1
|
Li Y, Xiao L, Zeng XC. Hydrogen gas oxidation-driven reductive mobilization of arsenic in solid phase contributing to arsenite contamination in groundwater: Insights from metagenomic and microcosm analyses. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137444. [PMID: 39908754 DOI: 10.1016/j.jhazmat.2025.137444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/27/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Hydrogen gas (H2) is naturally produced by biological and non-biological reactions in various environmental niches. However, the influence of H2 on microbial processes that cause the mobilization and release of arsenic from solid phase into groundwater remains to be resolved. Given that dissimilatory arsenate [As(V)]-respiring prokaryotes (DARPs) have been demonstrated to significantly contribute to the formation of As-contaminated groundwater, our study specifically examined the interactions between H2 and DARPs. We prepared an enriched DARP population from As-contaminated soils. Metagenomic analyses of the DARP population revealed that approximately 46.7 % of the qualified DARPs' MAGs contain at least one type I Ni-Fe hydrogenase. The Ni-Fe hydrogenase proteins in DARPs show unique diversity. Functional assays indicate that the DARP population exhibited notable activity in oxidizing H2 while concurrently reducing As(V) under strictly anaerobic conditions. Arsenic release assays indicate that the DARP population is highly proficient at catalyzing the reductive mobilization of arsenic in scorodite, using hydrogen as the electron donor. These findings offer the initial evidence that H2 can directly promote the formation of arsenic-contaminated groundwater mediated by DARPs, a biogeochemical process that has long been overlooked. Therefore, this study increases our insight into the microbial mechanisms involved in the formation of arsenic-contaminated groundwater.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), PR China
| | - Linhai Xiao
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), PR China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), PR China.
| |
Collapse
|
2
|
Eldan M, Masue-Slowey Y. Environmental fate of monosodium methanearsonate (MSMA)-Part 1: Conceptual model. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1859-1875. [PMID: 38924690 DOI: 10.1002/ieam.4961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
Monosodium methanearsonate (MSMA), the sodium salt of monomethylarsonic acid (MMA), is used as a selective, broad-spectrum contact herbicide to control weeds in cotton and a variety of turf. In water, MSMA dissociates into ions of sodium (Na+) and of MMA-, which is the herbicide's active component. Certain soil microorganisms can methylate MMA to dimethylarsinic acid (DMA) other microorganisms can demethylate MMA to inorganic arsenic (iAs). To predict the groundwater concentration of iAs that may result from MSMA application, the processes affecting the environmental behavior of MSMA must be quantified and modeled. There is an extensive body of literature regarding the environmental behavior of MSMA. There is a consensus among scientists that the fate of MMA in soil is controlled by microbial activity and sorption to solid surfaces and that iAs sorption is even more extensive than that of MMA. The sorption and transformation of MMA and its metabolites are affected by several factors including aeration condition, temperature, pH, and the availability of nutrients. The precise nature and extent of each of these processes vary depending on site-specific conditions; however, such variability is constrained in typical MSMA use areas that are highly managed. Monomethylarsonic acid is strongly sorbed on mineral surfaces and becomes sequestered into the soil matrix. Over time, a greater portion of MMA and iAs becomes immobile and unavailable to soil microorganisms and to leaching. This review synthesizes the results of studies that are relevant for the behavior of MSMA used as a herbicide to reliably predict the fate of MSMA in its use conditions. Integr Environ Assess Manag 2024;20:1859-1875. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Michal Eldan
- Luxembourg Industries Ltd., The Organic Arsenical Products Task Force, Washington, District of Columbia, USA
| | | |
Collapse
|
3
|
Cao J, Guo Z. Spatial patterns of toxic elements in stream sediment transportation at a hilly mine area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174597. [PMID: 38986691 DOI: 10.1016/j.scitotenv.2024.174597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The spatial pattern of toxic metals plays a major role in watershed diffuse metal non-point source pollution, particularly during stream sediment transportation at hills mines. This study investigated a typical hilly mine area to quantitatively analyze the characteristics, sensitivities, and influencing factors of toxic elements transported in stream sediments through field research and Geodetector models. The results showed that the spatial patterns of toxic elements in stream sediment transportation at the hills mine area were significantly influenced by water erosion and sulfate. Water erosion and sulfate promoted the transport differences of stream sediment metals from upstream to downstream at the hills mine area. Arsenic, cadmium, mercury, and antimony in the stream sediments at the hills mine exhibited higher coefficients of variation (101 % to 397 %) than those in plain and basin topographies. Potential ecological risks of arsenic and cadmium were assessed as high-risk levels, at 19 % and 64 %, respectively. Metal import in the midstream sediments of the hills mine area was accelerated by strong water erosion. Sulfate and dissolved organic matter (DOM) were highly enriched in stream sediments, with sulfate showing a strong correlation with toxic metals (24 %). Positive responses were observed between arsenic, mercury, antimony, and sulfate in sediments, with sensitivities of 41 %, 25 %, and 16 %, respectively, while cadmium was associated with DOM, with a sensitivity of 46 %. Importantly, water erosion interactions with functional type of mine significantly influenced on the spatial transportation patterns of toxic metals in stream sediments. The interactive influences of sulfate combined with bicarbonate on arsenic, mercury, and antimony and bicarbonate combined with DOM on cadmium were enhanced compared to individual factors (>20 %). This study elucidates the spatial patterns of metals during stream sediment transportation in hills mine and offers the novel insights for developing effective watershed metal management strategies in hilly mine environments.
Collapse
Affiliation(s)
- Jie Cao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Chen X, Yu T, Xiao L, Zeng XC. Can Sb(III)-oxidizing prokaryote also oxidize As(III) under aerobic and anaerobic conditions, and vice versa? JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134135. [PMID: 38574656 DOI: 10.1016/j.jhazmat.2024.134135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Linhai Xiao
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
5
|
Yu T, Chen X, Zeng XC, Wang Y. Biological oxidation of As(III) and Sb(III) by a novel bacterium with Sb(III) oxidase rather than As(III) oxidase under anaerobic and aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169893. [PMID: 38185173 DOI: 10.1016/j.scitotenv.2024.169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Sb and As are chemically similar, but the sequences and structures of Sb(III) and As(III) oxidase are totally distinct. It is thus interesting to explore whether Sb(III) oxidase oxidizes As(III), and if so, how microbial oxidations of Sb(III) and As(III) influence one another. Previous investigations have yielded ambiguous or even erroneous conclusions. This study aimed to clarify this issue. Firstly, we prepared a consortium of Sb(III)-oxidizing prokaryotes (SOPs) by enrichment cultivation. Metagenomic analysis reveals that SOPs with the Sb(III) oxidase gene, but lacking the As(III) oxidase gene are predominant in the SOP community. Despite this, SOPs exhibit comparable Sb(III) and As(III)-oxidizing activities in both aerobic and anaerobic conditions, indicating that at the microbial community level, Sb(III) oxidase can oxidize As(III). Secondly, we isolated a representative cultivable SOP, Ralstonia sp. SbOX with Sb(III) oxidase gene but without As(III) oxidase gene. Genomic analysis of SbOX reveals that this SOP strain has a complete Sb(III) oxidase (AnoA) gene, but lacks As(III) oxidase (AioAB or ArxAB) gene. It is interesting to discover that, besides its Sb(III) oxidation activities, SbOX also exhibits significant capabilities in oxidizing As(III) under both aerobic and anaerobic conditions. Moreover, under aerobic conditions and in the presence of both Sb(III) and As(III), SbOX exhibited a preference for oxidizing Sb(III). Only after the near complete oxidation of Sb(III) did SbOX initiate rapid oxidation of As(III). In contrast, under anaerobic conditions and in the presence of both Sb(III) and As(III), Sb(III) oxidation notably inhibited the As(III) oxidation pathway in SbOX, while As(III) exhibited minimal effects on the Sb(III) oxidation. These findings suggest that SOPs can oxidize As(III) under both aerobic and anaerobic conditions, exhibiting a strong preference for Sb(III) over As(III) oxidation in the presence of both. This study unveils a novel mechanism of interaction within the Sb and As biogeochemical cycles.
Collapse
Affiliation(s)
- Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| |
Collapse
|
6
|
Luo T, Liu J. Field and laboratory investigations on factors affecting the diel variation of arsenic in Huangshui Creek from Shimen Realgar Mine, China: implications for arsenic transport in an alkali stream. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:687-705. [PMID: 35275295 DOI: 10.1007/s10653-022-01230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The release of arsenic and related species from mining activities has been investigated widely at both seasonal and diel scales, contributing to the understanding of arsenic cycles, its ultimate fate, and enabling accurate estimates of arsenic flux in specific areas. To enrich the research in this area, a case study was undertaken in Huangshui Creek, Hunan province, China. Here, arsenic is present in the sediment at the Creek entrance to a reservoir and in the widely developed alkali realgar(α-As4S4)-calcite(CaCO3)-dolomite[CaMg(CO3)2] strata (pH 7-11). Water from different levels in the Huangshui Creek, the Creek/reservoir entrance, and the downstream reservoir together with corresponding sediments were collected and analyzed. The local algae were separated and cultured. A diel variation of arsenic (688 ug/L in AM 3:50-1152 ug/L in PM 19:50) was observed in the Creek. The largest difference in arsenic concentration between the upper and lower water body was at the mixed creek/reservoir site (364 ug/L). Laboratory experiments showed that arsenic release from Creek sediment and pristine realgar was 1.3-2.7 times and 2.0-2.3 times at 25 and 37 °C, respectively, than low-temperature samples (8 °C) over 24 h. However, temperature variation is not the only factor controlling arsenic release from Huangshui Creek. Batch experiments show that both sediment and pristine realgar can release arsenic(III). In addition, the presence of bicarbonate promotes arsenic(V) release by 15.2-24.3 times for the sediment and by 1.7-3.4 times for pristine realgar compared to the control, though it restrains arsenic(III) release. High levels of algae have a complex effect on arsenic release; it increases arsenic(V) release by accelerating dissolution of realgar but decreases arsenic(III) release through adsorption. The field observations-variation of bicarbonate (67 mg/L in day and 201 mg/L in night) and chlorophyll-a (0.06-0.87)-support that both dissolved bicarbonate and algae affect arsenic concentration. These factors establish a circadian rhythm in the Creek, which coupled with arsenic release, ultimately affect the fate of arsenic.
Collapse
Affiliation(s)
- Tanghuizi Luo
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Jing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
7
|
Wu Y, Wu W, Xu Y, Zuo Y, Zeng XC. Environmental Mn(II) enhances the activity of dissimilatory arsenate-respiring prokaryotes from arsenic-contaminated soils. J Environ Sci (China) 2023; 125:582-592. [PMID: 36375940 DOI: 10.1016/j.jes.2022.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 06/16/2023]
Abstract
Many investigations suggest that dissimilatory arsenate-respiring prokaryotes (DARPs) play a key role in stimulating reductive mobilization of As from solid phase into groundwater, but it is not clear how environmental Mn(II) affects the DARPs-mediated reductive mobilization of arsenic. To resolve this issue, we collected soil samples from a realgar tailings-affected area. We found that there were diverse arsenate-respiratory reductase (arr) genes in the soils. The microbial communities had high arsenate-respiring activity, and were able to efficiently stimulate the reductive mobilization of As. Compared to the microcosms without Mn(II), addition of 10 mmol/L Mn(II) to the microcosms led to 23.99%-251.79% increases in the microbial mobilization of As, and led to 133.3%-239.2% increases in the abundances of arr genes. We further isolated a new cultivable DARP, Bacillus sp. F11, from the arsenic-contaminated soils. It completely reduced 1 mmol/L As(V) in 5 days under the optimal reaction conditions. We further found that it was able to efficiently catalyze the reductive mobilization and release of As from the solid phase; the addition of 2 mmol/L Mn(II) led to 98.49%-248.78% increases in the F11 cells-mediated reductive mobilization of As, and 70.6%-104.4% increases in the arr gene abundances. These data suggest that environmental Mn(II) markedly increased the DARPs-mediated reductive mobilization of As in arsenic-contaminated soils. This work provided a new insight into the close association between the biogeochemical cycles of arsenic and manganese.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Weiwei Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Yifan Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Yanxia Zuo
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
8
|
Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation. Curr Microbiol 2022; 79:131. [PMID: 35290506 DOI: 10.1007/s00284-022-02810-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Arsenic contaminations, often adversely influencing the living organisms, including plants, animals, and the microbial communities, are of grave apprehension. Many physical, chemical, and biological techniques are now being explored to minimize the adverse affects of arsenic toxicity. Bioremediation of arsenic species using arsenic loving bacteria has drawn much attention. Arsenate and arsenite are mostly uptaken by bacteria through aquaglycoporins and phosphate transporters. After entering arsenic inside bacterial cell arsenic get metabolized (e.g., reduction, oxidation, methylation, etc.) into different forms. Arsenite is sequentially methylated into monomethyl arsenic acid (MMA) and dimethyl arsenic acid (DMA), followed by a transformation of less toxic, volatile trimethyl arsenic acid (TMA). Passive remediation techniques, including adsorption, biomineralization, bioaccumulation, bioleaching, and so on are exploited by bacteria. Rhizospheric bacterial association with some specific plants enhances phytoextraction process. Arsenic-resistant rhizospheric bacteria have immense role in enhancement of crop plant growth and development, but their applications are not well studied till date. Emerging techniques like phytosuction separation (PS-S) have a promising future, but still light to be focused on these techniques. Plant-associated bioremediation processes like phytoextraction and phytosuction separation (PS-S) techniques might be modified by treating with potent bacteria for furtherance.
Collapse
|
9
|
Li Y, Guo L, Häggblom MM, Yang R, Li M, Sun X, Chen Z, Li F, Su X, Yan G, Xiao E, Zhang H, Sun W. Serratia spp. Are Responsible for Nitrogen Fixation Fueled by As(III) Oxidation, a Novel Biogeochemical Process Identified in Mine Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2033-2043. [PMID: 35006678 DOI: 10.1021/acs.est.1c06857] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological nitrogen fixation (BNF) has important environmental implications in tailings by providing bioavailable nitrogen to these habitats and sustaining ecosystem functions. Previously, chemolithotrophic diazotrophs that dominate in mine tailings were shown to use reduced sulfur (S) as the electron donor. Tailings often contain high concentrations of As(III) that might function as an alternative electron donor to fuel BNF. Here, we tested this hypothesis and report on BNF fueled by As(III) oxidation as a novel biogeochemical process in addition to BNF fueled by S. Arsenic (As)-dependent BNF was detected in cultures inoculated from As-rich tailing samples derived from the Xikuangshan mining area in China, as suggested by nitrogenase activity assays, quantitative polymerase chain reaction, and 15N2 enrichment incubations. As-dependent BNF was also active in eight other As-contaminated tailings and soils, suggesting that the potential for As-dependent BNF may be widespread in As-rich habitats. DNA-stable isotope probing identified Serratia spp. as the bacteria responsible for As-dependent BNF. Metagenomic binning indicated that the essential genes for As-dependent BNF [i.e., nitrogen fixation, As(III) oxidation, and carbon fixation] were present in Serratia-associated metagenome-assembled genomes. Over 20 Serratia genomes obtained from NCBI also contained essential genes for both As(III) oxidation and BNF (i.e., aioA and nifH), suggesting that As-dependent BNF may be a widespread metabolic trait in Serratia spp.
Collapse
Affiliation(s)
- Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lifang Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick New Jersey 08901, United States
| | - Rui Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark New Jersey 07102, United States
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xianfa Su
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, P. R. China
| | - Geng Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Enzong Xiao
- Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Haihan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
10
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
11
|
Xu Y, Li H, Zeng XC. A novel biofilm bioreactor derived from a consortium of acidophilic arsenite-oxidizing bacteria for the cleaning up of arsenite from acid mine drainage. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1437-1445. [PMID: 33040243 DOI: 10.1007/s10646-020-02283-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Arsenite (As(III)) was considered to be of great concern in acid mine drainage (AMD). A promising approach for cleaning up of arsenite from AMD is microbial oxidation of As(III) followed by adsorptions. However, there is virtually no research about the acidophilic bioreactor for As(III) oxidation so far. In this study, we formed a new biofilm bioreactor with a consortium of acidophilic As(III) oxidation bacteria. It is totally chemoautotrophic, with no need to add any carbon or other materials during the operations. It works well under pH 3.0-4.0, capable of oxidizing 1.0-20.0 mg/L As(III) in 3.0-4.5 h, respectively. A continuous operation of the bioreactor suggests that it is very stable and sustainable. Functional gene detection indicated that the biofilms possessed a unique diversity of As(III) oxidase genes. Taken together, this acidophilic bioreactor has great potential for industrial applications in the cleaning up of As(III) from AMD solution.
Collapse
Affiliation(s)
- Yifan Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), 430074, Wuhan, People's Republic of China
| | - Hao Li
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), 430074, Wuhan, People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), 430074, Wuhan, People's Republic of China.
| |
Collapse
|