1
|
de Faria NPVM, Araújo BC, Kida BMS, Abdalla RP, Brito DDS, Moreira RG, Honji RM. Can Aluminum Affect Social Behavior and Cortisol Plasma Profile in the Neotropical Freshwater Teleost Astyanax lacustris (Teleostei: Characidae)? Life (Basel) 2024; 14:1697. [PMID: 39768403 PMCID: PMC11678517 DOI: 10.3390/life14121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aluminum (Al) can cause endocrine disruption in aquatic animals, but assessments of animal social behavior in neotropical teleost fish species with importance for Brazilian aquaculture have still not been addressed so far, which can further complete this ecotoxicological knowledge. In order to evaluate the social behavior and plasma cortisol concentration of fish exposed to Al, we performed a 1 h acute exposure with Astyanax lacustris couples in three different experimental groups: control in neutral pH (CTL/n group), acid pH (pH/ac group), and aluminum in acid pH (Al/ac group; 2.0 mg L-1). An ethogram of social interactions between males and females and swimming activities were performed. Furthermore, the cortisol plasma concentration was measured by enzyme-linked immunosorbent, and the gonadal maturation stage of the animals was evaluated by histology. Adult and mature females in the CTL/n and pH/ac groups were more aggressive and active than mature males, including several attacks on the male. Moreover, males did not present attack behavior in these groups at any time, but did show submission behavior and constant avoidance of female attacks. In the Al/ac, females did not attack males, couple decreased swimming activity, a repetitive movement toward the aquarium surface, and high mucus production were observed, making the water cloudy. Regarding cortisol plasma concentration, males had higher cortisol plasma concentrations than females in the CTL/n and pH/ac groups, which was not observed in the Al/ac group. Therefore, Al in addition to being described in the literature as an endocrine disruptor, it can be considered as behavioral disrupter in A. lacustris in this important freshwater species cultivated in South America.
Collapse
Affiliation(s)
- Natália Pires Vieira Morais de Faria
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Bruno Cavalheiro Araújo
- Laboratório de Fisiologia e Nutrição de Organismos Aquáticos (LAFINUTRI), Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Avenida Dr. Cândido Xavier de Almeida e Souza, No. 200, Mogi das Cruzes 08701-970, SP, Brazil
| | - Bianca Mayumi Silva Kida
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Raisa Pereira Abdalla
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Diego dos Santos Brito
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renato Massaaki Honji
- Laboratório de Aquicultura e Ecofisiologia Marinha (LAQUEFIM), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
2
|
Queiroz LG, Prado CCA, Melo EC, Moraes BR, de Oliveira PFM, Ando RA, Paiva TCB, Pompêo M, Rani-Borges B. Biofragmentation of Polystyrene Microplastics: A Silent Process Performed by Chironomus sancticaroli Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4510-4521. [PMID: 38426442 DOI: 10.1021/acs.est.3c08193] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 μm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.
Collapse
Affiliation(s)
- Lucas G Queiroz
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Caio C A Prado
- School of Engineering of Lorena, Department of Biotechnology, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Eduardo C Melo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Beatriz R Moraes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Paulo F M de Oliveira
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Rômulo A Ando
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Teresa C B Paiva
- School of Engineering of Lorena, Department of Basic and Environmental Sciences, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Marcelo Pompêo
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, Av Três de Março 511, Sorocaba, 18087-180 São Paulo, Brazil
| |
Collapse
|
3
|
Brovini EM, Lobo H, Mendonça RF, Botta CMR, Lima ALRL, de Deus BCT, Cardoso SJ. Chironomus sancticaroli (Diptera: Chironomidae) in ecotoxicology: laboratory cultures and tests. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:223-233. [PMID: 36708416 DOI: 10.1007/s10646-023-02631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Chironomus sancticaroli is a tropical species, easy to grow and to maintain in laboratory cultures. It has a fast reproduction cycle, under adequate conditions, around 30 days, allowing it to have many generations per year, an important criterion for selecting a test organism in ecotoxicology. Its life stages include: eggs, four larval instars (one planktonic and three benthic), pupa and adult (midges) This study aimed to: (1) review the methods for C. sancticaroli cultivation and its use in ecotoxicological tests, (2) establish a laboratory culture of C. sancticaroli, presenting the difficulties and discussing the ways to overcome them. Early 4th instar larvae was the most used in acute studies, while the 1st instar larvae (early 1st instar) was the most used in chronic studies; 96 h and 28 days were the most frequent durations in acute and chronic studies, respectively. The most common endpoints evaluated were organisms' survival and development, and most of the ecotoxicological studies using C. sancticaroli were performed in laboratory. Most of the tested contaminants were pesticides and these had the most adverse effects on organisms. Most mesocosms with environmental contaminated samples did not show adverse effects on C. sancticaroli. Chronic and field studies as well as those testing the effects of the mixture contaminants on C. sancticaroli were still deficient. Keeping the laboratory environment and equipment effectively sanitized was important as well as maintaining stabilized conditions of temperature, photoperiod, physical, chemical and biological water quality in cultures.
Collapse
Affiliation(s)
- Emília Marques Brovini
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Federal de Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil.
| | - Haroldo Lobo
- Departamento de Medicina Veterinária, Faculdade de Medicina, Universidade Federal de Juiz de For a, Juiz de Fora, 36036-900, Brazil
| | - Raquel Fernandes Mendonça
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Clarice Maria R Botta
- Centro de Recursos Hídricos e Ecologia Aplicada, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, Brasil
| | - Ana Luiza Rangel Linhares Lima
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Beatriz Corrêa Thomé de Deus
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
- Laboratório de Ecologia do Plâncton, Instituto de Ciências Biológicas, Departamento de Zoologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brasil
| | - Simone Jaqueline Cardoso
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
- Laboratório de Ecologia do Plâncton, Instituto de Ciências Biológicas, Departamento de Zoologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brasil
| |
Collapse
|
4
|
Evariste L, Lagier L, Chary C, Mottier A, Cadarsi S, Pinelli E, Flahaut E, Gauthier L, Mouchet F. Exposure of Midge Larvae ( Chironomus riparius) to Graphene Oxide Leads to Development Alterations. TOXICS 2022; 10:588. [PMID: 36287868 PMCID: PMC9608897 DOI: 10.3390/toxics10100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Despite the fast-growing use and production of graphene-based nanomaterials (GBMs), data concerning their effects on freshwater benthic macroinvertebrates are scarce. This study aims to investigate the effects of graphene oxide (GO) on the midge Chironomus riparius. Mortality, growth inhibition, development delay and teratogenicity, assessed using mentum deformity analysis, were investigated after a 7-day static exposure of the first instar larvae under controlled conditions. The collected data indicated that the survival rate was not impacted by GO, whereas chronic toxicity following a dose-dependent response occurred. Larval growth was affected, leading to a significant reduction in larval length (from 4.4 to 10.1%) in individuals reaching the fourth instar at any of the tested concentrations (from 0.1 to 100 mg/L). However, exposure to GO is not associated with an increased occurrence of mouthpart deformities or seriousness in larvae. These results highlight the suitability of monitoring the larval development of C. riparius as a sensitive marker of GO toxicity. The potential ecological consequences of larval size decrease need to be considered for a complete characterization of the GO-related environmental risk.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Laura Lagier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Chloé Chary
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Antoine Mottier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Stéphanie Cadarsi
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Eric Pinelli
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, CNRS-INP-UPS, UMR N°5085, Université Toulouse 3 Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Laury Gauthier
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Florence Mouchet
- Laboratoire d’Ecologie Fonctionnelle et Environnement, UMR 5245 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
5
|
Extremely Acidic Eukaryotic (Micro) Organisms: Life in Acid Mine Drainage Polluted Environments-Mini-Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010376. [PMID: 35010636 PMCID: PMC8751164 DOI: 10.3390/ijerph19010376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Acid Mine Drainage (AMD) results from sulfide oxidation, which incorporates hydrogen ions, sulfate, and metals/metalloids into the aquatic environment, allowing fixation, bioaccumulation and biomagnification of pollutants in the aquatic food chain. Acidic leachates from waste rock dams from pyritic and (to a lesser extent) coal mining are the main foci of Acid Mine Drainage (AMD) production. When AMD is incorporated into rivers, notable changes in water hydro-geochemistry and biota are observed. There is a high interest in the biodiversity of this type of extreme environments for several reasons. Studies indicate that extreme acid environments may reflect early Earth conditions, and are thus, suitable for astrobiological experiments as acidophilic microorganisms survive on the sulfates and iron oxides in AMD-contaminated waters/sediments, an analogous environment to Mars; other reasons are related to the biotechnological potential of extremophiles. In addition, AMD is responsible for decreasing the diversity and abundance of different taxa, as well as for selecting the most well-adapted species to these toxic conditions. Acidophilic and acidotolerant eukaryotic microorganisms are mostly composed by algae (diatoms and unicellular and filamentous algae), protozoa, fungi and fungi-like protists, and unsegmented pseudocoelomata animals such as Rotifera and micro-macroinvertebrates. In this work, a literature review summarizing the most recent studies on eukaryotic organisms and micro-organisms in Acid Mine Drainage-affected environments is elaborated.
Collapse
|
6
|
Viana TS, Rialto TCR, Brito JFD, Micas AFD, Abe FR, Savazzi EA, Boldrin Zanoni MVB, de Oliveira DP. Effects of water produced by oil segment on aquatic organisms after treatment using advanced oxidative processes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:901-913. [PMID: 34259612 DOI: 10.1080/15287394.2021.1951910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The water produced (PW) by the petroleum industry is a potential contaminant to aquatic biota, due to its complex mixture that may contain polycyclic aromatic hydrocarbons (PAHs), organic chemical compounds, including benzene, toluene, ethylbenzene and xylene (BTEX), metals and other components that are known to be toxic. The aim of this investigation was to examine the acute toxicity produced by a PW sample in aquatic organisms Vibrio fischeri and Daphnia similis prior to and after 4 treatments using advanced oxidative processes such as photocatalysis, photoelectrocatalysis, ozonation and photoelectrocatalytic ozonation. Data demonstrated that exposure to PW was toxic to both organisms, as evidenced by reduced luminescence in bacterium Vibrio fischeri and induced immobility in Daphnia similis. After treatment of PW with 4 different techniques, the PW remained toxic for both tested organisms. However, photoelectrocatalysis was more efficient in decreasing toxicity attributed to PW sample. Therefore, data demonstrate the importance of treating PW for later disposal in the environment in order to mitigate ecotoxicological impacts. Further photoelectrocatalysis appeared to be a promising tool for treating PW samples prior to disposal and exposure of aquatic ecosystems.
Collapse
Affiliation(s)
- T S Viana
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - T C R Rialto
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - J F D Brito
- Department of Analytical Chemistry, São Paulo State University (Unesp), Chemistry Institute, Araraquara, SP, Brazil
| | - A F D Micas
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - F R Abe
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - E A Savazzi
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - M V B Boldrin Zanoni
- Department of Analytical Chemistry, São Paulo State University (Unesp), Chemistry Institute, Araraquara, SP, Brazil
- Department of Analytical Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil
| | - D P de Oliveira
- Department of Clinical Analyses, Toxicology and Food Science, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Department of Analytical Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, Brazil
| |
Collapse
|
7
|
Felipe MC, Bernegossi AC, Cardoso-Silva BN, Dell'Acqua MM, Corbi JJ. Chironomus sancticaroli generation test applied to chemical contaminants and freshwater sediment samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39282-39295. [PMID: 33754272 DOI: 10.1007/s11356-021-13250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The use of ecotoxicological bioassays has been increasing due to the importance of understanding the effects of substances on biota and to help environmental agencies determine water and sediment qualities. The use of Chironomus sp. in laboratory bioassays is extensive, but there is still a lack of studies regarding the application of extended ecotoxicological tests, which evaluate different population generation responses and show a detailed impact on their development. The present study investigated the response of Chironomus sancticaroli, a Brazilian endemic insect, to 17α-ethinylestradiol hormone, caffeine anhydrous, LAS (linear alkylbenzene sulfonate), and environmental samples (sediments) in relation to wing length, fecundity, and larval length over three generations. Statistically, differences for all contaminants between P (parental), F1, and F2 generations (p ≤ 0.05) were observed, indicating that in the environment, the organism may be negatively affected when exposed to contaminants in successive generations. Different ecological responses were also noted in comparison to classic acute (96h) and chronic (10 days) ecotoxicological tests using Chironomus sancticaroli. Our results highlight that the generation test can present more detailed results regarding the effects of stressors on the organism's life cycle than do the classic bioassays.
Collapse
Affiliation(s)
- Mayara Caroline Felipe
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil.
| | - Aline Christine Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| | - Bruna Nayara Cardoso-Silva
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| | - Marcelo Marques Dell'Acqua
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil
| |
Collapse
|
8
|
Assis CBD, Branco GS, Moreira RG, Pinheiro JPS. Aluminum at environmental concentrations affects the sperm quality of the freshwater teleost Astyanax altiparanae: An in vitro study. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108983. [PMID: 33493667 DOI: 10.1016/j.cbpc.2021.108983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Aluminum (Al) is present in rivers and reservoirs in concentrations above that is allowed by regulatory agencies (e.g. 0.5 mg L-1 Al), which can impair fish reproduction. The present study evaluated the in vitro effects on the sperm of Astyanax altiparanae upon Al exposure at different concentrations (0, 0.05, 0.1, 0.3, and 0.5 mg L-1) with various exposure periods (50 s, 10 min, and 30 min). The following biomarkers were evaluated: membrane vitality, DNA fragmentation, morphology, kinetics (10 s and 30 s after sperm activation), and sperm mitochondrial activity. Al damages the membrane vitality of gametes at 0.3 and 0.5 mg L-1 after 50 s of exposure. After 30 min of exposure, there was a decrease in membrane vitality at 0.1 and 0.5 mg L-1, and the membrane vitality decreased with increased exposure time. Within 30 s after sperm activation, Al (0.3 and 0.5 mg L-1) reduced sperm motility by more than 50% at the longest exposure time, while at 0.1 and 0.5 mg L-1, Al exposure reduced motility over time. The average path speed (VAP; 10 s post-sperm activation) was reduced at longer exposure times at 0.05 and 0.5 mg L-1 of Al. Increased exposure time had deleterious effects on mitochondrial activity at the highest concentrations tested. Al did not damage DNA and sperm morphology. In conclusion, Al negatively influences the sperm quality of A. altiparanae with a potential effect of exposure time and increasing concentrations.
Collapse
Affiliation(s)
- Cecília Bertacini de Assis
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Rua do Matão, trav. 14, 101, Cidade Universitária, São Paulo, SP, Brazil
| | - Giovana Souza Branco
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Rua do Matão, trav. 14, 101, Cidade Universitária, São Paulo, SP, Brazil
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Rua do Matão, trav. 14, 101, Cidade Universitária, São Paulo, SP, Brazil
| | - João Paulo Silva Pinheiro
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA, Rua do Matão, trav. 14, 101, Cidade Universitária, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
de Albuquerque FP, de Oliveira JL, Dos Santos Machado L, Richardi VS, da Silva MAN, Pompêo MLM, Fraceto LF, Carlos VM. Use of nontarget organism Chironomus sancticaroli to study the toxic effects of nanoatrazine. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:733-750. [PMID: 33821358 DOI: 10.1007/s10646-021-02400-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Atrazine was banned by the European Union in 2004, but is still used in many countries. Agricultural research employing nanotechnology has been developed in order to reduce the impacts to the environment and nontarget organisms. Nanoatrazine was developed as a carrier system and have been considered efficient in weed control. However, its toxicity must be verified with nontarget organisms. In this context, the aim of the present study was to investigate ecotoxicological effects of solid lipid nanoparticles (empty and loaded with atrazine) and atrazine on Chironomus sancticaroli larvae, evaluating the endpoints: mortality, mentum deformity, development rate and biochemical biomarkers. The contaminant concentrations used were 2, 470, 950, and 1900 μg L-1 in acute (96 h) and 2 μg L-1 in subchronic (10 days) bioassays. An environmentally relevant concentration of atrazine (2 μg L-1) presented toxic and lethal effects towards the larvae. The nanoparticles loaded with atrazine showed toxic effects similar to free atrazine, causing mortality and biochemical alterations on the larvae. The nanoparticle without atrazine caused biochemical alterations and mortality, indicating a possible toxic effect of the formulation on the larvae. In the acute bioassay, most concentrations of nanoparticles loaded with atrazine were not dose dependent for the endpoint mortality. Only the atrazine concentration of 470 μg L-1 was statistically significant to endpoint mentum deformity. The atrazine and nanoparticles (with and without atrazine) did not affect larval development. The results indicate that Chironomus sancticaroli was sensitive to monitor nanoatrazine, presenting potential to be used in studies of toxicity of nanopesticides.
Collapse
Affiliation(s)
- Felícia Pereira de Albuquerque
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180, Sorocaba, Brazil.
| | - Jhones Luiz de Oliveira
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180, Sorocaba, Brazil
| | - Leila Dos Santos Machado
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180, Sorocaba, Brazil
| | | | | | - Marcelo Luiz Martins Pompêo
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180, Sorocaba, Brazil
- Department of Ecology, University of São Paulo (USP), São Paulo, Brazil
| | - Leonardo Fernandes Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180, Sorocaba, Brazil.
| | - Viviane Moschini Carlos
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180, Sorocaba, Brazil
| |
Collapse
|
10
|
Rebechi D, Palacio-Cortés AM, Richardi VS, Beltrão T, Vicentini M, Grassi MT, da Silva SB, Alessandre T, Hasenbein S, Connon R, Navarro-Silva MA. Molecular and biochemical evaluation of effects of malathion, phenanthrene and cadmium on Chironomus sancticaroli (Diptera: Chironomidae) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111953. [PMID: 33482495 DOI: 10.1016/j.ecoenv.2021.111953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In-vitro effects of sub-lethal concentrations of malathion, phenanthrene (Phe) and cadmium (Cd) were tested on Chironomus sancticaroli larvae in acute bioassays by measuring biochemical and molecular parameters. Malathion was evaluated at 0.001, 0.0564 and 0.1006 mg L-1; Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 0.001, 3.2 and 7.4 mg L-1. The recovery test carried out at the highest concentration of each compound showed that survival of larvae exposed to Phe ranged from 4% to 5%, while the effects of malathion and Cd were irreversible, not allowing the emergence of adults. Results showed that malathion and Cd inhibited AChE, EST-α and ES-β activities at the two highest concentrations. Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 3.2 and 7.4 mg L-1 inhibited glutathione S-transferase activity. Oxidative stress was exclusively induced by the lowest concentration of malathion considering SOD activity once CAT was unaffected by the stressors. Lipid peroxidation was registered exclusively by malathion at the two highest concentrations, and total hemoglobin content was only reduced by Cd at the two highest concentrations. The relationship among biochemical results, examined using the PCA, evidenced that malathion and Cd concentrations were clustered into two groups, while Phe only formed one group. Four hemoglobin genes of C. sancticaroli were tested for the first time in this species, with Hemoglobin-C being upregulated by malathion. The toxicity ranking was malathion > Phe > Cd, while biochemical and molecular results showed the order malathion > Cd > Phe. Our results highlight the importance of combining different markers to understand the effects of the diverse compounds in aquatic organisms.
Collapse
Affiliation(s)
- Débora Rebechi
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | - Tiago Beltrão
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maiara Vicentini
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marco Tadeu Grassi
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Thiago Alessandre
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Simone Hasenbein
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | - Richard Connon
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
11
|
Genotoxic effect of heavy metals on Astyanax lacustris in an urban stream. Heliyon 2020; 6:e05034. [PMID: 33005812 PMCID: PMC7519369 DOI: 10.1016/j.heliyon.2020.e05034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Uncontrolled urbanization growth contributes to the pollution of aquatic environments. Heavy metals released by domestic and industrial effluents can negatively affect aquatic organisms. This study aimed to evaluate the effect of environmental pollutants, such as metals, on fish DNA damage, in stretches of an urban stream. Specimens of the Neotropical fish, Astyanax lacustris, were exposed in situ for 96 h along the Antas stream, a Brazilian aquatic system deteriorated by anthropogenic factors. Water and sediment samples were collected simultaneously for physicochemical and heavy metal analyses. The comet assay was performed as a biomarker of genotoxicity. Fish located downstream had a higher frequency of DNA damage than in the reference site. We found concentrations of Cr and Ni above acceptable levels in sediment samples. Generally, Ba, Mn, Mg, Zn, Cr, and Ni were the elements most associated with genotoxic damage. Water and sediment of the Antas stream showed genotoxic potential in A. lacustris according to the urbanization gradient, demonstrating the importance to prevent the release of environmental pollutants, especially heavy metals in urban areas.
Collapse
|
12
|
Youbi A, Zerguine K, Houilia A, Farfar K, Soumati B, Berrebbah H, Djebar MR, Souiki L. Potential use of morphological deformities in Chironomus (Diptera: Chironomidae) as a bioindicator of heavy metals pollution in North-East Algeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8611-8620. [PMID: 31904096 DOI: 10.1007/s11356-019-07459-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Human activities have led to profound changes in aquatic environments and degradation at several levels. Preserving the quality of aquatic environments, their good functioning, and the species that are dependent on them has become a crucial element. In order to monitor the overall health of aquatic ecosystems, it is necessary to develop early indicators of environmental quality. In this work, we have tried to evaluate whether the analysis of morphological deformities affecting Chironomidae larvae could tell us about the state of degradation of water courses that are subjected to different discharges. To do this, water, sediment, and larvae of Chironomidae were sampled in dry weather in August-September of 2017 at three sites located in the North-East of Algeria. The heavy metals in the three compartments as well as the deformities affecting the mentum and mandibles of Chironomus were analyzed. The results showed a metal contamination especially in sediments; the highest values were found in Meboujda River and Seybouse River. The three sites have high deformities incidences, more than 33%, which suggests the presence of toxic stress. This study reflected the relationship between heavy metal concentrations in water, sediments, and deformities larval mouthparts (mentum and mandibles) in Chironomus. The use of deformities in Chironomus sp. can serve as an effective tool for bioassessment of freshwater ecosystems.
Collapse
Affiliation(s)
- Amira Youbi
- Department of Biology Laboratory of Cellular Toxicology, University of Badji Mokhtar, BP 12, 23000, Annaba, Algeria.
| | - Karima Zerguine
- Department of Biology, 8th May University 1945, 24000, Guelma, Algeria
| | - Ahmed Houilia
- Department of Biology Laboratory of Soil and Sustainable Development, University of Badji Mokhtar, BP 12, 23000, Annaba, Algeria
| | - Khadidja Farfar
- Department of Biology Laboratory of Cellular Toxicology, University of Badji Mokhtar, BP 12, 23000, Annaba, Algeria
| | - Boudjema Soumati
- Department of Biochemistry Laboratory of Biochemistry and Environmental Toxicology, University of Badji Mokhtar, BP 12, 23000, Annaba, Algeria
| | - Houria Berrebbah
- Department of Biology Laboratory of Cellular Toxicology, University of Badji Mokhtar, BP 12, 23000, Annaba, Algeria
| | - Mohamed Réda Djebar
- Department of Biology Laboratory of Cellular Toxicology, University of Badji Mokhtar, BP 12, 23000, Annaba, Algeria
| | - Lynda Souiki
- Department of Biology, 8th May University 1945, 24000, Guelma, Algeria
| |
Collapse
|
13
|
Jones JI, Murphy JF, Collins AL, Spencer KL, Rainbow PS, Arnold A, Pretty JL, Moorhouse AML, Aguilera V, Edwards P, Parsonage F, Potter H, Whitehouse P. The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:111-189. [PMID: 30671689 DOI: 10.1007/398_2018_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-rich sediments have the potential to impair life in freshwater streams and rivers and, thereby, to inhibit recovery of ecological conditions after any remediation of mine water discharges. Sediments remain metal-rich over long time periods and have long-term potential ecotoxicological interactions with local biota, unless the sediments themselves are physically removed or replaced by less metal-rich sediment. Laboratory-derived environmental quality standards are difficult to apply to the field situation, as many complicating factors exist in the real world. Therefore, there is a strong case to consider other, field-relevant, measures of toxic effects as alternatives to laboratory-derived standards and to seek better biological tools to detect, diagnose and ideally predict community-level ecotoxicological impairment. Hence, this review concentrated on field measures of toxic effects of metal-rich sediment in freshwater streams, with less emphasis on laboratory-based toxicity testing approaches. To this end, this review provides an overview of the impact of metal-rich sediments on freshwater stream life, focusing on biological impacts linked to metal contamination.
Collapse
|
14
|
Sonne AT, Rasmussen JJ, Höss S, Traunspurger W, Bjerg PL, McKnight US. Linking ecological health to co-occurring organic and inorganic chemical stressors in a groundwater-fed stream system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1153-1162. [PMID: 30045497 DOI: 10.1016/j.scitotenv.2018.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Freshwaters are among the most endangered ecosystems worldwide, due predominantly to excessive anthropogenic practices compromising the future provisioning of ecosystem services. Despite increased awareness of the role of multiple stressors in accounting for ecological degradation in mixed land-use stream systems, risk assessment approaches applicable in field settings are still required. This study provides a first indication for ecological consequences of the interaction of organic and inorganic chemical stressors, not typically evaluated together, which may provide a missing link enabling the reconnection of chemical and ecological findings. Specifically, impaired ecological conditions - represented by lower abundance of meiobenthic individuals - were observed in the hyporheic zone where a contaminant groundwater plume discharged to the stream. These zones were characterized by high xenobiotic organic concentrations, and strongly reduced groundwater (e.g. elevated dissolved iron and arsenic) linked to the dissolution of iron hydroxides (iron reduction) caused by the degradation of xenobiotic compounds in the plume. Further research is still needed to separate whether impact is driven by a combined effect of organic and inorganic stressors impacting the ecological communities, or whether the conditions - when present simultaneously - are responsible for enabling a specific chemical stressor's availability (e.g. trace metals), and thus toxicity, along the study stream. Regardless, these findings suggest that benthic meioinvertebrates are promising indicators for supporting biological assessments of stream systems to sufficiently represent impacts resulting from the co-occurrence of stressors in different stream compartments. Importantly, identification of the governing circumstances is crucial for revealing key patterns and impact drivers that may be needed in correctly prioritizing stressor impacts in these systems. This study further highlights the importance of stream-aquifer interfaces for investigating chemical stressor effects in multiple stressor systems. This will require holistic approaches for linking contaminant hydrogeology and eco(toxico)logy in order to positively influence the sustainable management of water resources globally.
Collapse
Affiliation(s)
- Anne Th Sonne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Jes J Rasmussen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
| | - Sebastian Höss
- Ecossa, Giselastrasse 6, 82319 Starnberg, Germany; University of Bielefeld, Animal Ecology, Konsequenz 45, D-33615 Bielefeld, Germany
| | - Walter Traunspurger
- University of Bielefeld, Animal Ecology, Konsequenz 45, D-33615 Bielefeld, Germany
| | - Poul L Bjerg
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Ursula S McKnight
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|