1
|
Li X, Li M, Xue X, Wang X. Proteomic analysis reveals oxidative stress-induced activation of Hippo signaling in thiamethoxam-exposed Drosophila. CHEMOSPHERE 2023; 338:139448. [PMID: 37437626 DOI: 10.1016/j.chemosphere.2023.139448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Thiamethoxam (THIA) is a widely used neonicotinoid insecticide. However, the toxicity and defense mechanisms activated in THIA-exposed insects are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) proteomics technology to identify changes in protein expression in THIA-exposed Drosophila. We found that the antioxidant proteins Cyp6a23 and Dys were upregulated, whereas vir-1 was downregulated, which may have been detoxification in response to THIA exposure. Prx5 downregulation promoted the generation of reactive oxygen species. Furthermore, the accumulation of reactive oxygen species led to the induction of antioxidant defenses in THIA-exposed Drosophila, thereby enhancing the levels of oxidative stress markers (e.g., superoxide dismutase, glutathione S-transferase, and glutathione) and reducing catalase expression. Furthermore, the Hippo signaling transcription coactivator Yki was inactivated by THIA. Our results suggesting that Hippo signaling may be necessary to promote insect survival in response to neonicotinoid insecticide toxicity.
Collapse
Affiliation(s)
- Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Mingquan Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Xianle Xue
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
2
|
Tu Q, Deng J, Di M, Lin X, Chen Z, Li B, Tian L, Zhang Y. Reproductive toxicity of polystyrene nanoplastics in Drosophila melanogaster under multi-generational exposure. CHEMOSPHERE 2023; 330:138724. [PMID: 37080472 DOI: 10.1016/j.chemosphere.2023.138724] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Micro-nanoplastics have become a new type of pollutant worldwide and have attracted widespread attention for their potential toxicity. However, the toxicity of polystyrene nanoplastics (PS-NPs) under continuous exposure of multi-generations is still unclear. In the present study, Drosophila melanogaster was selected as an in vivo biological model to investigate the reproductive toxicity and underlying mechanism induced by PS-NPs (100 nm; 1, 10, 50, and 100 mg L-1) after continuous exposure of five generations. The results showed that PS-NPs accumulated in the crop, gut and ovaries after 5 d of exposure. It was also observed that the number of egg production and eclosion rate decreased significantly (P < 0.05) accompanied by delayed development during continuous exposure PS-NPs of multi-generations. Further analysis revealed that the degree of apoptosis and necrosis of oocytes in the F5 generation increased with the increasing exposure dose. To elucidate the underlying toxicity mechanism mediated by PS-NPs, transcriptomic analysis was performed on the ovaries of the F5 generation. The results showed that there were 102 and 208 differentially expressed genes (DEGs) in the 1 mg L-1 and 100 mg L-1 PS-NPs treatment groups, respectively, compared with the control group. The transcriptome analysis further detected the KEGG pathway with significant enrichment of DEGs, revealing obvious reproductive toxicity at the molecular level. In conclusion, this research not only highlighted the negative physiological effects of multi-generational exposure to PS-NPs on Drosophila melanogaster, but also explored potential mechanisms by transcriptomic analysis to better understand reproductive toxicity induced by multi-generational exposure.
Collapse
Affiliation(s)
- Qinghui Tu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jianhao Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Miaomiao Di
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhongzheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ling Tian
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Schlathölter I, Meissle M, Boeriis T, Heimo D, Studer B, Broggini GAL, Romeis J, Patocchi A. No adverse dietary effect of a cisgenic fire blight resistant apple line on the non-target arthropods Drosophila melanogaster and Folsomia candida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113749. [PMID: 35696966 DOI: 10.1016/j.ecoenv.2022.113749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Genetic modification of apple cultivars through cisgenesis can introduce traits, such as disease resistance from wild relatives, quickly and without crossing. This approach was used to generate the cisgenic apple line C44.4.146, a 'Gala Galaxy' carrying the fire blight resistance gene FB_MR5. In contrast to traditionally bred apple cultivars, genetically modified (GM) plants need to undergo a regulatory risk assessment considering unintended effects before approval for commercial release. To determine potential unintended effects of C44.4.146, we assessed major leaf components and effects on the fitness of the decomposers Drosophila melanogaster (fruit fly) and Folsomia candida (collembolan), which were fed a diet amended with powdered apple leaf material. Leaf material of 'Gala Galaxy', several natural 'Gala' mutants, and the unrelated apple cultivar 'Ladina' were used for comparison. The genetic modification did not alter major leaf components and did not adversely affect survival, growth, or fecundity of the two decomposers. Consistent with previous studies with other GM crops, the differences between conventionally bred cultivars were greater than between the GM line and its non-GM wild type. These data provide a baseline for future risk assessments.
Collapse
Affiliation(s)
- Ina Schlathölter
- Agroscope, Research Division Plant Breeding, Breeding Research Group, Mueller-Thurgau-Strasse 29, 8820 Waedenswil, Switzerland; Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Michael Meissle
- Agroscope, Research Division Agroecology and Environment, Biosafety Research Group, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Timea Boeriis
- Agroscope, Research Division Plant Breeding, Breeding Research Group, Mueller-Thurgau-Strasse 29, 8820 Waedenswil, Switzerland
| | - Dominique Heimo
- Agroscope, Research Division Methods Development and Analytics, Feed Chemistry Group, Route de la Tioleyre 4, 1725 Posieux, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Giovanni A L Broggini
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Biosafety Research Group, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Andrea Patocchi
- Agroscope, Research Division Plant Breeding, Breeding Research Group, Mueller-Thurgau-Strasse 29, 8820 Waedenswil, Switzerland.
| |
Collapse
|
4
|
Li X, Liu J, Wang X. Exploring the multilevel hazards of thiamethoxam using Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121419. [PMID: 31630861 DOI: 10.1016/j.jhazmat.2019.121419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 05/21/2023]
Abstract
Thiamethoxam (THIA) is a widely used pesticide. However, its effects on the growth and development of insects remain unclear. Herein, the lethal concentration 50 (LC50) of THIA (3.13 μg/mL for adults, 20.25 μg/mL for third-instar larvae) were identified. THIA (1/3 LC50) prolonged the time required for growth and development, and decreased the fecundity, the rates of pupation and eclosion, and lifespan of Drosophila. The uniform architecture of the compound eyes was disturbed. It also triggered DNA damage, and reduced the viability of fat body cells and hemocytes. Moreover, RNA-sequencing showed that differentially expressed genes in response to THIA were mainly related to stratum corneum development, immune function. Genes involved in stratum corneum proteins (Lcp65Ag3, Cpr65Ax1), hemocyte proliferation (RyR), and immune responses (IM4) were significantly induced. Genes associated with lipid metabolism (sxe2), lifespan (Atg7 and NalZ), pupa development (IIp8, Blimp-1), female fertility (Ddc), male mating behavior (ple), neural retina development (Nnad), was significantly downregulated. These findings provide a basis for further research to fully assess the hazards of exposure to neonicotinoid pesticides.
Collapse
Affiliation(s)
- Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Jinyue Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China.
| |
Collapse
|
5
|
Effects of purified or plant-produced Cry proteins on Drosophila melanogaster (Diptera: Drosophilidae) larvae. Sci Rep 2017; 7:11172. [PMID: 28894124 PMCID: PMC5593937 DOI: 10.1038/s41598-017-10801-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/15/2017] [Indexed: 12/03/2022] Open
Abstract
Although genetically engineered crops producing insecticidal Cry proteins from Bacillus thuringiensis (Bt) are grown worldwide, few studies cover effects of Bt crops or Cry proteins on dipteran species in an agricultural context. We tested the toxicity of six purified Cry proteins and of Bt cotton and Bt maize tissue on Drosophila melanogaster (Diptera: Drosophilidae) as a surrogate for decomposing Diptera. ELISA confirmed the presence of Cry proteins in plant material, artificial diet, and fly larvae, and concentrations were estimated. Median concentrations in emerging adult flies were below the limit of detection. Bioactivity of purified Cry proteins in the diet was confirmed by sensitive species assays using Heliothis virescens (Lepidoptera: Noctuidae). Purified Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1F, or Cry2Aa, or leaf material from stacked Bt cotton (Bollgard II producing Cry1Ac and Cry2Ab) or Bt maize (SmartStax producing Cry1A.105, Cry1Fa2, Cry2Ab2, Cry3Bb1, Cry34Ab1 and Cry35Ab1) had no consistent effects on D. melanogaster survival, developmental time, adult body mass or morphometrics. However, D. melanogaster showed longer developmental time and smaller wing size when fed with cotton leaves from plants infested with H. virescens caterpillars compared to flies fed with leaves from uninfested plants, while no such effects were obvious for maize.
Collapse
|