1
|
Sandu T, Chiriac AL, Zaharia A, Iordache TV, Sarbu A. New Trends in Preparation and Use of Hydrogels for Water Treatment. Gels 2025; 11:238. [PMID: 40277674 PMCID: PMC12026611 DOI: 10.3390/gels11040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogel-based wastewater treatment technologies show certain outstanding features, which include exceptional efficiency, sustainability, reusability, and the precise targeting of specific contaminants. Moreover, it becomes possible to minimize the environmental impact when using these materials. Their flexibility, low energy consumption, and adaptability to meet specific requirements for different purposes offer significant advantages over traditional methods like activated carbon filtration, membrane filtration, and chemical treatments. Recent advancements in hydrogel technology, including new production methods and hybrid materials, enhance their ability to efficiently adsorb contaminants without altering their biocompatibility and biodegradability. Therefore, innovative materials that are ideal for sustainable water purification were developed. However, these materials also suffer from several limitations, mostly regarding the scalability, long-term stability in real-world systems, and the need for precise functionalization. Therefore, overcoming these issues remains a challenge. Additionally, improving the efficiency and cost-effectiveness of regeneration methods is essential for their practical use. Finally, assessing the environmental impact of hydrogel production, use, and disposal is crucial to ensure these technologies are beneficial in the long run. This review summarizes recent advancements in developing polymer-based hydrogels for wastewater treatment by adsorption processes to help us understand the progress made during recent years. In particular, the studies presented within this work are compared from the point of view of the synthesis method, raw materials used such as synthetic/natural or hybrid networks, and the targeted class of pollutants-dyes or heavy metal ions. In several sections of this paper, discussions regarding the most important properties of the newly emerged adsorbents, e.g., kinetics, the adsorption capacity, and reusability, are also discussed.
Collapse
Affiliation(s)
| | | | | | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (T.S.); (A.-L.C.); (A.Z.)
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (T.S.); (A.-L.C.); (A.Z.)
| |
Collapse
|
2
|
Huang Y, Wu L, Chang L, Peng W, Wang W, Cao Y. Sodium alginate-crosslinked montmorillonite nanosheets hydrogel for efficient gallium recovery. Int J Biol Macromol 2025; 295:139474. [PMID: 39778854 DOI: 10.1016/j.ijbiomac.2025.139474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
An efficient adsorbent for Ga(III) recovery was developed by applying the geochemical principles of Ga mineralization, using Al-rich clay minerals with a natural affinity for Ga as the raw material. Sodium alginate (SA) facilitated the cross-linked assembly of montmorillonite nanosheets (MMTNS), forming a three-dimensional structured hydrogel. This was achieved through electrostatic interactions between -OH groups on the edges of MMTNS and -COO- groups in SA, as well as the complexation of Ca2+ and -COO- groups. The resulting hydrogel maintained a porous structure while preserving the layered arrangement of MMTNS, significantly enhancing the adsorption capacity for Ga(III). Thermodynamic analysis revealed that Ga(III) adsorption was both endothermic and spontaneous. The Elovich model indicated that heterogeneous chemisorption dominated the adsorption process. Ga(III) adsorption followed the Langmuir isotherm model, indicating that it was controlled by specific binding sites and occurred via uniform monolayer adsorption, with a maximum capacity of 85.95 mg/g. The adsorption mechanism involved ion exchange interactions, chelation of functional groups, and electrostatic interactions. After 4 cycles, the hydrogel retained an adsorption capacity of 65.4 mg/g. Additionally, the hydrogel demonstrated good selectivity for Ga(III) in a quaternary ion solution system. This hydrogel shows significant potential as a candidate for Ga(III) recovery.
Collapse
Affiliation(s)
- Yan Huang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China
| | - Liming Wu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China
| | - Lin Chang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China
| | - Weijun Peng
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China
| | - Wei Wang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China.
| | - Yijun Cao
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, PR China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Luoyang Industrial Technology Institute, Luoyang, Henan 471132, PR China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
3
|
Sarioz N, Isik B, Cakar F, Cankurtaran O. Valorization of the performance of novel and natural sodium alginate/pectin/Portulaca oleracea L. ternary composites in the adsorption of toxic methylene blue dye from the aquatic environment. Int J Biol Macromol 2024; 282:136867. [PMID: 39490849 DOI: 10.1016/j.ijbiomac.2024.136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
This research introduces the development of a novel, sustainable, cost-effective, and eco-friendly sodium alginate (SA)-pectin (P) ternary composite, enhanced with Portulaca oleracea L. (PO) additive, which has been thoroughly investigated for its efficacy in removing hazardous methylene blue (MB) dye from wastewater. The selectivity studies using various cationic and anionic dyes were conducted. The composite microbeads that were generated underwent characterization using FTIR-ATR, SEM, XRD, zeta potential, and pHpzc analysis. Subsequently, the most favorable parameters for adsorption, including initial pH (2-12), contact time (0-180 min), adsorbent dosage (0.01-0.20 g), and temperature (298-318 K), were identified. The effect of monovalent and divalent salt concentrations on adsorption process was evaluated. The adsorption data were utilized in several isotherm (Langmuir, Freundlich, D-R, and Temkin) and kinetic (pseudo-first-order and pseudo-second-order) models. According to the Langmuir isotherm model was calculated the adsorption capacity at 298 K is 709.22 mg/g for SA/P/PO30 composite microbeads. The process of adsorption was seen to conform to a pseudo-second-order kinetic model. The results revealed that the process was both exothermic (∆Ho=-10.42kJ/mol) and spontaneous (∆Go=-26.04kJ/molat298K). Moreover, reusability analyses demonstrated that the composite microbeads that were created may be utilized several times, even after the 5th cycle. The results indicate that the developed composite microbeads have the potential to serve as an effective and inexpensive adsorbent for eliminating cationic contaminants from a wastewater.
Collapse
Affiliation(s)
- Neslihan Sarioz
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Fatih Cakar
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Ozlem Cankurtaran
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.
| |
Collapse
|
4
|
Hemdan M, Ragab AH, Gumaah NF, Mubarak MF. Sodium alginate-encapsulated nano-iron oxide coupled with copper-based MOFs (Cu-BTC@Alg/Fe 3O 4): Versatile composites for eco-friendly and effective elimination of Rhodamine B dye in wastewater purification. Int J Biol Macromol 2024; 274:133498. [PMID: 38944086 DOI: 10.1016/j.ijbiomac.2024.133498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
This study explores the effectiveness of Alginate-coated nano‑iron oxide combined with copper-based MOFs (Cu-BTC@Alg/Fe3O4) composites for the sustainable and efficient removal of Rhodamine B (RhB) dye from wastewater through adsorption and photocatalysis. Utilizing various characterization techniques such as FTIR, XRD, SEM, and TEM, we confirmed the optimal synthesis of this composite. The composites exhibit a significant surface area of approximately 160 m2 g-1, as revealed by BET analysis, resulting in an impressive adsorption capacity of 200 mg g-1 and a removal efficiency of 97 %. Moreover, their photocatalytic activity is highly effective, producing environmentally friendly degradation byproducts, thus underlining the sustainability of Cu-BTC@Alg/Fe3O4 composites in dye removal applications. Our investigation delves into kinetics and thermodynamics, revealing a complex adsorption mechanism influenced by both chemisorption and physisorption. Notably, the adsorption kinetics indicate equilibrium attainment within 100 min across all initial concentrations, with the pseudo-second-order kinetic model fitting the data best (R2 ≈ 0.999). Furthermore, adsorption isotherm models, including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich, elucidate the adsorption behavior, with the Temkin and Dubinin-Radushkevich models showing superior accuracy compared to the Langmuir model (R2 ≈ 0.98 and R2 ≈ 0.96, respectively). Additionally, thermodynamic analysis reveals a negative Gibbs free energy value (-6.40 kJ mol-1), indicating the spontaneity of the adsorption process, along with positive enthalpy (+24.3 kJ mol-1) and entropy (+82.06 kJ mol-1 K) values, suggesting an endothermic and disorderly process at the interface. Our comprehensive investigation provides insights into the optimal conditions for RhB adsorption onto Cu-BTC@Alg/Fe3O4 composites, highlighting their potential in wastewater treatment applications.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed H Ragab
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia.
| | - Najla F Gumaah
- Chemistry Department, Faculty of Science, Northern Border University, Saudi Arabia
| | - Mahmoud F Mubarak
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt; Core Lab Center, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor st., Nasr City, Cairo 11727, Egypt.
| |
Collapse
|
5
|
Wang Y, Wang C, Feng R, Li Y, Zhang Z, Guo S. A review of passive acid mine drainage treatment by PRB and LPB: From design, testing, to construction. ENVIRONMENTAL RESEARCH 2024; 251:118545. [PMID: 38431067 DOI: 10.1016/j.envres.2024.118545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
An extensive volume of acid mine drainage (AMD) generated throughout the mining process has been widely regarded as one of the most catastrophic environmental problems. Surface water and groundwater impacted by pollution exhibit extreme low pH values and elevated sulfate and metal/metalloid concentrations, posing a serious threat to the production efficiency of enterprises, domestic water safety, and the ecological health of the basin. Over the recent years, a plethora of techniques has been developed to address the issue of AMD, encompassing nanofiltration membranes, lime neutralization, and carrier-microencapsulation. Nonetheless, these approaches often come with substantial financial implications and exhibit restricted long-term sustainability. Among the array of choices, the permeable reactive barrier (PRB) system emerges as a noteworthy passive remediation method for AMD. Distinguished by its modest construction expenses and enduring stability, this approach proves particularly well-suited for addressing the environmental challenges posed by abandoned mines. This study undertook a comprehensive evaluation of the PRB systems utilized in the remediation of AMD. Furthermore, it introduced the concept of low permeability barrier, derived from the realm of site-contaminated groundwater management. The strategies pertaining to the selection of materials, the physicochemical aspects influencing long-term efficacy, the intricacies of design and construction, as well as the challenges and prospects inherent in barrier technology, are elaborated upon in this discourse.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiqiang Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Saisai Guo
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
6
|
Li D, Jiang H, Luo Z, Geng W, Zhu J. Preparation and Adsorption Performance of Boron Adsorbents Derived from Modified Waste Feathers. Polymers (Basel) 2024; 16:1365. [PMID: 38794557 PMCID: PMC11125364 DOI: 10.3390/polym16101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
This research focuses on modifying discarded feathers by grafting glycidyl methacrylate (GMA) onto their surface through thiolation, followed by an epoxy ring-opening reaction with N-methyl-D-glucamine (NMDG) to synthesize feather-based boron adsorbents. Optimization of the adsorbent preparation conditions was achieved through single-factor experiments, varying temperature, time, GMA concentration, and initiator dosage. The synthesized adsorbent (F-g-GMA-NMDG) underwent characterization using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The adsorption behavior of the adsorbent was studied, and its boron adsorption capacity at different temperatures was determined through static adsorption kinetic curves. Analysis of adsorption isotherms, kinetics, and thermodynamics was conducted. Results indicate that the boron adsorption process by F-g-GMA-NMDG follows a pseudo-second-order model. The adsorption process is endothermic, with higher temperatures promoting adsorption efficiency. Gibbs free energy (ΔG) confirms the spontaneity of the adsorption process. Enhanced adsorption efficacy was observed under neutral and acidic pH conditions. After four cycles, the adsorbent maintained its adsorption efficiency, demonstrating its stability and potential for reuse. This study provides novel insights into both the treatment of discarded feathers and the development of boron adsorbents.
Collapse
Affiliation(s)
- Dongxing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (D.L.); (Z.L.)
| | - Hui Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.J.); (J.Z.)
| | - Zhengwei Luo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (D.L.); (Z.L.)
| | - Wenhua Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.J.); (J.Z.)
| | - Jianliang Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.J.); (J.Z.)
| |
Collapse
|
7
|
Jawed A, Sharad A, Chutani A, Mehak, Pandey LM. Amine functionalized Fe(III)-doped-ZnO nanoparticles based alginate beads for the removal of Cu(II) from aqueous solution. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101199. [DOI: 10.1016/j.nanoso.2024.101199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
8
|
Alpsoy L, Sedeky AS, Rehbein U, Thedieck K, Brandstetter T, Rühe J. Particle ID: A Multiplexed Hydrogel Bead Platform for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55346-55357. [PMID: 37982803 PMCID: PMC10712431 DOI: 10.1021/acsami.3c12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
We present a new platform based on hydrogel beads for multiplex analysis that can be fabricated, barcoded, and functionalized in a single step using a simple microfluidic assembly and a photo-cross-linking process. The beads are generated in a two-phase flow fluidic system and photo-cross-linking of the polymer in the aqueous phase by C,H insertion cross-linking (CHic). The size and shape of the hydrogel particles can be controlled over a wide range by fluidic parameters. During the fabrication of the beads, they are barcoded by using physical and optical barcoding strategies. Magnetic beads and fluorescent particles, which allow identification of the production batch number, are added simultaneously as desired, resulting in complex, multifunctional beads in a one-step reaction. As an example of biofunctionalization, Borrelia antigens were immobilized on the beads. Serum samples that originated from infected and non-infected patients could be clearly distinguished, and the sensitivity was as good as or even better than ELISA, the state of the art in clinical diagnostics. The ease of the one-step production process and the wide range of barcoding parameters offer strong advantages for multiplexed analytics in the life sciences and medical diagnostics.
Collapse
Affiliation(s)
- Lokman Alpsoy
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
- livMatS@FIT (Freiburg Center for Interactive Materials and Bioinspired Technologies), University of Freiburg, Freiburg 79110, Germany
| | - Abanoub Selim Sedeky
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Ulrike Rehbein
- Institute of Biochemistry, Center of Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry, Center of Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Thomas Brandstetter
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
- livMatS@FIT (Freiburg Center for Interactive Materials and Bioinspired Technologies), University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
9
|
Abdul Rahman AS, Fizal ANS, Khalil NA, Ahmad Yahaya AN, Hossain MS, Zulkifli M. Fabrication and Characterization of Magnetic Cellulose-Chitosan-Alginate Composite Hydrogel Bead Bio-Sorbent. Polymers (Basel) 2023; 15:polym15112494. [PMID: 37299293 DOI: 10.3390/polym15112494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The implementation of inorganic adsorbents for the removal of heavy metals from industrial effluents generates secondary waste. Therefore, scientists and environmentalists are looking for environmentally friendly adsorbents isolated from biobased materials for the efficient removal of heavy metals from industrial effluents. This study aimed to fabricate and characterize an environmentally friendly composite bio-sorbent as an initiative toward greener environmental remediation technology. The properties of cellulose, chitosan, magnetite, and alginate were exploited to fabricate a composite hydrogel bead. The cross linking and encapsulation of cellulose, chitosan, alginate, and magnetite in hydrogel beads were successfully conducted through a facile method without any chemicals used during the synthesis. Energy-dispersive X-ray analysis verified the presence of element signals of N, Ca, and Fe on the surface of the composite bio-sorbents. The appearance and peak's shifting at 3330-3060 cm-1 in the Fourier transform infrared spectroscopy analysis of the composite cellulose-magnetite-alginate, chitosan-magnetite-alginate, and cellulose-chitosan-magnetite-alginate suggested that there are overlaps of O-H and N-H and weak interaction of hydrogen bonding with the Fe3O4 particles. Material degradation, % mass loss, and thermal stability of the material and synthesized composite hydrogel beads were determined through thermogravimetric analysis. The onset temperature of the composite cellulose-magnetite-alginate, chitosan-magnetite-alginate, and cellulose-chitosan-magnetite-alginate hydrogel beads were observed to be lower compared to raw-material cellulose and chitosan, which could be due to the formation of weak hydrogen bonding resulting from the addition of magnetite Fe3O4. The higher mass residual of cellulose-magnetite-alginate (33.46%), chitosan-magnetite-alginate (37.09%), and cellulose-chitosan-magnetite-alginate (34.40%) compared to cellulose (10.94%) and chitosan (30.82%) after degradation at a temperature of 700 °C shows that the synthesized composite hydrogel beads possess better thermal stability, owing to the addition of magnetite and the encapsulation in the alginate hydrogel beads.
Collapse
Affiliation(s)
- Aida Syafiqah Abdul Rahman
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| | - Ahmad Noor Syimir Fizal
- Centre for Sustainability of Ecosystem & Earth Resources (Pusat ALAM) Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang, Malaysia
| | - Nor Afifah Khalil
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| | - Ahmad Naim Ahmad Yahaya
- Green Chemistry and Sustainability Cluster, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia
| | - Muzafar Zulkifli
- Green Chemistry and Sustainability Cluster, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| |
Collapse
|
10
|
Wang K, Zhang F, Xu K, Che Y, Qi M, Song C. Modified magnetic chitosan materials for heavy metal adsorption: a review. RSC Adv 2023; 13:6713-6736. [PMID: 36860541 PMCID: PMC9969337 DOI: 10.1039/d2ra07112f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Magnetic chitosan materials have the characteristics of both chitosan and magnetic particle nuclei, showing the characteristics of easy separation and recovery, strong adsorption capacity and high mechanical strength, and have received extensive attention in adsorption, especially in the treatment of heavy metal ions. In order to further improve its performance, many studies have modified magnetic chitosan materials. This review discusses the strategies for the preparation of magnetic chitosan using coprecipitation, crosslinking, and other methods in detail. Besides, this review mainly summarizes the application of modified magnetic chitosan materials in the removal of heavy metal ions in wastewater in recent years. Finally, this review also discusses the adsorption mechanism, and puts forward the prospect of the future development of magnetic chitosan in wastewater treatment.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University Weihai 264209 China
| | - Fanbing Zhang
- Marine College, Shandong University Weihai 264209 China
| | - Kexin Xu
- Marine College, Shandong University Weihai 264209 China
| | - Yuju Che
- Marine College, Shandong University Weihai 264209 China
| | - Mingying Qi
- Marine College, Shandong University Weihai 264209 China
| | - Cui Song
- Marine College, Shandong University Weihai 264209 China
- Shandong University-Weihai Research Institute of Industrial Technology Weihai 264209 China
| |
Collapse
|
11
|
Zhao Y, Li B. Preparation and Superstrong Adsorption of a Novel La(Ⅲ)-Crosslinked Alginate/Modified Diatomite Macroparticle Composite for Anionic Dyes Removal from Aqueous Solutions. Gels 2022; 8:gels8120810. [PMID: 36547334 PMCID: PMC9778068 DOI: 10.3390/gels8120810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
In order to solve the problem of dye pollution of the water environment, a green macroparticle composite (CPAM-Dia/SA-La) as a bioadsorbent was prepared through a sodium alginate (SA) reaction with a polyacrylamide (CPAM)-modified diatomite (Dia) and further La(III) ion crosslinking polymerization, and characterized by various analytical methods. The important preparation and adsorption conditions of the composite were explored by the adsorption of Acid blue 113 (AB 113) and Congo red (CR) dyes. The dye adsorption efficiency was evaluated. The results show that CPAM-Dia/SA-La composite prepared under the optimized conditions displays superstrong adsorption capacities of 2907 and 1578 mg/g for AB 113 and CR and almost 100% removal efficiency within 60 min adsorption time at pH 2.0 and 298 K, and they decrease slightly with the pH increase to 10. The fitting of equilibrium data to the Langmuir model is the best and the adsorption kinetic processes can be expressed by the Pseudo-second-order kinetic model. The adsorption processes are both spontaneous and exothermic. The analysis results of FT-IR and XPS revealed that the superstrong adsorption of CPAM-Dia/SA-La for dyes. The composite adsorbed by the dye can be recycled. CPAM-Dia/SA-La is a promising biosorbent for dye wastewater treatment.
Collapse
Affiliation(s)
- Yuting Zhao
- Chemistry and Environment Science College, Inner Mongolia Normal University, Hohhot 010022, China
- Inner Mongolia Key Laboratory of Environmental Chemistry, Hohhot 010022, China
| | - Beigang Li
- Chemistry and Environment Science College, Inner Mongolia Normal University, Hohhot 010022, China
- Inner Mongolia Key Laboratory of Environmental Chemistry, Hohhot 010022, China
- Correspondence: or ; Tel.: +86-13644715566
| |
Collapse
|
12
|
Fabrication of modified alginate-based biocomposite hydrogel microspheres for efficient removal of heavy metal ions from water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Dong L, Shan C, Liu Y, Sun H, Yao B, Gong G, Jin X, Wang S. Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711123. [PMID: 36078835 PMCID: PMC9517823 DOI: 10.3390/ijerph191711123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 05/06/2023]
Abstract
A simple method was used to synthesize magnetic xanthate-modified chitosan/polyacrylic acid hydrogels that were used to remove heavy metal ions from an aqueous solution. Xanthate modification of chitosan significantly improved adsorption performance: individual adsorption capacities of the hydrogel for Cu(II), Cd(II), Pb(II), and Co(II) ions were 206, 178, 168, and 140 mg g-1, respectively. The magnetic hydrogels had good regeneration ability and were effectively separated from the solution by use of a magnet. Adsorption kinetic data showed that the removal mechanism of heavy metal ions from the solution by magnetic hydrogels occurs mainly by chemical adsorption. The equilibrium adsorption isotherms were well-described by the Freundlich and Langmuir equations. Positive values were found for the Gibbs standard free energy and enthalpy, indicating an increase in the disorder at the solid-liquid interface during adsorption. Magnetic xanthate-modified chitosan-based hydrogels that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Liming Dong
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Chengyang Shan
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yuan Liu
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Hua Sun
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Bing Yao
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Guizhen Gong
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiaodong Jin
- Department of Forensic Science and Technology, Jiangsu Police Institute, Nanjing 210031, China
- Correspondence: (X.J.); (S.W.)
| | - Shifan Wang
- School of Material and Chemistry Engineering, Xuzhou University of Technology, Xuzhou 221018, China
- Correspondence: (X.J.); (S.W.)
| |
Collapse
|
14
|
Optimization of Sodium Alginate-Graphene Nanoplate-Kaolin Bio-composite Adsorbents in Heavy Metal Adsorption by Response Surface Methodology (RSM). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
16
|
Sabbagh N, Tahvildari K, Mehrdad Sharif AA. Application of chitosan-alginate bio composite for adsorption of malathion from wastewater: Characterization and response surface methodology. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103868. [PMID: 34508964 DOI: 10.1016/j.jconhyd.2021.103868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Agricultural effluents in aqueous media have caused serious threats due to adversely affect human health and the ecosystem. In this study, the low-cost easily accessible chitosan-alginate adsorbent was prepared for the removal of malathion from agricultural effluents using microemulsion method. The adsorbent was characterized using scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The optimum experimental conditions, including adsorbent dosage (0.05-0.25 g), contact time (5-25 min), and concentration of malathion (5-25 mg L-1) at five levels were studied using the composite central design (CCD) based on the response surface methodology (RSM). The highest removal percentage was obtained 82.35 with an adsorbent dosage of 0.18 g, contact time of 20 min, and initial concentration of 10 mg L-1. The analysis of variance (ANOVA) was applied to assess the significance and adequacy of the model. The results revealed that quadratic model was proper for the prediction removal of malathion. The adsorption kinetics and isotherms were examined under optimal conditions. The Langmuir with a coefficient of determination (R2) = 0.99 and pseudo-second-order with R2 = 0.99 were achieved as the best isotherm and kinetic models, respectively. The results showed that the chitosan-alginate biopolymer can be effective and affordable adsorbent for the removal of malathion from aqueous solution.
Collapse
Affiliation(s)
- Nazanin Sabbagh
- Department of Applied Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Tahvildari
- Department of Applied Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Amir Abdolah Mehrdad Sharif
- Department of Analytical Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Eldeeb TM, El Nemr A, Khedr MH, El-Dek SI. Efficient removal of Cu(II) from water solution using magnetic chitosan nanocomposite. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021; 6:34. [DOI: 10.1007/s41204-021-00129-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/01/2021] [Indexed: 01/12/2025]
|
18
|
Oyarce E, Santander P, Butter B, Pizarro GDC, Sánchez J. Use of sodium alginate biopolymer as an extracting agent of methylene blue in the polymer‐enhanced ultrafiltration technique. J Appl Polym Sci 2021. [DOI: 10.1002/app.50844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Estefanía Oyarce
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
- Departamento de Química Universidad Tecnológica Metropolitana Santiago Chile
| | - Paola Santander
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Bryan Butter
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | | | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| |
Collapse
|
19
|
Butter B, Santander P, Pizarro GDC, Oyarzún DP, Tasca F, Sánchez J. Electrochemical reduction of Cr(VI) in the presence of sodium alginate and its application in water purification. J Environ Sci (China) 2021; 101:304-312. [PMID: 33334525 DOI: 10.1016/j.jes.2020.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) is used in many manufacturing processes, and its release into natural waters is a major environmental problem today. Low concentrations of Cr(VI) are toxic to human health and living organisms due to the carcinogenic and mutagenic nature of this mineral. This work examined the conversion of Cr(VI) to Cr(III) via electrochemical reduction using gold electrode in an acidic sodium alginate (SA) solution and subsequent removal of the produced Cr(III)-SA by the polymer-enhanced ultrafiltration (PEUF) technique. A solution of SA in nitric acid was used both as an electrolytic medium during the voltammetric measurements and bulk electrolysis and as an extracting agent during the PEUF technique. The electroanalysis of Cr(VI) was performed by linear sweep voltammetry in the presence of acidic SA solution to study its voltammetric behavior as a function of the Cr(VI) concentration, pH, presence of Cr(III), SA concentration and scan rate. In addition, the quantitative reduction of Cr(VI) to Cr(III) was studied through the bulk electrolysis technique. The results showed efficient reduction with well-defined peaks at approximately 0.3 V vs. Ag/AgCl, using a gold working electrode. As the pH increased, the reduction signal strongly decreased until its disappearance. The optimum SA concentration was 10 mmol/L, and it was observed that the presence of Cr(III) did not interfere in the Cr(VI) electroanalysis. Through the quantitative reduction by bulk electrolysis in the presence of acidic SA solution, it was possible to reduce all Cr(VI) to Cr(III) followed by its removal via PEUF.
Collapse
Affiliation(s)
- Bryan Butter
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Paola Santander
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Guadalupe Del C Pizarro
- Departamento de Química, Universidad Tecnológica Metropolitana, J. P. Alessandri 1242, Santiago, Chile
| | - Diego P Oyarzún
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile; Laboratorio de Nanotecnología, Recursos Naturales y Sistemas Complejos, Facultad de Ciencias Naturales, Universidad de Atacama, Copayapu 485, Copiapó, Chile
| | - Federico Tasca
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Julio Sánchez
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
20
|
Tang T, Cao S, Xi C, Chen Z. Multifunctional magnetic chitosan-graphene oxide-ionic liquid ternary nanohybrid: An efficient adsorbent of alkaloids. Carbohydr Polym 2021; 255:117338. [DOI: 10.1016/j.carbpol.2020.117338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
|
21
|
Li H, Zhou F, He B, Wang G, Xie W, Liang E. Efficient Adsorption of Heavy Metal Ions by A Novel AO‐PAN‐g‐Chitosan/Fe
3
O
4
Composite. ChemistrySelect 2020. [DOI: 10.1002/slct.202001965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hua Li
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006, Hunan Province China
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials School of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006 China
| | - Fei‐Xiang Zhou
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006, Hunan Province China
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials School of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006 China
| | - Bin‐Hong He
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006, Hunan Province China
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials School of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006 China
| | - Guo‐Xiang Wang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006, Hunan Province China
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials School of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006 China
| | - Wan‐Yun Xie
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006, Hunan Province China
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials School of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006 China
| | - Enxiang Liang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006, Hunan Province China
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials School of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang 414006 China
| |
Collapse
|
22
|
Hassan MM, Mohamed MH, Udoetok IA, Steiger BGK, Wilson LD. Sequestration of Sulfate Anions from Groundwater by Biopolymer-Metal Composite Materials. Polymers (Basel) 2020; 12:E1502. [PMID: 32640585 PMCID: PMC7408214 DOI: 10.3390/polym12071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 01/23/2023] Open
Abstract
Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and solvent swelling techniques. The materials' characterization confirmed the successful preparation of the polymer-based composites, along with their variable physico-chemical and adsorption properties. Sulfate anion (sodium sulfate) adsorption from aqueous solution was demonstrated using C and CACu1 at pH 6.8 and 295 K, where the monolayer adsorption capacity (Qm) values were 288.1 and 371.4 mg/g, respectively, where the Sips isotherm model provided the "best-fit" for the adsorption data. Single-point sorption study on three types of groundwater samples (wells 1, 2 and 3) with variable sulfate concentration and matrix composition in the presence of composite materials reveal that CACu3 exhibited greater uptake of sulfate (Qe = 81.5 mg/g; 11.5% removal) from Well-1 and CACu2 showed the lowest sulfate uptake (Qe of 15.7 mg/g; 0.865% removal) from Well-3. Generally, for all groundwater samples, the binary composite material (CCu) exhibited attenuated sorption and removal efficiency relative to the ternary composite materials (CACu).
Collapse
Affiliation(s)
- Md. Mehadi Hassan
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
- Department of Arts and Sciences, Bangladesh Army University of Science and Technology, Saidpur 5311, Bangladesh
| | - Mohamed H. Mohamed
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Inimfon A. Udoetok
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Bernd G. K. Steiger
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| |
Collapse
|
23
|
Fan H, Ma Y, Wan J, Wang Y. Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9152-9166. [PMID: 31916156 DOI: 10.1007/s11356-019-07024-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
A novel adsorbent derived from banyan aerial roots was prepared via modification and employed to aqueous gentian violet (GV) and rhodamine B (RhB) removal. The surface morphology and physicochemical properties of modified banyan aerial roots (MBARs) were investigated by SEM, EDS, N2 adsorption/desorption, zeta potential, XRD, and FT-IR characterization experiments. Adsorption factors were tested, and the optimal conditions for GV and RhB removal were pH of 6 and 3, doses of 0.02 g and 0.03 g, and reaction time of 540 min. Adsorption isotherm simulation illustrated that theoretical monolayer adsorption capacities of GV and RhB were 456.64 mg/g and 115.23 mg/g, respectively. Kinetics data was assessed with pseudo-first-order and pseudo-second-order models, and the latter described GV and RhB adsorption better at 288 K, 298 K, 308 K, and 318 K. Thermodynamic analysis indicated that GV and RhB adsorption processes were endothermic and spontaneous. From the research results, it could be inferred that GV adsorption was mainly dominated by electrostatic interaction, while RhB adsorption might be primarily attributed to electrostatic interaction and hydrogen bonding. The study based on full utilization of waste plant fibers facilitates recycling of biomass resources, and due to simplicity, safety, and eco-friendliness of the preparation, as well as low cost and high efficiency of the application, MBARs may be potential absorbents for the treatment of dyestuff wastewater.
Collapse
Affiliation(s)
- Huimin Fan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- Sino-Singapore International Joint Research Institute, Guangzhou, 510006, China.
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Sino-Singapore International Joint Research Institute, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China
| |
Collapse
|