1
|
Gea M, Spina F, Revello R, Fea E, Gilli G, Varese GC, Schilirò T. Estrogenic activity in wastewater treatment plants through in vitro effect-based assays: Insights into extraction phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120412. [PMID: 38402785 DOI: 10.1016/j.jenvman.2024.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Effluents of wastewater treatment plants can abundantly spread endocrine disrupting chemicals in the environment. To improve water quality monitoring, the use of effect-based tools that measure estrogenic activity has been suggested, however their results could be influenced by different factors. This study compared the estrogenic activity of wastewater samples extracted with two stationary phases and tested with two in vitro effect-based assays to investigate whether and how stationary phases and assays could influence biomonitoring data. During four seasonal periods, the effluents of six WWTPs located in northern Italy were sampled. After the extraction using two different stationary phases (HLB, C18), the samples (n = 72) were tested using two effect-based assays: a gene reporter luciferase assay on mammalian cells (MELN) and yeast estrogen screen assay (YES). The results showed that estrogenic activity of HLB extracts was significantly different from the activity of C18 extracts, suggesting that extraction phase can influence biomonitoring data. Moreover, the estrogenic activity was overall higher using gene reporter MELN assay than using YES assay, suggesting that, due to difference in cell membrane permeability and metabolic activation, the applied cell model can affect the biomonitoring results. Finally, from the comparison between the activity of the final effluent and the environmentally safe estrogenic levels in surface waters, MELN data suggested that the activity of this effluent may pose an environmental risk, while YES data showed that it should not be considered a threat to the receiving surface waters. This study pointed out that a standardized approach is needed to assess the estrogenic activity of waters; it reported important data to select the most suitable stationary phase for samples extraction (samples extracted with C18 sorbent showed higher estradiol equivalent concentration values) and the most appropriate bioassay (gene reporter luciferase MELN assay was more sensitive than YES assay) to assess the environmental risk, thus protecting human health.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Federica Spina
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Roberta Revello
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Elisabetta Fea
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | | | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Yang SH, Chen CH, Chu KH. Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124953. [PMID: 33445049 DOI: 10.1016/j.jhazmat.2020.124953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of BlaTEM and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of BlaTEM and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Chih-Hung Chen
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan ROC
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Brennan JC, Gale RW, Alvarez DA, Berninger JP, Leet JK, Li Y, Wagner T, Tillitt DE. Factors Affecting Sampling Strategies for Design of an Effects-Directed Analysis for Endocrine-Active Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1309-1324. [PMID: 32362034 DOI: 10.1002/etc.4739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 05/26/2023]
Abstract
Effects-directed analysis (EDA) is an important tool for identifying unknown bioactive components in a complex mixture. Such an analysis of endocrine-active chemicals (EACs) from water sources has promising regulatory implications but also unique logistical challenges. We propose a conceptual EDA (framework) based on a critical review of EDA literature and concentrations of common EACs in waste and surface waters. Required water volumes for identification of EACs under this EDA framework were estimated based on bioassay performance (in vitro and in vivo bioassays), limits of quantification by mass spectrometry (MS), and EAC water concentrations. Sample volumes for EDA across the EACs showed high variation in the bioassay detectors, with genistein, bisphenol A, and androstenedione requiring very high sample volumes and ethinylestradiol and 17β-trenbolone requiring low sample volumes. Sample volume based on the MS detector was far less variable across the EACs. The EDA framework equation was rearranged to calculate detector "thresholds," and these thresholds were compared with the literature EAC water concentrations to evaluate the feasibility of the EDA framework. In the majority of instances, feasibility of the EDA was limited by the bioassay, not MS detection. Mixed model analysis showed that the volumes required for a successful EDA were affected by the potentially responsible EAC, detection methods, and the water source type, with detection method having the greatest effect on the EDA of estrogens and androgens. The EDA framework, equation, and model we present provide a valuable tool for designing a successful EDA. Environ Toxicol Chem 2020;39:1309-1324. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer C Brennan
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Robert W Gale
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - David A Alvarez
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Jason P Berninger
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Jessica K Leet
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Yan Li
- North Carolina Division of Marine Fisheries, North Carolina Department of Environmental Quality, Morehead City, North Carolina, USA
| | - Tyler Wagner
- Pennsylvania Cooperative Fish and Wildlife Research Unit, US Geological Survey, Pennsylvania State University, University Park, Pennsylvania
| | - Donald E Tillitt
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| |
Collapse
|
4
|
Martin-Yken H. Yeast-Based Biosensors: Current Applications and New Developments. BIOSENSORS 2020; 10:E51. [PMID: 32413968 PMCID: PMC7277604 DOI: 10.3390/bios10050051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Biosensors are regarded as a powerful tool to detect and monitor environmental contaminants, toxins, and, more generally, organic or chemical markers of potential threats to human health. They are basically composed of a sensor part made up of either live cells or biological active molecules coupled to a transducer/reporter technological element. Whole-cells biosensors may be based on animal tissues, bacteria, or eukaryotic microorganisms such as yeasts and microalgae. Although very resistant to adverse environmental conditions, yeasts can sense and respond to a wide variety of stimuli. As eukaryotes, they also constitute excellent cellular models to detect chemicals and organic contaminants that are harmful to animals. For these reasons, combined with their ease of culture and genetic modification, yeasts have been commonly used as biological elements of biosensors since the 1970s. This review aims first at giving a survey on the different types of yeast-based biosensors developed for the environmental and medical domains. We then present the technological developments currently undertaken by academic and corporate scientists to further drive yeasts biosensors into a new era where the biological element is optimized in a tailor-made fashion by in silico design and where the output signals can be recorded or followed on a smartphone.
Collapse
Affiliation(s)
- Helene Martin-Yken
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR 792 Toulouse Biotechnology Institute (TBI), 31400 Toulouse, France; ; Tel.: +689-89-52-31-88
- Institut de Recherche pour le Développement (IRD), Faa’a, 98702 Tahiti, French Polynesia
- Unite Mixte de Recherche n°241 Ecosystemes Insulaires et Oceaniens, Université de la Polynésie Française, Faa’a, 98702 Tahiti, French Polynesia
- Laboratoire de Recherche sur les Biotoxines Marines, Institut Louis Malardé, Papeete, 98713 Tahiti, French Polynesia
| |
Collapse
|
5
|
Xu T, Young A, Narula J, Sayler G, Ripp S. High-Throughput Analysis of Endocrine-Disrupting Compounds Using BLYES and BLYAS Bioluminescent Yeast Bioassays. Methods Mol Biol 2020; 2081:29-41. [PMID: 31721116 DOI: 10.1007/978-1-4939-9940-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bioluminescent yeast assays BLYES and BLYAS are whole-cell bioassays that utilize genetically modified Saccharomyces cerevisiae bioreporters to detect estrogenic and androgenic activities, respectively. The bioreporter strains chromosomally express human estrogen receptor alpha (BLYES) or androgen receptor (BLYAS) and contain a reporter plasmid expressing the complete bacterial luciferase gene cassette (luxCDABE) under the control of an estrogen- or androgen-responsive promoter. Exposure to endocrine-disrupting compounds activates the receptor which subsequently turns on the expression of the reporter genes, resulting in dose-dependent bioluminescence (i.e., light) emission. These yeast whole-cell bioassays provide rapid, cost-effective, and high-throughput detection of endocrine-disrupting activities in environmental samples. This protocol will provide a detailed description of the standard assay procedures as well as a framework for data analysis.
Collapse
Affiliation(s)
- Tingting Xu
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA.
| | - Anna Young
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
| | - Jasleen Narula
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
| | - Gary Sayler
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
- 490 BioTech Inc., Knoxville, TN, USA
| | - Steven Ripp
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
- 490 BioTech Inc., Knoxville, TN, USA
| |
Collapse
|
6
|
Pedrazzani R, Bertanza G, Brnardić I, Cetecioglu Z, Dries J, Dvarionienė J, García-Fernández AJ, Langenhoff A, Libralato G, Lofrano G, Škrbić B, Martínez-López E, Meriç S, Pavlović DM, Papa M, Schröder P, Tsagarakis KP, Vogelsang C. Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3202-3221. [PMID: 30463169 DOI: 10.1016/j.scitotenv.2018.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Roberta Pedrazzani
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123 Brescia, Italy.
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123, Italy.
| | - Ivan Brnardić
- Faculty of Metallurgy, University of Zagreb, Aleja narodnih heroja 3, 44103 Sisak, Croatia.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| | - Jan Dries
- Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium.
| | - Jolanta Dvarionienė
- Kaunas University of Technology, Institute of Environmental Engineering, Gedimino str. 50, 44239 Kaunas, Lithuania.
| | - Antonio J García-Fernández
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, 30100, Campus of Espinardo, Spain.
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Cinthia ed. 7, 80126 Naples, Italy.
| | - Giusy Lofrano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy.
| | - Biljana Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Emma Martínez-López
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, 30100, Campus of Espinardo, Spain.
| | - Süreyya Meriç
- Çorlu Engineering Faculty, Environmental Engineering Department, Namik Kemal University, Çorlu, 59860, Tekirdağ, Turkey.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Matteo Papa
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123, Italy.
| | - Peter Schröder
- Helmholtz-Center for Environmental Health GmbH, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| | - Konstantinos P Tsagarakis
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece.
| | - Christian Vogelsang
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway.
| |
Collapse
|
7
|
Reporter Gene Assays in Ecotoxicology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 157:135-157. [PMID: 27928578 DOI: 10.1007/10_2016_47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The need for simple and rapid means for evaluating the potential toxic effects of environmental samples has prompted the development of reporter gene assays, based on tester cells (bioreporters) genetically engineered to report on sample toxicity by producing a readily quantifiable signal. Bacteria are especially suitable to serve as bioreporters owing to their fast responses, low cost, convenient preservation, ease of handling, and amenability to genetic manipulations. Various bacterial bioreporters have been introduced for general toxicity and genotoxicity assessment, and the monitoring of endocrine disrupting and dioxin-like compounds has been mostly covered by similarly engineered eukaryotic cells. Some reporter gene assays have been validated, standardized, and accredited, and many others are under constant development. Efforts are aimed at broadening detection spectra, lowering detection thresholds, and combining toxicity identification capabilities with characterization of the toxic effects. Taking advantage of bacterial robustness, attempts are also being made to incorporate bacterial bioreporters into field instrumentation for online continuous monitoring or on-site spot checks. However, key hurdles concerning test validation, cell preservation, and regulatory issues related to the use of genetically modified organisms still remain to be overcome.
Collapse
|
8
|
Zhuang J, Yu HQ, Henry TB, Sayler GS. Fate and toxic effects of environmental stressors: environmental control. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2043-2048. [PMID: 26497020 DOI: 10.1007/s10646-015-1567-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
The potential for toxicants to harm organisms in the environment is influenced by the physicochemistry of the substances and their environmental behaviors and transformation within ecosystems. This special issue is composed of 20 papers that report on studies which have investigated the fate and toxicity of various toxicants including engineered nanoparticles, pharmaceuticals and personal care products, antibiotics, pathogens, heavy metals, and agricultural nutrients. The environmental transformations of these substances and how these processes affect their toxicity are emphasized. This paper highlights the important findings and perspectives of the selected papers in this special edition, with an aim of providing insights into full-scale evaluation on the toxicity of various contaminants that exist in ecosystems. General suggestions are provided for the future directions of toxicological research.
Collapse
Affiliation(s)
- Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Han-Qing Yu
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, China
| | - Theodore B Henry
- School of Life Sciences, Heriot-Watt University, John Muir Building, Edinburgh, EH14 4AS, UK
- Department of Microbiology, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Gary S Sayler
- Department of Microbiology, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|