1
|
Akimbekov N, Digel I, Kamenov B, Altynbay N, Tastambek K, Zha J, Tepecik A, Sakhanova SK. Screening halotolerant bacteria for their potential as plant growth-promoting and coal-solubilizing agents. Sci Rep 2025; 15:13138. [PMID: 40240509 PMCID: PMC12003788 DOI: 10.1038/s41598-025-98005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The bioconversion of salinized land into healthy agricultural systems by utilizing low-rank coal (LRC) is a strategic approach for sustainable agricultural development. The aims of this study were: (1) to isolate bacterial strains associated with the rhizosphere of native plants in coal-containing soils, (2) to characterize their plant growth-promoting (PGP) and coal-solubilizing capabilities under laboratory conditions and (3) to evaluate their influence on the germination and growth of chia seeds under saline stress. Fourteen bacterial cultures were isolated from the rhizosphere of Artemisia annua L. using culture media containing salt and coal. Based on their PGP activities (nitrogen fixation, phosphate solubilization, siderophore and indole-3-acetic acid production), five strains were selected, belonging to the genera Bacillus, Phyllobacterium, Arthrobacter, and Pseudomonas. Solubilization assays were conducted to confirm the ability of these strains to utilize coal efficiently. Finally, the selected strains were inoculated with chia seeds (Salvia hispanica L.) to evaluate their ameliorating effect under saline stress conditions in coal-containing media. Inoculation with A. subterraneus Y1 resulted in the highest germination and growth metrics of chia seeds. A positive but comparatively weaker response was observed with P. frederiksbergensis AMA1 and B. paramycoides Lb-1 as inoculants. Coal inoculated with halotolerant bacteria can serve as the foundation for humified organic matter in salt-affected environments. The selected halotolerant bacteria enhance coal biotransformation while exhibiting PGP traits.
Collapse
Affiliation(s)
- Nuraly Akimbekov
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- Scientific-Practical Center, West Kazakhstan Marat Ospanov Medical University, Maresyev Str. 68, 030019, Aktobe, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov Str. 29, 161200, Turkistan, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, 52428, Jülich, Germany.
| | - Bekzat Kamenov
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
| | - Nazym Altynbay
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan.
| | - Kuanysh Tastambek
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Sattarhanov Str. 29, 161200, Turkistan, Kazakhstan
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Shaanxi, 710021, Xi'an, China
| | - Atakan Tepecik
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, 52428, Jülich, Germany
| | - Svetlana K Sakhanova
- Scientific-Practical Center, West Kazakhstan Marat Ospanov Medical University, Maresyev Str. 68, 030019, Aktobe, Kazakhstan
| |
Collapse
|
2
|
Fierling N, Billard P, Fornasier F, Bauda P, Blaudez D. Structural and functional responses of soil fungal and bacterial communities to a lithium contamination gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178565. [PMID: 39864249 DOI: 10.1016/j.scitotenv.2025.178565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
The use of lithium (Li) in decarbonization strategies has positioned it as a central component of modern technological advances, particularly in battery applications. However, the increasing demand for Li has raised concerns about its environmental consequences, which are poorly documented. This study aimed to fill this knowledge gap by examining the impact of Li on soil bacterial/fungal communities. Using a microcosm approach, we explored the impacts of increasing Li concentrations on both microbial community structure and activities. Our results revealed significant changes in bacterial/fungal communities, particularly in the bacterial communities. Most of the indicator species were negatively correlated with the Li gradient, reinforcing the harmful effect of Li. Proteobacteria dominated at low concentrations, whereas Firmicutes were the most abundant at high concentrations. OTUs affiliated with the genus Alicyclobacillus represented >29 % of the total affiliated OTUs at the highest Li concentrations. Moreover, Alicyclobacillus fastidiosus showed resilience and specific adaptation to Li. Fungal communities showed less pronounced changes, with Mucoromycota remaining the dominant phylum at all concentrations. Nevertheless, some genera presented correlations with Li concentration, particularly the plant mutualists Leptodontidium, Oidiodendron, and Solicoccozyma. In addition, rapid decreases in several enzymatic activities crucial for the functioning of the carbon, nitrogen and phosphorus cycles were noted. Accordingly, microbial respiration was also impacted by high Li concentrations. Finally, a correlative analysis linked the decreases in enzyme activity to decreases in the abundances of both Proteobacteria and Ascomycota. These results underline the multiple impacts of Li on bacterial/fungal communities, highlighting both structural alterations and changes in microbial activities.
Collapse
Affiliation(s)
| | | | - Flavio Fornasier
- CREA VE Research Centre for Viticulture and Enology, I-34170 Gorizia, Italy; SOLIOMICS srl, Via Trieste, 23, I-34170 Gorizia, Italy
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
3
|
Oren A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. NPJ BIODIVERSITY 2024; 3:18. [PMID: 39242694 PMCID: PMC11332174 DOI: 10.1038/s44185-024-00050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 09/09/2024]
Abstract
Our understanding of the microbial diversity inhabiting hypersaline environments, here defined as containing >100-150 g/L salts, has greatly increased in the past five years. Halophiles are found in each of the three domains of life. Many novel types have been cultivated, and metagenomics and other cultivation-independent approaches have revealed the existence of many previously unrecognized lineages. Syntrophic interactions between different phylogenetic lineages have been discovered, such as the symbiosis between members of the archaeal class Halobacteria and the 'Candidatus Nanohalarchaeota'. Metagenomics techniques also have shed light on the biogeography of halophiles, especially of the genera Salinibacter (Bacteria) and Haloquadratum and Halorubrum (Archaea). Exploration of the microbiome of hypersaline lakes led to the discovery of novel types of metabolism previously unknown to occur at high salt concentrations. Studies of environments with high concentrations of chaotropic ions such as magnesium, calcium, and lithium have refined our understanding of the limits of life.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
4
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
5
|
Lopez MF, Martínez FL, Rajal VB, Irazusta VP. Biotechnological potential of microorganisms isolated from the salar del hombre muerto, Argentina. AN ACAD BRAS CIENC 2023; 95:e20211199. [PMID: 36790270 DOI: 10.1590/0001-3765202320211199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/27/2022] [Indexed: 02/12/2023] Open
Abstract
Bacterial strains were isolated from soil and aqueous solution samples from the Salar del Hombre Muerto, Argentina. A total of 141 strains were characterized and the tolerance to sodium chloride was evaluated. We performed a screening to search for molecules of biotechnological interest: carotenoids (11%), emulsifiers (95%), and exopolysaccharides (6%), and to assess the production of enzymes, including proteolytic (39%), lipolytic (26%), hemolytic (50%), and catalase activities (99%); 25 bacterial strains were selected for further studies. Some of them produced biofilms, but only Bacillus sp. HA120b showed that ability in all the conditions assayed. Although 21 strains were able to form emulsions, the emulsifying index Kocuria sp. M9 and Bacillus sp. V3a cultures were greater than 50% and, emulsions were more stable when the bacteria grew in higher salt concentrations. Only pigmented Kocuria sp. M9 showed lipolytic activity on olive oil medium and was able to produce biofilms when cultured without and with 4 M of NaCl. Yellow pigments, lipase activity, and biosurfactant production were observed for Micrococcus sp. SX120. Summarizing, we found that the selected bacteria produced highly interesting molecules with diverse industrial applications and, many of them are functional in the presence of high salt concentrations.
Collapse
Affiliation(s)
- Marta Florencia Lopez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| | - Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| |
Collapse
|
6
|
Acanthamoeba and a bacterial endocytobiont isolated from recreational freshwaters. Parasitol Res 2022; 121:3693-3699. [PMID: 36149500 DOI: 10.1007/s00436-022-07651-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
The quality of many freshwater environments is impacted by human activities, so that many rivers may represent a vehicle for the transmission of health-related microorganisms. This work aimed to isolate and identify genetically free-living amoeba (FLA) of the genus Acanthamoeba from a recreational river in Salta, Argentina, and isolate, if possible, an endocytobiont. Sampling took place at four points (P1-P4) throughout the river in the winter and the summer seasons. Free-living amoebae and Acanthamoeba were recovered from 20-L water concentrated through an ultrafiltration system. Isolation was performed in agar plates, confirmation of Acanthamoeba genus by PCR, and fellow identification and classification based on their sequence analyses. High concentrations of indicator bacteria were found especially in P2, which is intensively used for recreation. Out of a total of 29 FLA isolations, 9 were identified as Acanthamoeba genotype T4 subtype A, the most frequent genotype found in nature and associated with causing human disease. From an axenic culture of Acanthamoeba spp. (KY751412), a bacterial endocytobiont was isolated, and identified as Stenotrophomonas maltophilia. The endocytobiont showed resistance and intermediate resistance to a wide range of widely used antibiotics. Results were in concordance with the cosmopolitan behavior of Acanthamoeba, and showed the importance of studying this group of amoebae and related microorganisms in recreational environments.
Collapse
|
7
|
Bruna N, Galliani E, Oyarzún P, Bravo D, Fuentes F, Pérez-Donoso JM. Biomineralization of lithium nanoparticles by Li-resistant Pseudomonas rodhesiae isolated from the Atacama salt flat. Biol Res 2022; 55:12. [PMID: 35296351 PMCID: PMC8925236 DOI: 10.1186/s40659-022-00382-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background The Atacama salt flat is located in northern Chile, at 2300 m above sea level, and has a high concentration of lithium, being one of the main extraction sites in the world. The effect of lithium on microorganism communities inhabiting environments with high concentrations of this metal has been scarcely studied. A few works have studied the microorganisms present in lithium-rich salt flats (Uyuni and Hombre Muerto in Bolivia and Argentina, respectively). Nanocrystals formation through biological mineralization has been described as an alternative for microorganisms living in metal-rich environments to cope with metal ions. However, bacterial lithium biomineralization of lithium nanostructures has not been published to date. In the present work, we studied lithium-rich soils of the Atacama salt flat and reported for the first time the biological synthesis of Li nanoparticles. Results Bacterial communities were evaluated and a high abundance of Cellulomonas, Arcticibacter, Mucilaginibacter, and Pseudomonas were determined. Three lithium resistant strains corresponding to Pseudomonas rodhesiae, Planomicrobium koreense, and Pseudomonas sp. were isolated (MIC > 700 mM). High levels of S2− were detected in the headspace of P. rodhesiae and Pseudomonas sp. cultures exposed to cysteine. Accordingly, biomineralization of lithium sulfide-containing nanomaterials was determined in P. rodhesiae exposed to lithium salts and cysteine. Transmission electron microscopy (TEM) analysis of ultrathin sections of P. rodhesiae cells biomineralizing lithium revealed the presence of nanometric materials. Lithium sulfide-containing nanomaterials were purified, and their size and shape determined by dynamic light scattering and TEM. Spherical nanoparticles with an average size < 40 nm and a hydrodynamic size ~ 44.62 nm were determined. Conclusions We characterized the bacterial communities inhabiting Li-rich extreme environments and reported for the first time the biomineralization of Li-containing nanomaterials by Li-resistant bacteria. The biosynthesis method described in this report could be used to recover lithium from waste batteries and thus provide a solution to the accumulation of batteries. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00382-6.
Collapse
Affiliation(s)
- N Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile
| | - E Galliani
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile
| | - P Oyarzún
- Laboratorio de Análisis de Sólidos, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago, Chile
| | - D Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - F Fuentes
- Escuela de Geología, Facultad de Ciencias, Universidad Mayor, Av. Manuel Montt 367, Santiago, Chile
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile.
| |
Collapse
|
8
|
Drozdova M, Pozdnyakova A, Osintseva M, Burova N, Minina V. The microorganism-plant system for remediation of soil exposed to coal mining. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-406-418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Coal mining causes a radical transformation of the soil cover. Research is required into modern methods and complementary technologies for monitoring technogenic landscapes and their remediation. Our study aimed to assess soil and rhizosphere microorganisms and their potential uses for the remediation of technogenic soils in Russian coal regions.
Study objects and methods. We reviewed scientific articles published over the past five years, as well as those cited in Scopus and Web of Science.
Results and discussion. Areas lying in the vicinity of coal mines and coal transportation lines are exposed to heavy metal contamination. We studied the application of soil remediation technologies that use sorbents from environmentally friendly natural materials as immobilizers of toxic elements and compounds. Mycorrhizal symbionts are used for soil decontamination, such as arbuscular mycorrhiza with characteristic morphological structures in root cortex cells and some mycotallia in the form of arbuscules or vesicles. Highly important are Gram-negative proteobacteria (Agrobacterium, Azospirillum, Azotobacter, Burkholderia, Bradyrizobium, Enterobacter, Pseudomonas, Klebsiella, Rizobium), Gram-positive bacteria (Bacillus, Brevibacillus, Paenibacillus), and Grampositive actinomycetes (Rhodococcus, Streptomyces, Arhtrobacter). They produce phytohormones, vitamins, and bioactive substances, stimulating plant growth. Also, they reduce the phytopathogenicity of dangerous diseases and harmfulness of insects. Finally, they increase the soil’s tolerance to salinity, drought, and oxidative stress. Mycorrhizal chains enable the transport and exchange of various substances, including mineral forms of nitrogen, phosphorus, and organic forms of C3 and C4 plants. Microorganisms contribute to the removal of toxic elements by absorbing, precipitating or accumulating them both inside the cells and in the extracellular space.
Conclusion. Our review of scientific literature identified the sources of pollution of natural, agrogenic, and technogenic landscapes. We revealed the effects of toxic pollutants on the state and functioning of living systems: plants, animals, and microorganisms. Finally, we gave examples of modern methods used to remediate degraded landscapes and reclaim disturbed lands, including the latest technologies based on the integration of plants and microorganisms.
Collapse
|
9
|
Martínez FL, Rajal VB, Irazusta VP. Genomic characterization and proteomic analysis of the halotolerant Micrococcus luteus SA211 in response to the presence of lithium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147290. [PMID: 33940405 DOI: 10.1016/j.scitotenv.2021.147290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Micrococcus luteus SA211, isolated from the Salar del Hombre Muerto in Argentina, developed responses that allowed its survival and growth in presence of high concentrations of lithium chloride (LiCl). In this research, analysis of total genome sequencing and a comparative proteomic approach were performed to investigate the responses of this bacterium to the presence of Li. Through proteomic analysis, we found differentially synthesized proteins in growth media without LiCl (DM) and with 10 (D10) and 30 g/L LiCl (D30). Bi-dimensional separation of total protein extracts allowed the identification of 17 over-synthesized spots when growth occurred in D30, five in D10, and six in both media with added LiCl. The results obtained showed different metabolic pathways involved in the ability of M. luteus SA211 to interact with Li. These pathways include defense against oxidative stress, pigment and protein synthesis, energy production, and osmolytes biosynthesis and uptake. Furthermore, mono-dimensional gel electrophoresis revealed differential protein synthesis at equivalent NaCl and LiCl concentrations, suggesting that this strain would be able to develop different responses depending on the nature of the ion. Moreover, the percentage of proteins with acidic pI predicted and observed was highlighted, indicating an adaptation to saline environments. To the best of our knowledge, this is the first report showing the relationship between protein synthesis and genome sequence analysis in response to Li, showing the great biotechnological potential that native microorganisms present, especially those isolated from extreme environments.
Collapse
Affiliation(s)
- Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ingeniería, UNSa, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ciencias Naturales, UNSa, Argentina.
| |
Collapse
|
10
|
Orce IG, Martínez FL, Aparicio M, Torres MJ, Rajal VB, Irazusta VP. Genetic fingerprint and diversity evaluation of halophilic Bacillus species by RAPD-PCR. AN ACAD BRAS CIENC 2021; 93:e20191430. [PMID: 34378635 DOI: 10.1590/0001-3765202120191430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/05/2020] [Indexed: 11/22/2022] Open
Abstract
Random amplified polymorphic DNA-PCR (RAPD-PCR) is a technique successfully used to generate characteristic fingerprints of different bacteria. Bacillus is a genus that includes heterogeneous species, thus a combination of different techniques is essential for their identification. Here we used RAPD-PCR methodology to distinguish among genetically similar strains and to evaluate the genetic diversity of Bacillus species from the Salar del Hombre Muerto, in the Northwest of Argentina. The RAPD-PCR used allowed obtaining different amplification profiles for each Bacillus species and strains. By comparing the fingerprint profiles, we could observe that some of the salt flat isolates showed similar profiles than identified strains. As expected, the bacilli group isolated revealed a wide heterogeneity. RAPD-PCR was found to be a quick and reliable technique to evaluate the diversity of Bacillus strain and was successfully applied to characterize the genetic diversity present in the Salar del Hombre Muerto.
Collapse
Affiliation(s)
- Ingrid Georgina Orce
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.,Centro de Investigaciones y Transferencia de Catamarca (CITCA), CONICET-UNCA, Prado 366, 4700 Catamarca, Argentina
| | - Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Mónica Aparicio
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - María Julia Torres
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.,Facultad de Ciencias Exactas - UNSa, Av. Bolivia 5150, 4400 Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.,Facultad de Ingeniería - UNSa, Av. Bolivia 5150, 4400 Salta, Argentina.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551 Singapore, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina.,Facultad de Ciencias Naturales - UNSa, Av. Bolivia 5150, 4400 Salta, Argentina
| |
Collapse
|
11
|
Martínez JM, Escudero C, Rodríguez N, Rubin S, Amils R. Subsurface and surface halophile communities of the chaotropic Salar de Uyuni. Environ Microbiol 2021; 23:3987-4001. [PMID: 33511754 DOI: 10.1111/1462-2920.15411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023]
Abstract
Salar de Uyuni (SdU) is the biggest athalosaline environment on Earth, holding a high percentage of the known world Li reserves. Due to its hypersalinity, temperature and humidity fluctuations, high exposure to UV radiation, and its elevated concentration of chaotropic agents like MgCl2 , LiCl and NaBr, SdU is considered a polyextreme environment. Here, we report the prokaryotic abundance and diversity of 46 samples obtained in different seasons and geographical areas. The identified bacterial community was found to be more heterogeneous than the archaeal community, with both communities varying geographically. A seasonal difference has been detected for archaea. Salinibacter, Halonotius and Halorubrum were the most abundant genera in Salar de Uyuni. Different unclassified archaea were also detected. In addition, the diversity of two subsurface samples obtained at 20 and 80 m depth was evaluated and compared with the surface data, generating an evolutionary record of a multilayer hypersaline ecosystem.
Collapse
Affiliation(s)
- José M Martínez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), Cantoblanco, Madrid, 28049, Spain
| | - Cristina Escudero
- Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Sergio Rubin
- Université Catholique de Louvain, Earth and Life Institute, Georges Lamaitre Center for Earth and Climate Research, Gante, Belgium.,Centro Nacional de Investigaciones Biotecnológicas, CNIB, Cochabamba, Bolivia
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| |
Collapse
|
12
|
Romano-Armada N, Yañez-Yazlle MF, Irazusta VP, Rajal VB, Moraga NB. Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens 2020; 9:E117. [PMID: 32069867 PMCID: PMC7169405 DOI: 10.3390/pathogens9020117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental limitations influence food production and distribution, adding up to global problems like world hunger. Conditions caused by climate change require global efforts to be improved, but others like soil degradation demand local management. For many years, saline soils were not a problem; indeed, natural salinity shaped different biomes around the world. However, overall saline soils present adverse conditions for plant growth, which then translate into limitations for agriculture. Shortage on the surface of productive land, either due to depletion of arable land or to soil degradation, represents a threat to the growing worldwide population. Hence, the need to use degraded land leads scientists to think of recovery alternatives. In the case of salt-affected soils (naturally occurring or human-made), which are traditionally washed or amended with calcium salts, bio-reclamation via microbiome presents itself as an innovative and environmentally friendly option. Due to their low pathogenicity, endurance to adverse environmental conditions, and production of a wide variety of secondary metabolic compounds, members of the genus Streptomyces are good candidates for bio-reclamation of salt-affected soils. Thus, plant growth promotion and soil bioremediation strategies combine to overcome biotic and abiotic stressors, providing green management options for agriculture in the near future.
Collapse
Affiliation(s)
- Neli Romano-Armada
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| | - María Florencia Yañez-Yazlle
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica P. Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica B. Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Norma B. Moraga
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| |
Collapse
|
13
|
Cubillos CF, Paredes A, Yáñez C, Palma J, Severino E, Vejar D, Grágeda M, Dorador C. Insights Into the Microbiology of the Chaotropic Brines of Salar de Atacama, Chile. Front Microbiol 2019; 10:1611. [PMID: 31354691 PMCID: PMC6637823 DOI: 10.3389/fmicb.2019.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Microbial life inhabiting hypersaline environments belong to a limited group of extremophile or extremotolerant taxa. Natural or artificial hypersaline environments are not limited to high concentrations of NaCl, and under such conditions, specific adaptation mechanisms are necessary to permit microbial survival and growth. Argentina, Bolivia, and Chile include three large salars (salt flats) which globally, represent the largest lithium reserves, and are commonly referred to as the Lithium Triangle Zone. To date, a large amount of information has been generated regarding chemical, geological, meteorological and economical perspectives of these salars. However, there is a remarkable lack of information regarding the biology of these unique environments. Here, we report the presence of two bacterial strains (isolates LIBR002 and LIBR003) from one of the most hypersaline lithium-dominated man-made environments (total salinity 556 g/L; 11.7 M LiCl) reported to date. Both isolates were classified to the Bacillus genera, but displayed differences in 16S rRNA gene and fatty acid profiles. Our results also revealed that the isolates are lithium-tolerant and that they are phylogenetically differentiated from those Bacillus associated with high NaCl concentration environments, and form a new clade from the Lithium Triangle Zone. To determine osmoadaptation strategies in these microorganisms, both isolates were characterized using morphological, metabolic and physiological attributes. We suggest that our characterization of bacterial isolates from a highly lithium-enriched environment has revealed that even at such extreme salinities with high concentrations of chaotropic solutes, scope for microbial life exists. These conditions have previously been considered to limit the development of life, and our work extends the window of life beyond high concentrations of MgCl2, as previously reported, to LiCl. Our results can be used to further the understanding of salt tolerance, most especially for LiCl-dominated brines, and likely have value as models for the understanding of putative extra-terrestrial (e.g., Martian) life.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Adrián Paredes
- Laboratorio Química Biológica, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jenifer Palma
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Severino
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Drina Vejar
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Mario Grágeda
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
14
|
Complete Genome Sequence and Methylome Analysis of Micrococcus luteus SA211, a Halophilic, Lithium-Tolerant Actinobacterium from Argentina. Microbiol Resour Announc 2019; 8:MRA01557-18. [PMID: 30701250 PMCID: PMC6346199 DOI: 10.1128/mra.01557-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/19/2018] [Indexed: 11/20/2022] Open
Abstract
Micrococcus luteus has been found in a wide range of habitats. We report the complete genome sequence and methylome analysis of strain SA211 isolated from a hypersaline, lithium-rich, high-altitude salt flat in Argentina with single-molecule real-time sequencing. Micrococcus luteus has been found in a wide range of habitats. We report the complete genome sequence and methylome analysis of strain SA211 isolated from a hypersaline, lithium-rich, high-altitude salt flat in Argentina with single-molecule real-time sequencing.
Collapse
|