1
|
Nguyen TD, Huynh TN, Nguyen VT, Dinh KV, Wiegand C, Pham TL, Bui MH, Itayama T, Tran NT, Wang Z, Dao TS. Multigenerational testing reveals delayed chronic toxicity of bisphenol A to Daphnia magna: A common characteristic of endocrine-disrupting chemicals? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126253. [PMID: 40239941 DOI: 10.1016/j.envpol.2025.126253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Bisphenol A (BPA) poses longstanding environmental concerns due to its widespread presence and recognized toxicity; however, its multigenerational ecotoxicity, in aquatic models such as water fleas, remains incompletely understood. This study examined the impact of sublethal BPA exposure on Daphnia magna across six generations, tracking changes in both life-history and population traits. Over the first five generations, BPA exposure produced minor and inconsistent effects on age at first oogenesis, age at first offspring production, growth rate, and fertility. The sixth generation exhibited prolonged oogenesis, delayed first offspring production, reduced body size, and decreased fertility, indicating delayed adverse effects. These multigenerational effects did not significantly alter population size or dynamics. Furthermore, BPA exposure did not affect feeding behavior in D. magna over six days, suggesting that food consumption-mediated mechanisms were unlikely a contributing factor. Our findings reveal BPA's delayed adverse effects on D. magna fitness, underscoring potential vulnerabilities for D. magna and other species under additional environmental stressors. These results support literature indicating that endocrine-disrupting chemicals can cause delayed and cumulative adverse effects on zooplankton descendants. Broadening multigenerational research to include a wider range of species, alongside sub-organismal analyses, is crucial to advancing regulatory frameworks and understanding underlying mechanisms.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou, 515063, China
| | - Trong-Nhan Huynh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Van-Tai Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Khuong V Dinh
- Department of Fisheries Biology, Nha Trang University, Nha Trang City, Viet Nam; Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Thanh Luu Pham
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho street, Tan Phong ward, District 7, Ho Chi Minh City, 700000, Viet Nam
| | - Manh-Ha Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, Viet Nam
| | - Tomoaki Itayama
- Department of Science and Technology, Nagasaki University, Nagasaki City, Japan
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou, 515063, China.
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
2
|
Bordalo D, Soares AMVM, Sokolova I, Pretti C, Freitas R. 2-Ethylhexyl-4-methoxycinnamate on marine and coastal environments: A comprehensive review of its environmental significance and biological impact. MARINE POLLUTION BULLETIN 2025; 211:117340. [PMID: 39626498 DOI: 10.1016/j.marpolbul.2024.117340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 02/13/2025]
Abstract
Marine and coastal environments are constantly subjected to increasing pressures associated with population growth, industrialization development, pollution and higher demand feeding society's consumerism. Among these pressures, there has been an increasing concern towards UV filters occurrence in aquatic ecosystems due to a greater use of personal care products (PCPs). 2-ethylhexyl-4-methoxycinnamate (EHMC) is one of the most used UV filters in sunscreen formulations, yet few reports address its effects in biota. This literature review intends to collect the available information concerning the environmental presence of EHMC in marine and coastal ecosystems and their effects in biota. The EHMC effects have been reported for the taxonomic groups: Actinomycetes, Alphaproteobacteria, Bacilli, Cytophagia, Flavobacteriia, Gammaproteobacteria, Actinopterygii, Anthozoa, Bacillariophyceae, Bivalvia, Branchiopoda, Coccolithophyceae, Echinoidea, Gastropoda, Malacostraca, Annelida and Thecostraca. The reported literature evaluated endpoints mainly related to development, viability, mortality, estrogenicity, gene transcription disruptions, biochemical alterations and morphophysiological changes. Based on the available information, there is still a clear need for further investigations related to EHMC and its toxicological effects on marine and coastal organisms.
Collapse
Affiliation(s)
- Diana Bordalo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Carlo Pretti
- Department of Veterinary, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Svigruha R, Fodor I, Németh Z, Farkas A, Pirger Z, Ács A. Short-term and long-term effects of microplastics and organic UV-filters on the invertebrate model species Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4841-4855. [PMID: 39891809 PMCID: PMC11850500 DOI: 10.1007/s11356-025-36008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
There is an ongoing debate regarding the role of microplastics (MPs) in enhancing the effects of various chemical compounds, highlighting the need for more detailed analyses. In this study, neonates of the water flea (Daphnia magna) were exposed to polystyrene MPs (PS-MPs; 3 µm; exposure concentration, 1.25 mg/L), a mixture of seven organic UV-filters (avobenzone, ethylhexyl triazone, homosalate, iscotrizinol, octinoxate, octisalate, and octocrylene; each at a low environmental concentration of 200 ng/L), or the combination of both pollutants for 3, 7, or 21 days. Results showed that PS-MPs alone decreased the body size of daphnids, while all treatments increased heart rate by the end of the 21-day exposure. On days 3 and 21, both PS-MPs and PS-MPs + UV-filters reduced swimming speed and total distance travelled. Additionally, PS-MPs increased the time of the first egg production, but decreased the egg number in the first production, total egg number, maximum egg number, and total neonate number during the 21-day treatment. Similarly, UV-filters or the combined pollutants increased the time of the first egg production and decreased the total neonate number. All treatments increased multixenobiotic resistance activity on days 3 and 7, while only UV-filters elevated CYP450 activity on day 3. PS-MPs or combined pollutants increased GST activity during early exposure but showed no effect on day 21. CAT activity was also affected by treatments in a time-dependent manner. These findings demonstrate that chronic exposure to PS-MPs and UV-filters, applied individually or in combination at a low environmental concentration, moderately impacts development, heart rate, and swimming activity in D. magna, while significantly altering reproduction and key cellular functions such as membrane transport activity, metabolism, and antioxidant defense. Co-exposure did not reveal a clear pattern of synergism or antagonism, suggesting that joint toxicity risks of these xenobiotics typically emerge at concentrations higher than low environmental levels. Future studies should explore potential interactions more thoroughly and assess transgenerational effects on reproduction and cellular defense pathways.
Collapse
Affiliation(s)
- Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zoltán Németh
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| |
Collapse
|
4
|
Lavorgna M, Medici A, Russo C, Orlo E, Di Fabio G, Luongo G, De Nisco M, Isidori M, Zarrelli A. Ethylhexyl triazone sunscreen and its disinfection byproducts obtained after chlorine treatment: Ecofriendliness or ecotoxicity? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177279. [PMID: 39481572 DOI: 10.1016/j.scitotenv.2024.177279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
In recent years, there has been a growing demand for high-quality sunscreens that combine high efficacy with ecological characteristics. This trend has led to an increased use of triazine compounds, which represent an emerging class of UV filters. While it is well-established that sunscreens can have significant environmental impacts, there is limited data on the degradation of triazine UV filters, despite available information on their environmental persistence, particularly in relation to disinfection processes. This study investigates the chemical fate of ethylhexyl triazone (EHT) under chlorination conditions, typical of swimming pools. Twelve disinfection byproducts (DBPs) were isolated and fully identified using nuclear magnetic resonance and mass spectrometry, with three of these byproducts being identified for the first time. DBP1-DBP12 were isolated at relative percentages of 1.26, 9.68, 1.05, 0.42, 0.84, 3.37, 3.58, 1.89, 0.84, 1.47, 0.42, and 0.63. Additionally, a mechanism for their formation was proposed. The ecotoxicological assessment of EHT and of byproducts (DBP1-DBP4) was conducted using acute, sub-chronic or chronic toxicity tests in producers and primary consumers of the freshwater trophic chain. The organisms included the alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the crustacean anostracan Thamnocephalus platyurus and the benthic ostracod Heterocypris incongruens. EHT caused a lethal median concentration in rotifers, with values in the range of tens of mg/L. EHT, DBP1, and DBP4 exhibited sub-chronic effects in ostracods at concentrations in the μg/L range, with EC50s of 210, 9, 20 μg/L, respectively. Rotifers were slightly affected by DBP3 with a chronic EC50 of 200 μg/L. Algae were not affected by either EHT or byproducts.
Collapse
Affiliation(s)
- Margherita Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonio Medici
- Department of Chemical Sciences, University of Naples "Federico II", Via Vicinale Cupa Cintia 26, 80126 Naples, Italy
| | - Chiara Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Elena Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples "Federico II", Via Vicinale Cupa Cintia 26, 80126 Naples, Italy
| | - Giovanni Luongo
- Associazione Italiana per la Promozione delle Ricerche su Ambiente e Salute umana, Via Nazionale 50, 82030 Dugenta, Italy
| | - Mauro De Nisco
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano, I-85100 Potenza, Italy
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples "Federico II", Via Vicinale Cupa Cintia 26, 80126 Naples, Italy.
| |
Collapse
|
5
|
Németh Z, Svigruha R, Ács A, Farkas A, Tapolczai K, Elekes K, Fodor I, Pirger Z. Developmental, behavioral, and biochemical effects of chronic exposure to sublethal concentrations of organic UV-filter compounds on a freshwater model species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107134. [PMID: 39488149 DOI: 10.1016/j.aquatox.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The prevalence of organic/chemical UV-filter compounds in aquatic ecosystems represents a growing environmental issue. The long-term toxicity risks of many UV-filters at environmentally relevant concentrations to aquatic biota are still less studied, especially in the case of invertebrates. This study was designed to evaluate the chronic toxicity of avobenzone (AVO), octocrylene (OCTO), and octinoxate (OCTI), three UV-filters which frequently occur in the aquatic environment, to the water flea (Daphnia magna) at an environmentally relevant concentration of 200 ng l-1 in a 21-day exposure. Potential alterations in the growth, reproduction, and heart rate were continuously monitored during the treatments. Filtration rate, swimming, and the state of the antioxidant- and metabolic functions were evaluated at the end of exposures. Avobenzone significantly increased the reproductive output, heart rate, and filtration rate, while evoked a significant decrease of swimming behavior, and inhibited the activity of catalase (CAT) and glutathione S-transferase (GST) enzymes. The body size, reproduction, heart rate, and superoxide dismutase (SOD) activity were significantly increased whereas the activity of GST and CAT was significantly reduced by OCTO. OCTI significantly increased reproduction, heart rate, CAT and SOD activity but significantly decreased the swimming behavior. Our results confirmed that chronic exposure to organic UV-filters even at environmentally relevant concentrations affect basic physiological traits and cellular defense pathways in D. magna. Highlighting, our observations revealed previously unknown physiological changes (e.g., altered heart rate, filtration rate, SOD activity) caused by the investigated UV-filter compounds. Future research is to be aimed at investigating the mixture effects of these compounds and at the understanding of the potential cellular and molecular mechanisms underlying the changes induced.
Collapse
Affiliation(s)
- Zoltán Németh
- Doctoral School of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary; Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Kálmán Tapolczai
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Károly Elekes
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - István Fodor
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary.
| |
Collapse
|
6
|
Reum Kwon B, Jo AR, Lee I, Lee G, Joo Park Y, Pyo Lee J, Park NY, Kho Y, Kim S, Ji K, Choi K. Thyroid, neurodevelopmental, and kidney toxicities of common organic UV filters in embryo-larval zebrafish (Danio rerio), and their potential links. ENVIRONMENT INTERNATIONAL 2024; 192:109030. [PMID: 39341038 DOI: 10.1016/j.envint.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Organic UV filters (OUVFs) have been commonly used in sunscreen and many consumer products. Following dermal application, these compounds can enter circulation and may cause systemic effects in humans. In the present study, we chose four OUVFs frequently detected in the environment, i.e., avobenzone (AVB), benzophenone-3 (BP-3), octocrylene (OC), and octyl methoxycinnamate (OMC), and evaluated their thyroid, neurodevelopmental, and kidney toxicities. For this purpose, zebrafish embryos (<4 h post fertilization, hpf) were exposed to sublethal concentrations of AVB, BP-3, OC, or OMC until 120 hpf. Exposure to all OUVFs decreased thyroid hormone (TH) levels, probably by enhanced metabolism and excretion of THs (ugt1ab and/or sult1 st5) in the larval fish. Exposure to the OUVFs also induced hypoactivities and/or anxiety-like behaviors: Regulatory changes of mbp, gfap, c-fos, syn2a, sty1a, and stxbp1b genes, support the changes in normal neurobehavior of the larval fish. Moreover, the OUVFs exposure caused increased proteinuria in the fish, along with transcriptional changes of wt1, nephrin, podocin, and cdh17 genes, which could explain the observed reduction in kidney functions. Principal component analysis (PCA) implied the potential interplay of THs with neurogenesis, or podocyte differentiation of the larval fish. Toxicological consequences of altered TH homeostasis, neurobehavior, and kidney function at the early life stage warrant further investigations not only in humans but also in aquatic ecosystems.
Collapse
Affiliation(s)
- Ba Reum Kwon
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Ah-Reum Jo
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Gowoon Lee
- Department of Safety Engineering, Korea National University of Transportation, Chungju, Chungbuk 27469, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Na-Youn Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Yongin University, Yongin, Gyeonggi 17092, Republic of Korea; Department of Occupational and Environmental Health, Yongin University, Yongin, Gyeonggi 17092, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Yu Q, Wang G, Shao Z, Sun Y, Yang Z. Changes in life history parameters and expression of key genes of Brachionus plicatilis exposed to a combination of organic and inorganic ultraviolet filters. CHEMOSPHERE 2024; 358:142213. [PMID: 38697570 DOI: 10.1016/j.chemosphere.2024.142213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The increasing use of ultraviolet filters has become an emerging contaminant on the coast, posing potential ecological risks. Rotifers are essential components of marine ecosystems, serving as an association between primary producers and higher-level consumers. These organisms frequently encounter ultraviolet filters in coastal waters. This study aimed to assess the comprehensive effects of organic ultraviolet filters, specifically 2-ethylhexyl-4-methoxycinnamate (EHMC), and inorganic ultraviolet filters, namely, titanium dioxide nanoparticles (TiO2 NPs), on the rotifer Brachionus plicatilis. We exposed B. plicatilis to multiple combinations of different concentrations of EHMC and TiO2 NPs to observe changes in life history parameters and the expression of genes related to reproduction and antioxidant responses. Our findings indicated that increased EHMC concentrations significantly delayed the age at first reproduction, reduced the total offspring, and led to considerable alterations in the expression of genes associated with reproduction and stress. Exposure to TiO2 NPs resulted in earlier reproduction and decreased total offspring, although these changes were not synchronised in gene expression. The two ultraviolet filters had a significant interaction on the age at first reproduction and the total offspring of rotifer, with these interactions extending to the first generation. This research offers new insights into the comprehensive effects of different types of ultraviolet filters on rotifers by examining life history parameters and gene expression related to reproduction and stress, highlighting the importance of understanding the impacts of sunscreen products on zooplankton health.
Collapse
Affiliation(s)
- Qingqing Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Gongyuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhihao Shao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
8
|
Bruhns T, Sánchez-Girón Barba C, König L, Timm S, Fisch K, Sokolova IM. Combined effects of organic and mineral UV-filters on the lugworm Arenicola marina. CHEMOSPHERE 2024; 358:142184. [PMID: 38697569 DOI: 10.1016/j.chemosphere.2024.142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugworm Arenicola marina. Lugworms were exposed to nZnO, avobenzone, or their combination for three weeks. We assessed pollutant-induced metabolic changes by measuring key metabolic intermediates in the body wall and coelomic fluid, and oxidative stress by analyzing antioxidant levels and oxidative lesions in proteins and lipids of the body wall. Exposure to UV filters resulted in shifts in the concentrations of Krebs' cycle and urea cycle intermediates, as well as alterations in certain amino acids in the body wall and coelomic fluid of the lugworms. Pathway enrichment analyses revealed that nZnO induced more pronounced metabolic shifts compared to avobenzone or their combination. Exposure to avobenzone or nZnO alone prompted an increase in tissue antioxidant capacity, indicating a compensatory response to restore redox balance, which effectively prevented oxidative damage to proteins or lipids. However, co-exposure to nZnO and avobenzone suppressed superoxide dismutase and lead to accumulation of lipid peroxides and methionine sulfoxide, indicating oxidative stress and damage to lipids and proteins. Our findings highlight oxidative stress as a significant mechanism of toxicity for both nZnO and avobenzone, especially when combined, and underscores the importance of further investigating the fitness implications of oxidative stress induced by these common UV filters in benthic marine organisms.
Collapse
Affiliation(s)
- Torben Bruhns
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Candela Sánchez-Girón Barba
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany; Department of Life Sciences, Imperial College London, Exhibition Road SW7 2AZ London, United Kingdom
| | - Lilian König
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Stefan Timm
- Department of Plant Physiology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 21, 18059 Rostock, Germany.
| |
Collapse
|
9
|
He J, Chen Z, Jing C, Zhang W, Peng H, Zhou H, Hu F. Behavioral and biochemical responses of the marine polychaete Perinereis aibuhitensis to 2-ethylhexyl-4-methoxycinnamate (EHMC) exposure. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109868. [PMID: 38423197 DOI: 10.1016/j.cbpc.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
2-ethylhexyl-4-methoxycinnamate (EHMC) is a commonly used UV filter, and is receiving increasing concerns due to its ubiquitous occurrence in a variety of environmental media and potential adverse effects. This study was aimed to assess the ecotoxicological potentials of EHMC on the marine polychaete Perinereis aibuhitensis. To this end, ragworms were exposed to 2, 20, 200 μg/L EHMC for 14 days and multiple toxicological endpoints were investigated. The results showed that EHMC significantly reduced burrowing rate, but did not affect AChE activity. Exposure to EHMC significantly elevated the activities of SOD and CAT and decreased the levels of lipid peroxidation. Besides, the induction of AKP activity indicated a stimulated immune response in the ragworms when exposed to high concentration of EHMC. Furthermore, the upregulated expression of caspase-8 suggested that EHMC might induce apoptosis in ragworms via the death receptor-mediated extrinsic pathway. Our findings highlight the potential environmental risks of EHMC to marine ecosystems.
Collapse
Affiliation(s)
- Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Freshwater Fisheries Research Institute of Fujian, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Honglei Zhou
- Fujian Yangze Marine Biotechnology Co., Ltd, Fuzhou 350600, China.
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| |
Collapse
|
10
|
Yang Q, Tian L, Wang W, Chen X, Tao J. Post-fertilization 2-ethylhexyl-4-methoxycinnamate (EHMC) exposure affects axonal growth, muscle fiber length, and motor behavior in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116053. [PMID: 38306815 DOI: 10.1016/j.ecoenv.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Organic UV filters, which are often found in the environment, have been the focus of much public health concern. 2-ethylhexyl-4-methoxycinnamate (EHMC) is one of the most common organic UV filters present in the environment. However, few studies have investigated its developmental neurotoxic (DNT) effects and the underlying molecular mechanisms. In the present study, zebrafish embryos were exposed to low concentration of EHMC (0, 0.01, 0.1, 1 mg/L) in static water starting from 6 h post-fertilization (hpf). Results showed that EHMC exposure caused a reduction in somite count at 13 hpf, a diminishment in head-trunk angle at 30 hpf, a delay in hatching at 48 hpf, and a decrease in head depth and head length at both 30 and 48 hpf. Additionally, EHMC led to abnormal motor behaviors at various developmental stages including altered spontaneous movement at both 23 and 24 hpf, and decreased touch response at 30 hpf. Consistent with these morphological changes and motor behavior deficits, EHMC inhibited axonal growth of primary motor neurons at 30 and 48 hpf, and yielded subtle changes in muscle fiber length at 48 hpf, suggesting the functional relevance of structural changes. Moreover, EHMC exposure induced excessive cell apoptosis in the head and spinal cord regions, increased the production of reactive oxygen species (ROS) and malondialdehyde (MDA), and reduced the level of glutathione (GSH). Defects of lateral line system neuromasts were also observed, but no structural deformity of blood vessels was seen in developing zebrafish. Abnormal expression of axonal growth-related genes (gap43, mbp, shha, and α1-tubulin) and apoptosis-related genes (bax/bcl-2 and caspase-3) revealed potential molecular mechanisms regarding the defective motor behaviors and aberrant phenotype. In summary, our findings indicate that EHMC induced developmental neurotoxicity in zebrafish, making it essential to assess its risks and provide warnings regarding EHMC exposure.
Collapse
Affiliation(s)
- Qinyuan Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Linxuan Tian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Weiwei Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Xiong Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Junyan Tao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
11
|
Narayanan M, Devarayan K, Verma M, Selvaraj M, Ghramh HA, Kandasamy S. Assessing the ecological impact of pesticides/herbicides on algal communities: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106851. [PMID: 38325057 DOI: 10.1016/j.aquatox.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Center for Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - Kesavan Devarayan
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Vettar River View Campus, Nagapattinam 611 002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea; Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India.
| |
Collapse
|
12
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:55-72. [PMID: 38146151 DOI: 10.1080/10937404.2023.2296897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
13
|
Lee S, Ka Y, Lee B, Lee I, Seo YE, Shin H, Kho Y, Ji K. Single and mixture toxicity evaluation of avobenzone and homosalate to male zebrafish and H295R cells. CHEMOSPHERE 2023; 343:140271. [PMID: 37758070 DOI: 10.1016/j.chemosphere.2023.140271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Avobenzone and homosalate are widely used in sunscreens to provide ultraviolet (UV) protection, either as single compounds or in combination. Some UV filters exhibit estrogenic or anti-androgenic activities, however, studies regarding their interactions and toxicity in mixtures are limited. In this study, the effect of the toxicity of a binary mixture comprising avobenzone (0.72 μg L-1) and homosalate (1.02 and 103 μg L-1) on steroid hormone biosynthesis were investigated using male zebrafish and human adrenocortical carcinoma (H295R) cells. In fish exposed to homosalate, a significant decrease in the gonadosomatic index, testosterone level, and transcription of several genes (e.g, hsd3b2, cyp17a1, and hsd17b1) and a significant increase in the hepatosomatic index, liver steatosis, 17β-estradiol level, and transcription of vtg gene were observed. These results suggest that estrogenic and anti-androgenic effects of homosalate were mediated by the steroidogenic pathway. The presence of 0.72 μg L-1 of avobenzone augmented the anti-androgenic responses in male fish. The testosterone level in the H295R cells were significantly decreased after they were exposed to homosalate alone or in combination with avobenzone, which is consistent with observations in male zebrafish. Further studies need to be conducted to understand the endocrine disrupting properties of long-term exposure to substances typically used in sunscreens.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea
| | - Yujin Ka
- Department of Environmental Health, Graduate School at Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea
| | - Bomi Lee
- Institute of Natural Science, Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea
| | - Inhye Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye Eun Seo
- Department of Food Technology & Service, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Hyewon Shin
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, Gyeonggi, 17092, Republic of Korea.
| |
Collapse
|
14
|
Moreno-Ortiz G, Aguilar L, Caamal-Monsreal C, Noreña-Barroso E, Rosas C, Rodríguez-Fuentes G. Benzophenone-3 does not Cause Oxidative Stress or B-esterase Inhibition During Embryo Development of Octopus maya (Voss and Solís Ramírez, 1966). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:60. [PMID: 37903889 PMCID: PMC10615918 DOI: 10.1007/s00128-023-03788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/12/2023] [Indexed: 11/01/2023]
Abstract
Benzophenone-3 (BP-3) is an active ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet rays. Given its worldwide dissemination, it has been linked with harmful effects on aquatic biota; however, its impact is not fully understood calling for further studies. To understand the impacts on an important economically and ecologically species, we evaluated the toxicity of BP-3 during the embryonic development of Octopus maya. Embryos were exposed to increasing concentrations of up to 500 µg BP-3/L until hatching. Antioxidant enzyme activities, oxidative-stress indicators, and B-esterases activities were measured at different developmental phases (organogenesis, activation, and growth). There were no significant differences between treatments, suggesting the lack of production of toxic metabolites that may be related to a protective chorion, an underdeveloped detoxification system, and the experimental conditions that limited phototoxicity.
Collapse
Affiliation(s)
- Gissela Moreno-Ortiz
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, México
| | - Letícia Aguilar
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Claudia Caamal-Monsreal
- Unidad Disciplinaria de Docencia e investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Elsa Noreña-Barroso
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Carlos Rosas
- Unidad Disciplinaria de Docencia e investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México.
| |
Collapse
|
15
|
Marcin S, Aleksander A. Acute toxicity assessment of nine organic UV filters using a set of biotests. Toxicol Res 2023; 39:649-667. [PMID: 37779587 PMCID: PMC10541396 DOI: 10.1007/s43188-023-00192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
UV filters in environmental compartments are a source of concern related to their ecotoxicological effects. However, little is known about UV filters' toxicity, particularly those released into the environment as mixtures. Acute toxicity of nine organic UV filters benzophenone-1, benzophenone-2, benzophenone-3, 4-methoxy benzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, 2-ethylhexyl salicylate, homosalate, and butyl methoxydibenzoylmethane was determined. UV filter solutions were tested as single, binary, and ternary mixtures of various compositions. Single solutions were tested using a set of bio tests, including tests on saline crustaceans (Artemia franciscana), freshwater crustaceans (Daphnia magna), marine bacteria (Aliivibrio fischeri), and freshwater plants (Lemna minor). The tests represent different stages of the trophic chain, and hence their overall results could be used to risk assessment concerning various water reservoirs. The toxicity of binary and ternary mixtures was analyzed using the standardized Microtox® method. Generally, organic UV filters were classified as acutely toxic. Octocrylene was the most toxic for Arthemia franciscana (LC50 = 0.55 mg L-1) and Daphnia magna (EC50 = 2.66-3.67 mg L-1). The most toxic against freshwater plants were homosalate (IC50 = 1.46 mg L-1) and octocrylene (IC50 = 1.95 mg L-1). Ethylhexyl methoxycinnamate (EC50 = 1.38-2.16 mg L-1) was the most toxic for marine bacteria. The least toxic for crustaceans and plants were benzophenone-1 (EC50 = 6.15-46.78 mg L-1) and benzophenone-2 (EC50 = 14.15-54.30 mg L-1), while 4-methoxy benzylidene camphor was the least toxic for marine bacteria (EC50 = 12.97-15.44 mg L-1). Individual species differ in their sensitivity to the tested organic UV filters. An assessment of the toxicity of mixtures indicates high and acute toxicity to marine bacteria after exposition to a binary mixture of benzophenone-2 with octocrylene, 2-ethylhexyl salicylate, or homosalate. The toxicity of mixtures was lower than single solutions predicting antagonistic interaction between chemicals. Graphical abstract
Collapse
Affiliation(s)
- Stec Marcin
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Astel Aleksander
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
16
|
Sovierzoski JCF, Severino MA, Ribas E, Gomes MF, Rocha Martins LR, Ramsdorf WA. Biomarkers activity in Oreochromis niloticus under sub-chronic exposure to a UV filters ternary mixture. CHEMOSPHERE 2023; 331:138756. [PMID: 37146775 DOI: 10.1016/j.chemosphere.2023.138756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
The behavior of organic UV filters in aquatic ecosystems and living organisms raises concern. For the first time, biochemical biomarkers were evaluated in the liver and brain of juvenile Oreochromis niloticus exposed to 0.001 and 0.5 mg L-1 of a benzophenone-3 (BP-3), octyl methoxycinnamate (EHMC), and octocrylene (OC) mixture for 29 days. Before the exposure, the stability of these UV filters was investigated using liquid chromatography. The experiment with aeration in the aquarium showed a high percentage of concentration reduction (%) after 24 h: 62 ± 2 for BP-3, 96 ± 6 for EHMC, and 88 ± 2 for OC versus 5 ± 4 for BP-3, 8 ± 7 for EHMC, and 2 ± 3 for OC when without aeration. These results defined the bioassay protocol. The stability of the filters concentrations after being stored in PET flasks and subjected to freezing and thawing cycles was also verified. In PET bottles, the BP-3, EHMC, and OC presented concentration reductions of 8 ± 1, 28 ± 7 and 25 ± 5 respectively, after 96 h storage and four freezing cycles. In falcon tubes the concentration reductions observed were 47 ± 2 for BP-3, >95 ± 1 for EHMC and 86 ± 2 for OC after 48 h and two cycles. The 29 days of sub-chronic exposure indicated the occurrence of oxidative stress through the enhanced lipid peroxidation (LPO) levels for the groups exposed to both bioassay concentrations. The catalase (CAT), glutathione-S-transferase (GST), and acetylcholinesterase (AChE) activities did not show significant alterations. The genetic adverse effects were analyzed in erythrocytes of fish exposed to 0.001 mg L-1 of the mixture by comet and micronucleus biomarkers and no significant damage was observed.
Collapse
Affiliation(s)
- Julia Caroline Freire Sovierzoski
- Graduate Program in Environmental Science and Technology, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Marcos Antonio Severino
- Undergraduate Course of Technology in Environmental Processes, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Eberton Ribas
- Graduate Program in Environmental Science and Technology, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Monike Felipe Gomes
- Graduate Program in Sciences - Biochemistry, Federal University of Paraná, Address XV de Novembro, 1299, 80060-000, Curitiba, PR, Brazil
| | - Lucia Regina Rocha Martins
- Program in Urban Environmental Sustainability, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Wanessa Algarte Ramsdorf
- Program in Urban Environmental Sustainability, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil.
| |
Collapse
|
17
|
Bonato T, Picone M, Beggio G, Vecchiato M, Feltracco M, Pivato A, Piazza R. Fragrance materials affect life history parameters and gene expression in Daphnia magna: An emerging issue for freshwater ecosystems. CHEMOSPHERE 2023; 331:138786. [PMID: 37121283 DOI: 10.1016/j.chemosphere.2023.138786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
A chronic toxicity test (21 d exposure) with the model organism Daphnia magna was performed to study the single-compound and combined effects of four fragrance materials (FMs), including musk xylene (MX), Celestolide™ (ADBI), Galaxolide™ (HHCB), and ethylene brassylate (MT). Furthermore, the transcriptional responses of ten target genes related to detoxification, molting and reproduction (DHR96, P-gp, CYP360A8, GST, CYP314, EcRb, Vtg, CAT, GPX, and GCLC) were determined by performing a quantitative real-time polymerase chain reaction (qRT‒PCR) after juvenile D. magna was exposed for 48 h. The results showed that MX, ADBI and HHCB affected development and reproduction after chronic exposure at a concentration of 10 μg L-1. Conversely, MT did not affect reproduction, growth or molting during the 21 d exposure. In juvenile D. magna, gene expression was significantly altered by ADBI (DHR96, CYP260A8, and GCLC) and MX (DHR96, CYP360A8, EcRb, Vtg, CYP314, and GCLC) but not by HHCB. These results suggest that compared to biochemical measures, conventional biological endpoints provide more informative data regarding the effects of this FM. Compared to single substances in the chronic test, the mixture of the four FMs showed effects at lower concentrations and increased gene expression for EcRb and CYP314 during juvenile exposure, indicating a possible additive or synergistic effect of the four FMs compared to single compound exposure.
Collapse
Affiliation(s)
- Tiziano Bonato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042, Este, Italy.
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Giovanni Beggio
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy; Institute of Polar Sciences of the National Research Council of Italy (ISP-CNR), Via Torino 155, 30172, Venice, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| |
Collapse
|
18
|
Boyd A, Choi J, Ren G, How ZT, El-Din MG, Tierney KB, Blewett TA. Can short-term data accurately model long-term environmental exposures? Investigating the multigenerational adaptation potential of Daphnia magna to environmental concentrations of organic ultraviolet filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130598. [PMID: 37056014 DOI: 10.1016/j.jhazmat.2022.130598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 06/19/2023]
Abstract
Organic ultraviolet filters (UVFs) are contaminants of concern, ubiquitously found in many aquatic environments due to their use in personal care products to protect against ultraviolet radiation. Research regarding the toxicity of UVFs such as avobenzone, octocrylene and oxybenzone indicate that these chemicals may pose a threat to invertebrate species; however, minimal long-term studies have been conducted to determine how these UVFs may affect continuously exposed populations. The present study modeled the effects of a 5-generation exposure of Daphnia magna to these UVFs at environmental concentrations. Avobenzone and octocrylene resulted in minor, transient decreases in reproduction and wet mass. Oxybenzone exposure resulted in > 40% mortality, 46% decreased reproduction, and 4-fold greater reproductive failure over the F0 and F1 generations; however, normal function was largely regained by the F2 generation. These results indicate that Daphnia are able to acclimate over long-term exposures to concentrations of 6.59 μg/L avobenzone, ∼0.6 μg/L octocrylene or 16.5 μg/L oxybenzone. This suggests that short-term studies indicating high toxicity may not accurately represent long-term outcomes in wild populations, adding additional complexity to risk assessment practices at a time when many regions are considering or implementing UVF bans in order to protect these most sensitive invertebrate species.
Collapse
Affiliation(s)
- Aaron Boyd
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada.
| | - Jessica Choi
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Grace Ren
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Zuo Tong How
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Keith B Tierney
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada; University of Alberta, School of Public Health, Edmonton, AB T6G 1C9, Canada
| | - Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| |
Collapse
|