1
|
Li Y, Tan M, Wu H, Zhang A, Xu J, Meng Z, Yan S, Jiang D. Transfer of Cd along the food chain: The susceptibility of Hyphantria cunea larvae to Beauveria bassiana under Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131420. [PMID: 37084517 DOI: 10.1016/j.jhazmat.2023.131420] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Heavy metal can affect the bio-control efficiency of entomopathogenic fungi on pests, but this has not been studied in the food chain. Here, the food chain of soil-Fraxinus mandshurica-Hyphantria cunea was constructed to investigate the effect of cadmium (Cd) exposure on the susceptibility of H. cunea larvae to Beauveria bassiana (Bb) and to analyze the corresponding mechanism through larval innate immunity and energy metabolism. Cd through the food chain synergistically enhanced the susceptibility of H. cunea larvae to Bb. Cellular immunity-related parameters decreased when the Cd treatment group was compared with the control group and when the combined treatment group of Cd and Bb was compared with the Bb treatment group. Cd exposure induced hormesis on pathogen recognition and signal transduction genes of humoral immunity, but reduced the expression of effector genes. The expression of the 13 humoral immunity-related genes in the combined treatment group was lower than in the Bb treatment group. Cd exposure decreased the energy storage of H. cunea larvae before Bb infection and aggravated the disorder level of energy metabolism after Bb infection. Taken together, disturbance of innate immunity and energy metabolism improves the susceptibility of H. cunea larvae to Bb in the Cd-polluted food chain.
Collapse
Affiliation(s)
- Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Zhaojun Meng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Naccarato A, Vommaro ML, Amico D, Sprovieri F, Pirrone N, Tagarelli A, Giglio A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio molitor. TOXICS 2023; 11:499. [PMID: 37368599 DOI: 10.3390/toxics11060499] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The increasing use of agrochemicals, including fertilizers and herbicides, has led to worrying metal contamination of soils and waters and raises serious questions about the effects of their transfer to different levels of the trophic web. Accumulation and biomagnification of essential (K, Na, Mg, Zn, Ca), nonessential (Sr, Hg, Rb, Ba, Se, Cd, Cr, Pb, As), and rare earth elements (REEs) were investigated in newly emerged adults of Tenebrio molitor exposed to field-admitted concentrations of a metribuzin-based herbicide and an NPK blend fertilizer. Chemical analyses were performed using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) supported by unsupervised pattern recognition techniques. Physiological parameters such as cuticle melanization, cellular (circulating hemocytes), and humoral (phenoloxidase enzyme activity) immune responses and mass loss were tested as exposure markers in both sexes. The results showed that NPK fertilizer application is the main cause of REE accumulation in beetles over time, besides toxic elements (Sr, Hg, Cr, Rb, Ba, Ni, Al, V, U) also present in the herbicide-treated beetles. The biomagnification of Cu and Zn suggested a high potential for food web transfer in agroecosystems. Gender differences in element concentrations suggested that males and females differ in element uptake and excretion. Differences in phenotypic traits show that exposure affects metabolic pathways involving sequestration and detoxification during the transition phase from immature-to-mature beetles, triggering a redistribution of resources between sexual maturation and immune responses. Our findings highlight the importance of setting limits for metals and REEs in herbicides and fertilizers to avoid adverse effects on species that provide ecosystem services and contribute to soil health in agroecosystems.
Collapse
Affiliation(s)
- Attilio Naccarato
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | - Antonio Tagarelli
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Zheng L, Tan M, Yan S, Jiang D. Cadmium exposure-triggered growth retardation in Hyphantria cunea larvae involves disturbances in food utilization and energy metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114886. [PMID: 37037109 DOI: 10.1016/j.ecoenv.2023.114886] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Serious environmental pollution in the ecosystem makes phytophagous insects face a great risk of exposure to pollutants, especially heavy metals. This study aims to understand the effects of Cd exposure on the growth and development of Hyphantria cunea and to elucidate the mechanism of growth toxicity induced by Cd from the perspective of food utilization and energy metabolism. Our results showed that the larval basal growth data, growth index, fitness index, and standard growth index were significantly decreased after feeding on Cd-containing artificial diets. The Cd-treated larvae had significantly higher digestibility than the untreated larvae. However, the food consumption, efficiency of conversion of digested food, and efficiency of conversion of ingested food were significantly lower than those of untreated larvae. Eight key metabolites in the glycolysis pathway and six key metabolites in the tricarboxylic acid cycle pathway were significantly reduced in Cd-treated larvae. The mRNA expression levels of two regulatory genes (6-phosphofructokinase 1 and hexokinase-1) belonging to two key enzymes in the glycolysis pathway and four regulatory genes (isocitrate dehydrogenase-1, isocitrate dehydrogenase-3, citrate synthase, and oxoglutarate dehydrogenase) belonging to three key enzymes in the tricarboxylic acid cycle pathway were significantly lower in the Cd-treated group than in the control group. Furthermore, most fitness-related traits were significantly and positively correlated with food utilization (except approximate digestibility) or energy metabolism parameters. Taken together, Cd exposure-triggered growth retardation of H. cunea larvae is a consequence of disturbances in food utilization and energy metabolism, thereby emphasizing the toxicity of heavy metals.
Collapse
Affiliation(s)
- Lin Zheng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
4
|
Honorio R, Depierrefixe P, Devers S, Rouelle M, Meunier J, Lécureuil C. Effects of cadmium ingestion on reproduction and maternal egg care in the European earwig. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Yang Y, Qi J, Wang Z, Zhou Z, Zhao C, Dong X, Li X, Li C. Evaluating the Effects of Cu2+ on the Development and Reproduction of Spodoptera litura (Lepidoptera: Noctuidae) Based on the Age-Stage, Two-Sex Life Table. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:4. [PMID: 36426853 PMCID: PMC9693775 DOI: 10.1093/jisesa/ieac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu2+) is a micronutrient that promotes the development and reproduction of organisms. However, with the rapid expansion of modern industry and agriculture, Cu2+ concentrations are increasing, which might have negative impacts on biological and ecological safety. Spodoptera litura is not only an intermittent outbreak pest but also can be used as a model organism to assess environmental and ecological risks. Therefore, the effects of the life history and population parameters of S. litura fed on artificial diets with different Cu2+ concentrations were analyzed using the age-stage, two-sex life table. Our results showed that not only the preadult survival rate but also the intrinsic rate of increase (r) and the finite rate of increase (λ) were significantly increased under exposure to low Cu2+ concentrations (2, 4, and 8 mg/kg). In addition, the population growth of S. litura was significantly faster, indicating that S. litura can adapt well to low concentrations and is likely to undergo outbreaks of damage. Whereas, in addition to a significant reduction in preadult survival rate, population growth rate, pupal weight, pupal length, adult body weight, and oviposition were also significantly reduced under exposure to high Cu2+ concentration (32 mg/kg). And when the concentration reached 64 mg/kg, the survival rate of adults was extremely low, suggesting a decrease in the adaptation of S. litura. These results can help to understand the population dynamics of S. litura and predict potential ecological risks.
Collapse
Affiliation(s)
- Yang Yang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jingwei Qi
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhixiong Zhou
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Changwei Zhao
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaolin Dong
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xihong Li
- Tobacco Research Institute of Hubei Province, Wuhan 430030, Hubei, China
| | | |
Collapse
|
6
|
Wen F, Yang J, Huang X, Huang X. Analysis of Differential Gene Expression of the Aquatic Insect Protohermes costalis (Walker) (Megaloptera: Corydalidae) in Response to Cadmium Exposure. ENVIRONMENTAL ENTOMOLOGY 2022; 51:815-823. [PMID: 35762274 DOI: 10.1093/ee/nvac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution in freshwater ecosystems is a serious threat to aquatic organisms. Species of Megaloptera are important predators of aquatic invertebrates and have been widely used as bioindicators in assessing the quality of freshwater ecosystems. In this study, we determined the differential gene expression profile of Protohermes costalis (Walker) (Megaloptera: Corydalidae) in response to cadmium (Cd) exposure by using transcriptome analysis. A total of 60,627 unigenes were obtained in the transcriptomes of 150 mg/liter (PL), 1,000 mg/liter (PH) CdCl2 treatment, and the no Cd control (PC). Differential expression gene (DEG) analysis by pairwise comparison identified 2,794 DEGs after filtering the noninsect genes and repetitive counts. 606 DEGs were shared in comparisons of PL versus PC and PH versus PC, with 165 DEGs consistently up-regulated and 441 down-regulated by both PL and PH. Six heat shock proteins (HSPs) in the HSP70 family were identified in P. costalis and PcosHSP68 was up-regulated by both PL and PH. Real-time quantitative polymerase chain reaction (RT-qPCR) confirmed that the expression levels of PcosHSP68 in PL and PH were higher than that of PC by 31 and 197%, respectively. These results showed that exposure to Cd altered the gene expression profiles of P. costalis and the transcriptome data presented in this study provide insight into future studying on molecular mechanisms of Cd toxicity to these insects.
Collapse
Affiliation(s)
- Fasheng Wen
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Peoples Republic of China
| | - Jie Yang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Peoples Republic of China
| | - Xingrui Huang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Peoples Republic of China
| | - Xinglong Huang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Peoples Republic of China
| |
Collapse
|
7
|
Jiang D, Tan M, Zheng L, Wu H, Li Y, Yan S. Cd exposure-triggered metabolic disruption increases the susceptibility of Lymantria dispar (Lepidoptera: Erebidae) larvae to Mamestra brassicae nuclear polyhedrosis virus: A multi-omics study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113280. [PMID: 35124420 DOI: 10.1016/j.ecoenv.2022.113280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Biological control is an environmentally friendly and effective pest control strategy, but it is often affected by a variety of abiotic factors in the pest control area. Here, the susceptibility of gypsy moth larvae to Mamestra brassicae nuclear polyhedrosis virus (MbNPV) under Cd treatment at the low and high dosages was investigated, and the mechanism of Cd stress affecting virus susceptibility of gypsy moth larvae was analyzed from a metabolic perspective by combining transcriptome and metabolome of the larval fat body. Our results showed that the mortality of MBNPV infection on gypsy moth larvae pre-exposed to Cd was significantly higher than that of larvae without Cd pre-exposure, and the joint effects of Cd exposure and virus infection on larval mortality were demonstrated to be synergistic. Transcriptome analysis revealed that amino acid and carbohydrate transport and metabolism accounted for most of the differently expressed genes in the low Cd and high Cd treatment groups. Consistent with the transcriptome results, metabolome analysis also showed that most metabolites affected by Cd exposure were involved in amino acid and carbohydrate metabolism. Function analysis showed that the contents of several amino acids (e.g. tryptophan and tyrosine) with antioxidant properties were significantly increased in Cd-treated gypsy moth larvae. Taken together, Cd exposure as an environmental factor, promotes the susceptibility of gypsy moth larvae to MbNPV, and metabolic disruption, especially amino acids and carbohydrates-related metabolism, is responsible for the increased susceptibility of gypsy moth larvae to virus under Cd stress.
Collapse
Affiliation(s)
- Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lin Zheng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|