1
|
Chen J, Zhuang YF, Duan W. Innovative Application of Electrokinetic Treatment on Montmorillonite Modification: Effects on pH, Current, and Swelling Properties of Ca-Montmorillonite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6675-6685. [PMID: 39846768 DOI: 10.1021/acs.langmuir.4c04697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This study evaluates the feasibility of converting Ca-montmorillonite into Na-montmorillonite through electroosmosis. Comprehensive analyses of current, pH, ζ-potential, and ethylene glycol expansion were conducted to investigate the macro- and microscale effects of electroosmosis. The results demonstrate that electroosmosis effectively reduces the swelling properties of montmorillonite. X-ray fluorescence (XRF) analysis revealed changes in the crystalline structure and interlayer charges, enabling the derivation of the chemical formula and a deeper understanding of the relationship between ζ-potential and interlayer charge.
Collapse
Affiliation(s)
- Jingyan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yan-Feng Zhuang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Duan
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Fardin AB, Jamshidi-Zanjani A, Saeedi M. A comprehensive review of soil remediation contaminated by persistent organic pollutants using electrokinetic: Challenging enhancement techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123587. [PMID: 39657472 DOI: 10.1016/j.jenvman.2024.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The hydrophobic, hard-to-naturally-decompose compounds, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides, are categorized as persistent organic pollutants (POPs). POPs are toxic/hazardous and present serious risks to human health. Electrokinetic (EK) remediation is highly flexible and cost-effective, suitable for both in-situ and ex-situ applications. It effectively targets a wide range of contaminants, including metals and organic compounds, especially in low-permeability and low-hydraulic conductivity soils, where traditional methods are less effective. This technology is easy to install and can be combined with other strategies for enhanced remediation in complex soil environments. This paper underscores EK remediation as a promising method for addressing soil pollution caused by these organic pollutants, especially in low-permeability soil. The present review starts with the classification, toxicity effects, and source of POPs in the environment. Theoretical aspects and fundamentals of EK, including transport mechanisms and principles, are also reviewed. The theoretical underpinnings of effective factors are comprehensively explored, such as surface charge, zeta potential, pHpzc, and numerical modeling of transport fluxes. Moreover, a comprehensive examination is undertaken regarding the operation and design considerations of the EK process, encompassing factors like pH, electrode arrangement, electrolyte, and voltage. Subsequently, it is highlighted that EK has the potential to come in synergistically in contact with other remediation technologies to augment the POPs' degradation. Various enhancement techniques are also explored, including solvent extraction, chemical oxidation, bioremediation, and permeable reactive barriers to combine with EK. Each method is examined in terms of its advantages, limitations, recent developments, and ongoing research. Finally, the potential and challenges associated with enhanced EK methods combined with other techniques for the removal of POPs were reviewed.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Saeedi
- University Canada West, 1461, Granville St., Vancouver, BC, V6Z 0E5, Canada
| |
Collapse
|
3
|
Gupta N, Koley A, Banerjee S, Ghosh A, Hoque RR, Balachandran S. Nanomaterial-mediated strategies for enhancing bioremediation of polycyclic aromatic hydrocarbons: A systematic review. HYBRID ADVANCES 2024; 7:None. [PMID: 39758813 PMCID: PMC11698305 DOI: 10.1016/j.hybadv.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in the environment that are formed as an outcome of partial combustion of organic matter. PAHs pose a significant threat to ecological systems and human health due to their cytotoxic and genotoxic effects. Therefore, an immediate need for effective PAH remediation methods is crucial. Although nanomaterials are effective for remediation of PAHs, concerns regarding environmental compatibility and sustainability remains. Therefore, this study emphasizes integration of nanomaterials with bioremediation methods, which might offer a more sustainable and ecofriendly approach to PAHs remediation. A systematic search was conducted through scholarly databases from 2013 to 2023. A total of 360 articles were scrutinized, among which 26 articles were selected that resonated with the application of nano-bioremediation. These literatures comprise both comparative analysis of bioremediation only as well as nano-bioremediation. There is an elevation of 18.9 % in PAHs removal of liquid-phase samples, when comparing bioremediation (52.2 %) with nano-bioremediation (71.1 %). A consistent trend was observed in soil samples, with bioremediation and nano-bioremediation that successfully remove PAHs, with 60.8 % and 75.1 % respectively, indicating a 14.3 % improvement. Furthermore, the review elaborated on the various features of nanomaterials that led to their efficiency in the bioremediation of PAH. The review also discussed the strategies of nano-bioremediation namely nanomaterial-assisted microbial degradation, nanomaterial-assisted enzyme-enhanced microbial activity, nanomaterial-immobilized microbial cells, nanomaterial-facilitated electron transfer, and even some eco-green approaches to remediate PAHs, like biogenic nanomaterial for PAHs.
Collapse
Affiliation(s)
- Nitu Gupta
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Apurba Koley
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Sandipan Banerjee
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 165 00, Czech Republic
| | - Anudeb Ghosh
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | | |
Collapse
|
4
|
Ashkanani Z, Mohtar R, Al-Enezi S, Smith PK, Calabrese S, Ma X, Abdullah M. AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133813. [PMID: 38402679 DOI: 10.1016/j.jhazmat.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.
Collapse
Affiliation(s)
- Zainab Ashkanani
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Rabi Mohtar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salah Al-Enezi
- Petroleum Research Center, Kuwait Institute for Scientific Research, Al-Ahmadi, Kuwait
| | - Patricia K Smith
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Meshal Abdullah
- Sultan Qaboos University, College of Arts & Social Sciences. Al-Khoud, Sultanate of Oman
| |
Collapse
|
5
|
Zhang Y, Zang L, Zhao Y, Wei Q, Han J. Removal of Pb from Contaminated Kaolin by Pulsed Electrochemical Treatment Coupled with a Permeable Reactive Barrier: Tuning Removal Efficiency and Energy Consumption. TOXICS 2023; 11:961. [PMID: 38133362 PMCID: PMC10747039 DOI: 10.3390/toxics11120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Lead contamination in soil has emerged as a significant environmental concern. Recently, pulse electrochemical treatment (PECT) has garnered substantial attention as an effective method for mitigating lead ions in low-permeability soils. However, the impact of varying pulse time gradients, ranging from seconds to hours, under the same pulse duty cycle on lead removal efficiency (LRE) and energy consumption in PECT has not been thoroughly investigated. In this study, a novel, modified PECT method is proposed, which couples PECT with a permeable reaction barrier (PRB) and adds acetic acid to the catholyte. A comprehensive analysis of LRE and energy consumption is conducted by transforming pulse time. The results show that the LREs achieved in these experiments were as follows: PCb-3 s (89.5%), PCb-1 m (91%), PCb-30 m (92.9%), and PCb-6 h (91.9%). Importantly, these experiments resulted in significant reductions in energy consumption, with decreases of 68.5%, 64.9%, 51.8%, and 47.4% compared to constant voltage treatments, respectively. It was observed that LRE improved with an increase in both pulse duration and voltage gradient, albeit with a corresponding rise in energy consumption. The results also revealed that corn straw biochar as a PRB could enhance LRE by 6.1% while adsorbing migrating lead ions. Taken together, the present data highlights the potential of modified PECT technology for remediation of lead-contaminated soil, which provides an optimal approach to achieve high LRE while minimizing energy consumption.
Collapse
Affiliation(s)
| | - Libin Zang
- College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China; (Y.Z.); (J.H.)
| | | | | | | |
Collapse
|
6
|
Henrique JMM, Isidro J, Saez C, Lopez-Vizcaíno R, Yustres A, Navarro V, Dos Santos EV, Rodrigo MA. Combining Soil Vapor Extraction and Electrokinetics for the Removal of Hexachlorocyclohexanes from Soil. Chemistry 2022; 12:e202200022. [PMID: 35876395 PMCID: PMC10152886 DOI: 10.1002/open.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Indexed: 11/10/2022]
Abstract
This paper focuses on the evaluation of the mobility of four hexachlorocyclohexane (HCH) isomers by soil vapor extraction (SVE) coupled with direct electrokinetic (EK) treatment without adding flushing fluids. SVE was found to be very efficient and remove nearly 70 % of the four HCH in the 15-days of the tests. The application of electrokinetics produced the transport of HCH to the cathode by different electrochemical processes, which were satisfactorily modelled with a 1-D transport equation. The increase in the electric field led to an increase in the transport of pollutants, although 15 days was found to be a very short time for an efficient transportation of the pollutants to the nearness of the cathode. Loss of water content in the vicinity of the cathode warns about the necessity of using electrokinetic flushing technologies instead of simple direct electrokinetics. Thus, results point out that direct electrokinetic treatment without adding flushing fluids produced low current intensities and ohmic heating that contributes negatively to the performance of the SVE process. No relevant differences were found among the removal of the four isomers, neither in SVE nor in EK processes.
Collapse
Affiliation(s)
- João M M Henrique
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil.,Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Julia Isidro
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Cristina Saez
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Rúben Lopez-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Angel Yustres
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Elisama V Dos Santos
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil
| | - Manuel A Rodrigo
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
7
|
A Network Model for Electroosmotic and Pressure-Driven Flow in Porous Microfluidic Channels. MATHEMATICS 2022. [DOI: 10.3390/math10132301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, the network simulation method is presented as a tool for the numerical resolution of the electroosmotic and pressure-driven flow problem in microchannels with rectangular and cylindrical geometries. Based on the Brinkman equation for steady flow and constant porosity, the network model is designed using spatial discretization. An equivalent electrical circuit is obtained by establishing an analogy between the physical variable fluid velocity and electric potential. The network model is solved quickly and easily employing an electrical circuit resolution code, providing solutions for the velocity profile in the channel cross-section and the total circulating flow. After simulating two practical cases, the suitability of the grid is discussed, relating the relative errors made in the variables of interest with the number of cells used. Finally, two other applications, one for rectangular geometries and the other for cylindrical channels, show the effects the main parameters controlling the flow in these types of channels have on velocities and total flow: the zeta potential of the soil pores, applied potential and pressure gradients, and the boundary condition modified by the zeta potential in the walls of the channel.
Collapse
|
8
|
Zhang J, Sun Y, Zhang H, Cao X, Wang H, Li X. Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal. ENVIRONMENTAL RESEARCH 2021; 198:111217. [PMID: 33974843 DOI: 10.1016/j.envres.2021.111217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Microbial fuel cells (MFCs) with different electrode configurations were constructed to study the mechanism of influence of multiple current paths on their electrical performance and the removal of heavy metals in soil. Three types of MFCs were constructed, namely, double anode-single cathode (DASC), single anode-dual cathode (SADC), and single anode-single cathode (SASC). The total electricity generation of the three kinds of MFC was similar: 143.44 × 10-3 mW, 114.90 × 10-3 mW, and 132.50 × 10-3 mW, respectively. However, the maximum voltage and cathode current density produced by a single current path differed significantly. The corresponding values were 0.27, 0.23, and 0.42 V and 0.130, 0.122, and 0.096 A/m 2, respectively. The SASC had the best electricity generation performance. Based on a limited reduction rate of oxygen at the cathode, the accumulation of cathode electrons was facilitated by the construction of multiple current paths in the MFC, which significantly increased the cathode electron transfer resistance and limited the electricity generation performance of the MFC. However, at the same time, the construction of multiple current paths promoted output of more electrons in the anode, reducing the retention of anode electrons and anode electron transfer resistance. The heavy metal removal efficiencies of SASC, DASC, and SADC were 2.68, 2.18, and 1.70 times that of the open circuit group, respectively. The migration of heavy metals in the soil depended mainly on the internal electric field intensity of the MFC rather than the total electricity generation. As the internal electric field intensity increased, the removal efficiency of heavy metals in the MFC increased.
Collapse
Affiliation(s)
- Jingran Zhang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Yilun Sun
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Haochi Zhang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai, 980-8579, Japan.
| | - Hui Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; School of Municipal Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
9
|
Betremieux M, Mamindy-Pajany Y. Investigation of a biosurfactant-enhanced electrokinetic method and its effect on the potentially toxic trace elements in waterways sediments. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-18. [PMID: 34044748 DOI: 10.1080/09593330.2021.1936202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
In this study, the biosurfactant-enhanced electrokinetic method was investigated for the removal of potentially toxic trace elements (As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, Sb, Se and Zn) in waterways sediments. The effect of this method was compared to the removal capacities of deionized water in the same conditions in order to assess its efficiency. After treatment, batch leaching tests have shown that almost toxic elements (As: 81.3%; Ba: 80%; Cr: 97.3%; Cu: 82%; Zn: 94.5%; Mo: 13.8%; Ni: 62.7%; Se: 66.8% and Sb: 9.3%) were less released in waters. On the whole sediment samples, Ba and Cd displayed the highest removal rates (Ba: 71.2% and Cd: 77.5%). The use of biosurfactant enhanced the electrokinetic method by improving the trace elements migration and altering pH and Eh locally generated by the system. Overall, the application of this new approach dredged sediments seems to be promising but needed further investigations for industrial applications.
Collapse
Affiliation(s)
- Mathilde Betremieux
- Univ. Lille, Univ. Artois, IMT Lille Douai, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement Lille, France
| | - Yannick Mamindy-Pajany
- Univ. Lille, Univ. Artois, IMT Lille Douai, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement Lille, France
| |
Collapse
|
10
|
Li H, Zheng Y, Yu L, Lin H, Zhang M, Jiao B, Shiau Y, Li D. Efficient electrokinetic remediation of heavy metals from MSWI fly ash using approaching anode integrated with permeable reactive barrier. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22156-22169. [PMID: 33417130 DOI: 10.1007/s11356-021-12340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
During electrokinetic remediation (EKR) of heavy metals (HMs) (Pb, Zn, Cu, and Cd) from municipal solid waste incineration (MSWI) fly ash enhanced by a permeable reactive barrier (PRB), the nearer to the anode, the higher the concentration of H+ ions and the greater the remediation effect. Therefore, a potentially new method of PRB-enhanced EKR using an approaching anode (A-EKR + PRB) was studied to help H+ ions to quickly migrate to the sample near the cathode. Consequently, the HM leaching and total concentrations were reduced, while an energy reduction of nearly 40% was achieved. The results showed that the best remediation ability was obtained when MSWI fly ash was treated for 16 days at a voltage gradient of 2.5 V/cm, the approaching anode was moved after 4 days, and the PRB contained 10 g of activated carbon. After remediation, the environmental risk analysis showed that A-EKR + PRB reduced all the fractions of HMs, especially the acid extractable and oxidizable fractions, which might have been due to the enhancement of acid dissolution and oxidation by the approaching anode. In addition, the environmental risks of the remaining HMs were reduced, and the results indicated that A-EKR + PRB is an advisable choice for remediation of MSWI fly ash.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Lin Yu
- City College of Science and Technology, Chongqing University, Chongqing, 400044, China
| | - Huirong Lin
- National and Local Joint Engineering Research Center for Hazardous Waste Integrated Disposal, Chongqing, 401147, China
| | - Manli Zhang
- Chongqing Solid Waste Management Center, Chongqing, 401147, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- City College of Science and Technology, Chongqing University, Chongqing, 400044, China.
| | - YanChyuan Shiau
- Department of Construction Management, Chung Hua University, No. 707, Wufu Rd., Sec. 2, Hsinchu, 30012, Taiwan.
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
11
|
Zhang J, Huang S, Gao X, Wang H, Cao X, Li X. Influence mechanism of heavy metal removal under microcurrent action. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Ayyanar A, Thatikonda S. Experimental and Numerical studies on remediation of mixed metal-contaminated sediments by electrokinetics focusing on fractionation changes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:316. [PMID: 33931801 DOI: 10.1007/s10661-021-09064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Electrokinetic remediation technique is widely applied for the removal of heavy metal from contaminated soil, but the soil buffering capacity and fractionation of heavy metals mainly affect the cost and duration of the treatment. This study aims to treat heavy metal-contaminated sediments by electrokinetic remediation (EKR) technique by using various enhancing agents such as EDTA, [Formula: see text], HCI, [Formula: see text], acetic acid and citric acid for optimizing the cost and treatment duration. The optimum molar concentration of enhancing agent for treatment was estimated by batch experiments to maximize the dissolution of target heavy metals and reduce the dissolution of earth metals (Fe, Al and Ca) to maintain soil health. The EKR experiments were performed up to 15 days with the above enhancing agents to reduce the risk associated with heavy metals and the selection of enhancing agents based on removal efficiency was found to be in an order of EDTA > citric acid > acetic acid > [Formula: see text] > HCl [Formula: see text] [Formula: see text]. Also, a numerical model has been developed by incorporating main electrokinetic transport phenomena (electromigration and electroosmosis) and geochemical processes for the prediction of treatment duration and to scale up the EKR process. The model predicts well with experimental heavy metal removal with a MAPD of [Formula: see text] 2-18 %. The parametric study on electrode distance for full-scale EKR treatment was found in this study as [Formula: see text] 0.5 m.
Collapse
Affiliation(s)
- Arulpoomalai Ayyanar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
13
|
Asadollahfardi G, Sarmadi MS, Rezaee M, Khodadadi-Darban A, Yazdani M, Paz-Garcia JM. Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111728. [PMID: 33310346 DOI: 10.1016/j.jenvman.2020.111728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/15/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to investigate the feasibility of Electrokinetic Remediation to remove lead and zinc from real mine tailings, collected from the Lacan's lead and zinc Mineralized Flotation Processing Plant (Markazi province, Iran). High buffering capacity, high organic matter, and heavy metal contamination were the unique characteristics of this mine tailing. Electrokinetic remediation of the mine tailings was carried out in 11 separate experiments under constant voltage gradient of 2 V/cm for 9 days. Various enhancement techniques were tested, such as 1) electrolyte conditioning using chelating agents including ethylenediaminetetraacetic acid, citric acid, acetic acid, and hydrochloric acid; 2) increasing the concentration of the catholyte solution, and 3) adding chelating agents to the soil as a pre-treatment of the tailings and the electrolyte condoning simultaneously. The concentration of each electrolyte solution was selected based on the different extraction tests that resulted in the optimal or highest extraction percentage of lead and zinc. Electrolyte conditioning, in the case of using citric acid 1 M enhanced the removal of Pb and Zn dramatically. Catholyte conditioning, using citric acid 1 M, was the most effective enhancement technique for removing Zn (38.34%); also, the best removal efficiency of Pb (51.31%) was achieved using the same electrolyte solution in both electrode chambers. Increasing the acetic acid concentration was favorable for removal of both heavy metals. Compared to catholyte conditioning, pre-treatment coupled with catholyte conditioning could not improve the removal efficiency considerably.
Collapse
Affiliation(s)
| | - Mohammad Sina Sarmadi
- Faculty of Engineering, Department of Civil Engineering, Kharazmi University, Tehran, Iran.
| | - Milad Rezaee
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada.
| | - Ahmad Khodadadi-Darban
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mahdie Yazdani
- Faculty of Engineering, Department of Civil Engineering, Kharazmi University, Tehran, Iran.
| | | |
Collapse
|
14
|
Pourfadakari S, Jorfi S, Roudbari A, Javid A, Talebi SS, Ghadiri SK, Yousefi N. Optimization of electro-kinetic process for remediation of soil contaminated with phenanthrene using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1006-1017. [PMID: 32829432 DOI: 10.1007/s11356-020-10495-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The objective of this work was to investigate the modification of soil contaminated with phenanthrene (PHE) by electro-kinetic remediation (EKR) process using response surface methodology (RSM). The soil sample was obtained from the subgrades (0-30 cm) of an area close to Shahroud City, Northeast of Iran. The effect of variables such as initial pH, voltage, electrolyte concentration, and reaction time on PHE removal was studied. Based on the results obtained from the central composite design (CCD) experiment, the highest and lowest amount of PHE removal was 97 and 20%, respectively. In this study, the variables A, B, C, AB, AC, and C2 with a p value < 0.05 were significant model terms and the parameter of the lack of fit was not significant (p value = 0.0745). Findings indicated that the "predicted R-squared" of 0.9670 was in reasonable agreement with the "adj R-squared" of 0.9857 and the plot of residual followed a normal distribution and approximately linear. Also, the kinetic rates of the removal PHE by the EKR process best fitted with a first-order kinetic model (R2: 0.926). Results of the investigation of the effective variables showed that in values of pH 3, time of 168 h, voltage of 3 V, and electrolyte concentration of 4 mg/L, the removal efficiency of PHE reached 96.6%. Graphical abstract.
Collapse
Affiliation(s)
- Sudabeh Pourfadakari
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sahand Jorfi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health,Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Liu B, Li G, Mumford KG, Kueper BH, Zhang F. Low permeability zone remediation of trichloroethene via coupling electrokinetic migration with in situ electrochemical hydrodechlorination. CHEMOSPHERE 2020; 250:126209. [PMID: 32113096 DOI: 10.1016/j.chemosphere.2020.126209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/19/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
To address the challenge of trichloroethene (TCE) remediation in low permeability zone, an inexpensive Cu-Ni bimetallic cathode was proposed in electrokinetic (EK) remediation system to couple electrokinetic migration with in situ electrochemical hydrodechlorination. Aqueous phase TCE was originally added into the anolyte so that breakthrough curves through the low permeability porous soil compartment could be obtained to better understand TCE migration driven by electroosmosis flow using different cathodes. The Cu-Ni cathode resulted in more TCE migration of 7.64 mg compared to that of 5.99 mg with Ni and 4.22 mg with mixed metal oxide (MMO) cathode, suggesting that the Cu-Ni cathode was capable of driving more TCE flux out of the contaminated soil. With the Cu-Ni cathode, 98.4% of TCE flux that reached the cathode was electrochemically reduced on the cathode, which was much higher than that with MMO cathode (77.9%) or Ni cathode (59.6%). TCE mass that was transported by electroosmosis flow increased from 2.04 to 6.68 mg when the voltage gradient increased from 1 to 4 V cm-1, with the normalized energy consumption increasing from 0.06 to 0.16 kWh kg-1 per unit water movement, and from 0.54 to 2.55 kWh g-1 per unit TCE transport. For TCE that did reach the cathode compartment, > 98% degradation maintained at the Cu-Ni cathode with various voltage gradients. The coupled electrokinetic and electrochemical hydrodechlorination technology appears to be a promising strategy for the remediation of low permeability porous media.
Collapse
Affiliation(s)
- Bo Liu
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Kevin G Mumford
- Department of Civil Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Bernard H Kueper
- Department of Civil Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China.
| |
Collapse
|
16
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|
17
|
Ma Q, Li J, Lee CCC, Long X, Liu Y, Wu QT. Combining potassium chloride leaching with vertical electrokinetics to remediate cadmium-contaminated soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2081-2091. [PMID: 30838487 DOI: 10.1007/s10653-019-00259-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the feasibility of combining potassium chloride (KCl) leaching and electrokinetic (EK) treatment for the remediation of cadmium (Cd) and other metals from contaminated soils. KCl leaching was compared at three concentrations (0.2%, 0.5%, and 1% KCl). EK treatment was conducted separately to migrate the metals in the topsoil to the subsoil. The combined approach using KCl leaching before or after EK treatment was compared. For the single vertical EK treatment, the removal of Cd, lead (Pb), copper (Cu) and zinc (Zn) from the topsoil (0-20 cm) was 9.38%, 4.80%, 0.95%, and 10.81%, respectively. KCl leaching at 1% KCl removed 84.06% Cd, 9.95% Pb, 4.34% Cu, and 19.93% Zn from the topsoil, with higher removal efficiency than that of the 0.2% and 0.5% KCl leaching treatments. By combining the KCl leaching and EK treatment, the removal efficiency of heavy metals improved, in particular for the 1% KCl + EK treatment, where the removal rate of Cd, Pb, Cu, and Zn from the upper surface soil reached 97.79%, 17.69%, 14.37%, and 41.96%, respectively. Correspondingly, the soil Cd content decreased from 4 to 0.21 mg/kg, and was below the Chinese standard limit of 0.3 mg/kg soil. These results indicate that 1% KCl + EK treatment is a good combination technique to mitigate Cd pollution from contaminated soils used for growing rice and leafy vegetables.
Collapse
Affiliation(s)
- Qiang Ma
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Li
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Charles C C Lee
- School of Environmental and Life Sciences, University of Newcastle (Australia) Singapore, 6 Temasek Blvd, Singapore, 038986, Singapore
| | - Xinxian Long
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yongmao Liu
- Inner Mongolia Research Institute of Metallurgy, Hohhot, 010010, China
| | - Qi-Tang Wu
- Key Laboratory on Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Hung CH, Yuan C, Wu MH, Chang YC. Electrochemical degradation of ibuprofen-contaminated soils over Fe/Al oxidation electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1205-1213. [PMID: 30021285 DOI: 10.1016/j.scitotenv.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Ibuprofen (IBP) is one of the most known non-steroidal anti-inflammatory drugs. Due to the high consumption and the several ways of discharge, both the aquifer and soil matrix were contaminated by IBP. This study examined the degradation of the IBP in a soil matrix over Fe/Al oxidation electrodes in an electrokinetic system with processing fluids of sodium dodecylsulfate (SDS). The preparation of the Fe/Al oxidation electrode was carried out at a calcination temperature of 500, 550, and 600 °C, which accounted for Fe3+ coating rate of 3.89 ± 0.03%, 4.62 ± 0.04%, and 4.72 ± 0.04%, respectively. Results indicated the generation of hydroxyl radical was proportional to the coating rate of Fe3+ on the electrode. A 200 mg kg-1 of IBP-spiked soil sample was conducted in an electrokinetic system under a potential gradient of 2 V cm-1. The experimental parameters included electrode area of 11-33 cm2 and treatment time of 5-9 days. The remediation efficiency of IBP in the EK systems coupled with Fe/Al oxidation electrode was 70.1-94.6%, which was highly dependent on H2O2 addition, electrode area, and treatment time. Both addition of H2O2 and prolonging treatment time significantly enhanced the degradation of IBP. Whereas increasing electrode area was only favorable for removal mechanism of IBP. Five reaction mechanisms were clearly provided in this study. The aluminum plays an electron donner to trigger Fenton-like reaction continuously to produce hydroxyl radicals. This study confirmed that the electrokinetic process coupled with Fe/Al oxidation electrodes is a viable technique for the remediation of IBP-contaminated soil. Make good use of redox characteristic of aluminum to trigger the Fenton-like reaction in Fe2+-rich environment is a great success in this study. The use of Fe/Al electrodes effectively expands the application of electrochemical degradation in soil remediation.
Collapse
Affiliation(s)
- Chung-Hsuang Hung
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, No. 1, University Rd., Yenchau Dist., Kaohsiung 824, Taiwan.
| | - Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Rd, Nan-Tzu Dist., Kaohsiung City 811, Taiwan.
| | - Min-Hao Wu
- Department of Civil and Environmental Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Rd, Nan-Tzu Dist., Kaohsiung City 811, Taiwan.
| | - Yung-Chuan Chang
- CENPRO Technology Co. Ltd., 8F, No. 286-8, Shin-Ya Rd., Chien-Chen Division, Kaohsiung City 806, Taiwan.
| |
Collapse
|
19
|
Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:309-321. [PMID: 29689534 DOI: 10.1016/j.jenvman.2018.04.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit.
Collapse
Affiliation(s)
- Bimastyaji Surya Ramadan
- Faculty of Environmental Engineering, Institut Teknologi Yogyakarta, Yogyakarta, 55171, Indonesia.
| | - Gina Lova Sari
- Faculty of Engineering, Universitas Singaperbangsa, Karawang, 41361, Indonesia.
| | | | - Agus Jatnika Effendi
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| |
Collapse
|
20
|
Qiao W, Ye S, Wu J, Zhang M. Surfactant-Enhanced Electroosmotic Flushing in a Trichlorobenzene Contaminated Clayey Soil. GROUND WATER 2018; 56:673-679. [PMID: 29320601 DOI: 10.1111/gwat.12631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Remediation of the sites contaminated with organic contaminants, such as chlorobenzenes, remains a challenging issue. Electroosmotic flushing can be a promising approach which is based on mechanism of electrokinetic remediation for removal of organic contaminants from fluids in low-permeability soil. To select an optimum surfactant that can effectively enhance electroosmotic flushing, three common surfactants, Triton X-100 (EK2), Tween 80 (EK3), and a mixture of sodium dodecyl sulfate and Triton X-100 (EK4) buffered with Na2 HPO4 /NaH2 PO4 solution, were tested. The efficiency of each kind of surfactant was evaluated using a three-dimensional box filled with a clayey soil spiked with 1,2,4-trichlorobenzene, and compared with a test (EK1) without surfactant. The results demonstrated that the buffer solutions efficiently neutralized H+ and OH- produced by electrolysis. EK3 with Tween 80 added in the flushing solution reached the highest electroosmotic permeability of 10-4 cm2 /v/s and achieved a notably high cumulative electroosmotic flow (EOF) of 5067 mL within 6 d, which was 6.3, 3.4, and 4.2 times higher than that in EK1, EK2, and EK4, respectively. There were 420 mL more cumulative EOF obtained after 50 h of electrical application in EK4 than in EK2. The introduction of nonreactive ions can increase the current, thereby benefiting the EOF. Both the higher pH caused by the buffer and the application of nonionic surfactants can make the zeta potential more negative, thereby increasing the EOF. Tween 80 can be recommended as the best flushing solution for removing organic contaminants from sites when electrokinetic remediation is applied.
Collapse
Affiliation(s)
- Wenjing Qiao
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | | | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Ming Zhang
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| |
Collapse
|
21
|
Yan Y, Xue F, Muhammad F, Yu L, Xu F, Jiao B, Shiau Y, Li D. Application of iron-loaded activated carbon electrodes for electrokinetic remediation of chromium-contaminated soil in a three-dimensional electrode system. Sci Rep 2018; 8:5753. [PMID: 29636517 PMCID: PMC5893631 DOI: 10.1038/s41598-018-24138-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/19/2018] [Indexed: 11/09/2022] Open
Abstract
Hexavalent chromium from industrial residues is highly mobile in soil and can lead to the contamination of groundwater through runoff and leaching after rainfall. This paper focuses on the three-dimensional (3D) electrokinetic remediation (EKR) of chromium-contaminated soil from an industrial site. Activated carbon particles coupled with Fe ions (AC-Fe) were used as the third electrode. The optimum dose ratio of the electrode particles and remediation time were selected on the basis of single-factor experiments. X-ray photoelectron spectroscopy (XPS) analysis was carried out to explore the reduction of Cr(VI) on the surface of the electrode particles (AC-Fe). The results showed that AC-Fe had a positive effect on Cr(VI) reduction with a removal rate of 80.2%, which was achieved after 10 d by using a 5% dose of electrode particles. Finally, it was concluded that the removal mechanism combined the processes of electromigration, electrosorption/adsorption and reduction of Cr(VI) in the 3D EKR system.
Collapse
Affiliation(s)
- Yujie Yan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Fengjiao Xue
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Faheem Muhammad
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Lin Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.,City College of Science and Technology, Chongqing University, Chongqing, 400044, China
| | - Feng Xu
- Chongqing Solid Waste Management Center, Chongqing, 400044, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China. .,City College of Science and Technology, Chongqing University, Chongqing, 400044, China.
| | - YanChyuan Shiau
- Dept. of Construction Management, Chung Hua University, No. 707, Wufu Rd., Sec. 2, Hsinchu, 30012, Taiwan.
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|