chemically fabricated to control root rot disease in cucumbers. A scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence (PL) were employed to characterize the produced nanoparticles. Moreover, the direct antifungal activity of Cu2ONPs against Fusarium solani under laboratory, greenhouse, and field conditions were also evaluated. In addition, the induction of host-plant resistance by Cu2ONPs was confirmed by the results of enzyme activities (catalase, peroxidase, and polyphenoloxidase) and gene expression (PR-1 and LOX-1). Finally, the effect of Cu2ONPs on the growth and productivity characteristics of the treated cucumber plants was investigated. The average particle size from all the peaks was found to be around 25.54 and 25.83 nm for 0.30 and 0.35 Cu2O, respectively. Under laboratory conditions, the study found that Cu2ONPs had a greater inhibitory effect on the growth of Fusarium solani than the untreated control. Cu2ONP treatment considerably reduced the disease incidence of the root rot pathogen in cucumber plants in both greenhouse and field environments. Defense enzyme activity and defense genes (PR1 and LOX1) transcription levels were higher in cucumber plants treated with Cu2ONPs and fungicide than in the untreated control. SEM analysis revealed irregularities, changes, twisting, and plasmolysis in the mycelia, as well as spore shrinking and collapsing in F. solani treated with Cu2ONPs, compared to the untreated control. The anatomical analysis revealed that cucumber plants treated with Cu2ONPs had thicker cell walls, root cortex, and mesophyll tissue (MT) than untreated plants. Cucumber growth and yield characteristics were greatly improved after treatment with Cu2ONPs and fungicide. To the best of our knowledge, employing Cu2ONPs to treat cucumber rot root disease is a novel strategy that has not yet been reported.
Collapse
Affiliation(s)
- Said M. Kamel
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Samah F. Elgobashy
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Reda I. Omara
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Aly S. Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Mahmoud Abdelfatah
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Abdelhamed El-Shaer
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg ElArab City 21934, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Tarek Essa
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| |
Collapse
|
4
|
Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Antifungal Effect of Copper Nanoparticles against Fusarium kuroshium, an Obligate Symbiont of Euwallacea kuroshio Ambrosia Beetle. J Fungi (Basel) 2022; 8:jof8040347. [PMID: 35448578 PMCID: PMC9032953 DOI: 10.3390/jof8040347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Copper nanoparticles (Cu-NPs) have shown great antifungal activity against phytopathogenic fungi, making them a promising and affordable alternative to conventional fungicides. In this study, we evaluated the antifungal activity of Cu-NPs against Fusarium kuroshium, the causal agent of Fusarium dieback, and this might be the first study to do so. The Cu-NPs (at different concentrations) inhibited more than 80% of F. kuroshium growth and were even more efficient than a commercial fungicide used as a positive control (cupric hydroxide). Electron microscopy studies revealed dramatic damage caused by Cu-NPs, mainly in the hyphae surface and in the characteristic form of macroconidia. This damage was visible only 3 days post inoculation with used treatments. At a molecular level, the RNA-seq study suggested that this growth inhibition and colony morphology changes are a result of a reduced ergosterol biosynthesis caused by free cytosolic copper ions. Furthermore, transcriptional responses also revealed that the low- and high-affinity copper transporter modulation and the endosomal sorting complex required for transport (ESCRT) are only a few of the distinct detoxification mechanisms that, in its conjunction, F. kuroshium uses to counteract the toxicity caused by the reduced copper ion.
Collapse
|
7
|
Huang H, Velmurugan M, Manibalan K, Zhang Q, Lu X, Wang Y, Lin JM. Synthesis and Antibacterial Activity Investigation of Novel Cuprous Oxide-Graphene Oxide Nanocomposites. CHEM LETT 2020. [DOI: 10.1246/cl.200128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hua Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300075, P. R. China
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Murugan Velmurugan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Kesavan Manibalan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xinling Lu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300075, P. R. China
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300075, P. R. China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
|
9
|
Sportelli MC, Izzi M, Volpe A, Lacivita V, Clemente M, Di Franco C, Conte A, Del Nobile MA, Ancona A, Cioffi N. A new nanocomposite based on LASiS-generated CuNPs as a preservation system for fruit salads. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Gkanatsiou C, Karamanoli Κ, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Composition effect of Cu-based nanoparticles on phytopathogenic bacteria. Antibacterial studies and phytotoxicity evaluation. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Du BD, Ngoc DTB, Thang ND, Tuan LNA, Thach BD, Hien NQ. Synthesis and in vitro
antifungal efficiency of alginate-stabilized Cu2
O-Cu nanoparticles against Neoscytalidium dimidiatum
causing brown spot disease on dragon fruit plants (Hylocereus undatus
). VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bui Duy Du
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Ho Chi Minh City 700000 Viet Nam
- Graduate University of Science and Technology; Vietnam Academy of Science and Technology; Hanoi 100000 Viet Nam
| | - Doan Thi Bich Ngoc
- Graduate University of Science and Technology; Vietnam Academy of Science and Technology; Hanoi 100000 Viet Nam
| | - Nguyen Duy Thang
- Graduate University of Science and Technology; Vietnam Academy of Science and Technology; Hanoi 100000 Viet Nam
| | - Le Nghiem Anh Tuan
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Ho Chi Minh City 700000 Viet Nam
- Graduate University of Science and Technology; Vietnam Academy of Science and Technology; Hanoi 100000 Viet Nam
| | - Bui Dinh Thach
- Institute of Tropical Biology; Vietnam Academy of Science and Technology; Ho Chi Minh City 700000 Viet Nam
| | - Nguyen Quoc Hien
- Research and Development Center for Radiation Technology; Vietnam Atomic Energy Institute; Ho Chi Minh City 700000 Viet Nam
| |
Collapse
|
12
|
Hoseinnejad M, Jafari SM, Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 2017; 44:161-181. [DOI: 10.1080/1040841x.2017.1332001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mahmoud Hoseinnejad
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Iman Katouzian
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
13
|
Synthesis and Investigation of Antimicrobial Activity of Cu2O Nanoparticles/Zeolite. ACTA ACUST UNITED AC 2017. [DOI: 10.1155/2017/7056864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cuprous oxide (Cu2O) nanoparticles in zeolite A were synthesized by two steps: (i) ion-exchange of copper ions into the zeolite and (ii) reduction of copper ions in cages of the zeolite by hydrazine hydrate in base medium. The Cu2O nanoparticles/zeolite product was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The particle size of Cu2O nanoparticles was of 40 nm. The antibacterial activity of the as-synthesized Cu2O nanoparticles/zeolite against Escherichia coli was also investigated. Cu2O NPs/zeolite product can be favorably produced on large scale for water treatment and agricultural application as antimicrobial agent.
Collapse
|
14
|
Zhuang J, Yu HQ, Henry TB, Sayler GS. Fate and toxic effects of environmental stressors: environmental control. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2043-2048. [PMID: 26497020 DOI: 10.1007/s10646-015-1567-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
The potential for toxicants to harm organisms in the environment is influenced by the physicochemistry of the substances and their environmental behaviors and transformation within ecosystems. This special issue is composed of 20 papers that report on studies which have investigated the fate and toxicity of various toxicants including engineered nanoparticles, pharmaceuticals and personal care products, antibiotics, pathogens, heavy metals, and agricultural nutrients. The environmental transformations of these substances and how these processes affect their toxicity are emphasized. This paper highlights the important findings and perspectives of the selected papers in this special edition, with an aim of providing insights into full-scale evaluation on the toxicity of various contaminants that exist in ecosystems. General suggestions are provided for the future directions of toxicological research.
Collapse
Affiliation(s)
- Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Han-Qing Yu
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, China
| | - Theodore B Henry
- School of Life Sciences, Heriot-Watt University, John Muir Building, Edinburgh, EH14 4AS, UK
- Department of Microbiology, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Gary S Sayler
- Department of Microbiology, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|