1
|
Zhao Y, Wang C, Cao X, Song S, Wei P, Zhu G. Integrated environmental assessment of a diversion-project-type urban water source considering the risks of novel and legacy contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175380. [PMID: 39122036 DOI: 10.1016/j.scitotenv.2024.175380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The water diversion project is an effective engineering approach to overcome water scarcity as a water source for the area. However, the complex environmental conditions of long-distance water diversion bring many uncertainties for water security. In this study, we assessed the pollution condition and risk levels of emerging contaminants and traditional contaminants in the water and soil along a water diversion project in Tianjin. Then, we assessed the influence of eco-economic characteristics on environmental conditions and established a comprehensive assessment framework of water source sustainability by analytic hierarchy process (AHP). The results showed that excessive nutrient elements and heavy metal pollution mainly contributed to environmental problems in the water source area. Contrary to pollution assessment, the soil ecosystem was more subject to environmental pressure due to atmospheric deposition. The health risk assessment indicated that all contaminants had negligible non-carcinogenic risks for adults, with arsenic being considered a priority pollutant. The statistical analysis results indicated land use allocation was the most important factor in the environmental management of the water source area. According to the result of the integrated environmental assessment, the main characteristics of pressure zones were high pollution levels and human activity intensity. It is urgent to control agricultural pollution and allocate land use rationally for water source pressure zones. By considering the risks of traditional and emerging contaminants in water and soil, this study could support urban water source management and the sustainable development of the water diversion project.
Collapse
Affiliation(s)
- Yang Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chenchen Wang
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Pei Wei
- Chongqing Field Scientific Observation and Research Station for Authentic Traditional Chinese Medicine in the Tree Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Guangyu Zhu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Padilla-Reyes DA, Dueñas-Moreno J, Mahlknecht J, Mora A, Kumar M, Ornelas-Soto N, Mejía-Avendaño S, Navarro-Gómez CJ, Bhattacharya P. Arsenic and fluoride in groundwater triggering a high risk: Probabilistic results using Monte Carlo simulation and species sensitivity distribution. CHEMOSPHERE 2024; 359:142305. [PMID: 38740338 DOI: 10.1016/j.chemosphere.2024.142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The widespread presence of arsenic (As) and fluoride (F-) in groundwater poses substantial risks to human health on a global scale. These elements have been identified as the most prevalent geogenic contaminants in groundwater in northern Mexico. Consequently, this study aimed to evaluate the human health and ecological risks associated with the content of As and F- in the Meoqui-Delicias aquifer, which is in one of Mexico's most emblematic irrigation districts. Concentrations of As and F- were measured in 38 groundwater samples using ICP-MS and ion chromatography, respectively. Overall, these elements showed a similar trend across the aquifer, revealing a positive correlation between them and pH. The concentration of As and F- in the groundwater ranged from 5.3 μg/L to 303 μg/L and from 0.5 mg/L to 8.8 mg/L, respectively. Additionally, the levels of As and F- surpassed the established national standards for safe drinking water in 92% and 97% of samples, respectively. Given that groundwater is used for both agricultural purposes and human activities, this study also assessed the associated human health and ecological risks posed by these elements using Monte Carlo simulation and Species Sensitivity Distribution. The findings disclosed a significant noncarcinogenic health risk associated with exposure to As and F-, as well as an unacceptable carcinogenic health risk to As through water consumption for both adults and children. Furthermore, a high ecological risk to aquatic species was identified for F- and high to medium risks for As in the sampling sites. Therefore, the findings in this study provide valuable information for Mexican authorities and international organizations (e.g., WHO) about the adverse effects that any exposure without treatment to groundwater from this region represents for human health.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Ornelas-Soto
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Sandra Mejía-Avendaño
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Carmen J Navarro-Gómez
- Faculty of Engineering, Autonomous University of Chihuahua, Circuito Universitario, 31109, Campus Uach II, Chihuahua, Chih, C.P. 31125, Mexico
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-114 28, Stockholm, Sweden
| |
Collapse
|
3
|
Shahid SU, Iqbal J, Abbasi NA, Tahir A. GIS based hotspot analysis and health risk assessment of groundwater arsenic from an unconfined deep aquifer of Lahore, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6053-6068. [PMID: 37233862 DOI: 10.1007/s10653-023-01612-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Use of groundwater for drinking purpose poses serious hazards of arsenic contamination particularly in plains of western Himalayan region. Therefore, current study was designed to investigate the level of Arsenic (As) in the water obtained from tubewells in a metropolitan city of Lahore, Pakistan and assess the human health risk. So, a total of 73 tubewells were sampled randomly in the manner that the whole study region was covered without any clustering. The water samples were analyzed for As using atomic absorption spectrophotometer. These samples were also tested for total dissolved solids, chlorides, pH, alkalinity, turbidity, hardness and calcium. GIS based hotspots analysis technique was used to investigate the spatial distribution patterns. Our results revealed that only one sample out of total 73 had arsenic level below the WHO guideline of 10 μg/L. The spatial distribution map of arsenic revealed that the higher concentrations of arsenic are present in the north-western region of Lahore. The cluster and outlier analysis map using Anselin Local Moran's I statistic indicated the presence of an arsenic cluster in the west of River Ravi. Furthermore, the optimized hotspot analysis based on Getis-Ord Gi* statistics confirmed the statistical significance (P < 0.05) and (P < 0.01) of these samples from the vicinity of River Ravi. Regression analysis showed that variables such as turbidity, alkalinity, hardness, chlorides, calcium and total dissolved solids were significantly (all P < 0.05) associated with level of Arsenic in tubewells. Whereas, PH and electrical conductivity and other variables like town, year of installation, depth and diameter of the wells were not significantly associated with Arsenic concentrations in tubewells. Principal component analysis (PCA) exhibited that the random distribution of tubewell samples showed no distinct clustering with towns studied. Health risk assessment based on hazard and Cancer risk index revealed serious risk of developing carcinogenic and non-carcinogenic diseases particularly in children. The health risk due to prevalence of high As concentration in tubewells' water need to be mitigated immediately to avoid worst consequences in future.
Collapse
Affiliation(s)
- Syed Umair Shahid
- Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore, Pakistan.
- Institute of Geographical Information Systems (IGIS), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Javed Iqbal
- Institute of Geographical Information Systems (IGIS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Rahmani A, Khamutian S, Doosti-Irani A, Saatchi O, Shokoohizadeh MJ. Arsenic level in drinking water, its correlation with water quality parameters, and associated health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:899. [PMID: 37380884 DOI: 10.1007/s10661-023-11486-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
This study aimed to evaluate the occurrence and likelihood of health risks related to arsenic in drinking water of all counties of the Hamadan province in the northwest of Iran. In this work, 370 samples were collected from all of the water resources of urban and rural regions, during 5 years (2017 to 2021). Oracle Crystal Ball software was used to perform the Monte Carlo simulation and investigate the potential health risks. According to the results, the average values of arsenic in the nine counties were in the order Kabudarahang (40.1 ppb), Malayer (13.1 ppb), Nahavand (6.1 ppb), Bahar (2.05 ppb), Famenin (0.41 ppb), Asadabad (0.36 ppb), Tuyserkan (0.28 ppb), Razan (0.14 ppb), and Hamadan (< 0.1 ppb). The highest concentration of arsenic occurred in Kabudarahang with a maximum value of 185 ppb. In the spring season, the average concentration of the cations, including calcium, magnesium, sodium, lead, cadmium, and chromium, obtained 109.51 mg/l, 44.67 mg/l, 20.50 mg/l, 88.76 ppb, 0.31 ppb, and 0.02 ppb, respectively. Based on the Delphi classification, the P 90% of oral lifetime cancer risk, in Hamadan province, were within level II (low risk) to VII (extremely high risk). The risk analysis revealed there was a possible carcinogenic risk to humans from oral exposure to As-contaminated groundwater, especially in Kabudarahang county. Therefore, there is an urgent need for management and precise measures in contaminated areas to reduce and prevent the adverse health effects of arsenic.
Collapse
Affiliation(s)
- Alireza Rahmani
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samira Khamutian
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amin Doosti-Irani
- Department of Epidemiology, School of Public Health, Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Omid Saatchi
- Department of Disease Prevention and Control, Deputy of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Javad Shokoohizadeh
- Department of Environmental Health Engineering, School of Public Health, Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Joardar M, Mukherjee P, Das A, Mridha D, De A, Chowdhury NR, Majumder S, Ghosh S, Das J, Alam MR, Rahman MM, Roychowdhury T. Different levels of arsenic exposure through cooked rice and its associated benefit-risk assessment from rural and urban populations of West Bengal, India: a probabilistic approach with sensitivity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27249-x. [PMID: 37156951 DOI: 10.1007/s11356-023-27249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Rice arsenic (As) contamination and its consumption poses a significant health threat to humans. The present study focuses on the contribution of arsenic, micronutrients, and associated benefit-risk assessment through cooked rice from rural (exposed and control) and urban (apparently control) populations. The mean decreased percentages of As from uncooked to cooked rice for exposed (Gaighata), apparently control (Kolkata), and control (Pingla) areas are 73.8, 78.5, and 61.3%, respectively. The margin of exposure through cooked rice (MoEcooked rice) < 1 signifies the existence of health risk for all the studied exposed and control age groups. The respective contributions of iAs (inorganic arsenic) in uncooked and cooked rice are nearly 96.6, 94.7, and 100% and 92.2, 90.2, and 94.2% from exposed, apparently control, and control areas. LCR analysis for the exposed, apparently control, and control populations (adult male: 2.1 × 10-3, 2.8 × 10-4, 4.7 × 10-4; adult female: 1.9 × 10-3, 2.1 × 10-4, 4.4 × 10-4; and children: 5.8 × 10-4, 4.9 × 10-5, 1.1 × 10-4) through cooked rice is higher than the recommended value, i.e., 1 × 10-6, respectively, whereas HQ > 1 has been observed for all age groups from the exposed area and adult male group from the control area. Adults and children from rural area showed that ingestion rate (IR) and concentration are the respective influencing factors towards cooked rice As, whereas IR is solely responsible for all age groups from urban area. A vital suggestion is to reduce the IR of cooked rice for control population to avoid the As-induced health risks. The average intake (μg/day) of micronutrients is in the order of Zn > Se for all the studied populations and Se intake is lower for the exposed population (53.9) compared to the apparently control (140) and control (208) populations. Benefit-risk assessment supported that the Se-rich values in cooked rice are effective in avoiding the toxic effect and potential risk from the associated metal (As).
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Payal Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Sharmistha Majumder
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Swetanjana Ghosh
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jagyashila Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
6
|
Cheng X, Xia Y, Ji Q, Ji Q, Li H, Guo J, Li S, Yang S, Zhang L, He H. Occurrence and risk of iodinated X-ray contrast media in source and tap water from Jiangsu province, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130399. [PMID: 36403453 DOI: 10.1016/j.jhazmat.2022.130399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Microcontaminants in the water environment have received increasing attention due to their adverse effects on human health and wildlife. However, iodinated X-ray contrast media (ICM), a type of microcontaminants, have not yet been systematically documented in source and tap water. This study investigated ICM in water samples via a sampling activity from 25 drinking water sources and their corresponding 30 household taps in south-central Jiangsu Province, China. The total concentrations of ICM ranged from 14.2 to 138.5 ng/L in source water and 3.7 to 101.3 ng/L in tap water, respectively. The calculated average water treatment efficiency to remove ICM is 38.3% with large variation under different processes (ranging from 7.3% to 75.7%), which implied that ICM could not be effectively removed using current treatment technologies. By integrating other ICM into the predominant compound iohexol with relative potency factors, the health risks of total ICM through water consumption were assessed using the Monte Carlo simulation. The results concluded that the risk of ingesting ICM through tap water was not a major health concern for adults, teens, or children in the study area. Nevertheless, due to the lack of long-term toxicity data relevant for humans for ICM, this risk may be underestimated, which requires further research.
Collapse
Affiliation(s)
- Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yubao Xia
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Qingsong Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Jiehong Guo
- Masonic Cancer Center, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, USA; Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, Michigan 49931, USA
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P.R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, P.R. China.
| |
Collapse
|
7
|
Mohammadpour A, Emadi Z, Samaei MR, Ravindra K, Hosseini SM, Amin M, Samiei M, Mohammadi L, Khaksefidi R, Zarei AA, Motamed-Jahromi M, Mousavi Khaneghah A. The concentration of potentially toxic elements (PTEs) in drinking water from Shiraz, Iran: a health risk assessment of samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23295-23311. [PMID: 36322352 PMCID: PMC9938828 DOI: 10.1007/s11356-022-23535-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The existence of potentially toxic elements (PTEs) in water bodies has posed a menace to human health. Thus, water resources should be protected from PTEs, and their effect on the exposed population should be investigated. In the present investigation, the concentrations of PTEs such as lead (Pb), mercury (Hg), manganese (Mn), and iron(Fe) in the drinking water of Shiraz, Iran, were determined for the first time. In addition, hazard quotient, hazard index, cancer risk, and sensitivity analysis were applied to estimate the noncarcinogenic and carcinogenic impacts of Pb, Hg, Mn, and Fe on exposed children and adults through ingestion. The mean concentrations (µg/L) of Pb, Hg, Mn, and Fe were 0.36, 0.32, 2.28, and 8.72, respectively, in winter and 0.50, 0.20, 0.55, and 10.36, respectively, in summer. The results displayed that Fe concentration was more than the other PTEs. PTE concentrations were lower than the standard values of the Environment Protection Agency and World Health Organization. Values of the degree of contamination and heavy metal pollution index for lead, mercury, manganese, and iron were significantly low (< 1) and excellent (< 50), respectively. Based on the Spearman rank correlation analysis, positive and negative relationships were observed in the present study. The observations of the health risk assessment demonstrated that mercury, lead, iron, and manganese had an acceptable level of noncarcinogenic harmful health risk in exposed children and adults (hazard quotients < 1 and hazard index < 1). The carcinogenic risk of lead was low (< E - 06), which can be neglected. Monte Carlo simulation showed that water intake rate and mercury concentration were the most critical parameters in the hazard index for children and adults. Lead concentration was also the most crucial factor in the cancer risk analysis. The results of the present study proved that the drinking water of Shiraz is safe and healthy and can be confidently consumed by people.
Collapse
Affiliation(s)
- Amin Mohammadpour
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Emadi
- Department of Environmental Health Engineering, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khaiwal Ravindra
- Department of Community Medicine & School of Public Health, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Seyedeh Masoumeh Hosseini
- Department of Public Health and Food Hygiene, School of Veterinary Medicine, Shiraz University, PO Box 1731, Shiraz, Postal code 71345, Iran
| | - Mohammad Amin
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mojtaba Samiei
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Leili Mohammadi
- Environmental Health, Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Razyeh Khaksefidi
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Allah Zarei
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohadeseh Motamed-Jahromi
- Department of Medical-Surgical Nursing, Nursing School, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St, 02-532, Warsaw, Poland.
| |
Collapse
|
8
|
Lin Z, Liu Y, Cheng Z, Zhao R, Zhang H. Uncertainty health risk assessment and regional control of drinking water: a case study of Hanyuan County, southwest mountainous area, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68202-68215. [PMID: 35534706 DOI: 10.1007/s11356-022-20688-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
To evaluate the health risks of drinking water in Hanyuan County, 96 samples of peripheral drinking water were collected from 30 sites in the area. The samples were then analyzed for chemical properties including Fe, Mn, NH3-N, [Formula: see text], F-, Pb, Hg, As, Cr(VI), Cd, and so on. The health risks of ten trace elements in drinking water were probabilistically assessed using the health risk assessment model and Monte Carlo simulation. On this basis, sequential indicator simulations were used to classify the health risk levels of drinking water in the region, to conduct hierarchical management and control. The results showed that except for [Formula: see text], all other indicators met World Health Organization standards and China's drinking water sanitation standards. Drinking water presents a specific carcinogenic risk to adults, and the cumulative contribution of As and Cr(VI) exceeds 95%, and has a specific non-carcinogenic risk to children if the cumulative contribution of F-, [Formula: see text], and As exceeds 90%. Grade I, II, and III non-carcinogenic risk areas accounted for 0.89%, 24.72%, and 74.39% of the total area of Hanyuan County, respectively, while grade I, II, and III carcinogenic risk areas accounted for 27.71%, 45.56%, and 26.73% of the total Hanyuan County area, respectively. Finally, according to the health risk characteristics of each control area, corresponding zoning control suggestions were proposed.
Collapse
Affiliation(s)
- Zhengjiang Lin
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Ying Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Zhihui Cheng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Rui Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
9
|
Du Y, Sun C, Shen Y, Liu L, Chen M, Xie Q, Xiao H. Anodic Stripping Voltammetric Analysis of Trace Arsenic(III) on a Au-Stained Au Nanoparticles/Pyridine/Carboxylated Multiwalled Carbon Nanotubes/Glassy Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1450. [PMID: 35564158 PMCID: PMC9105122 DOI: 10.3390/nano12091450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/20/2023]
Abstract
A Au-stained Au nanoparticle (Aus)/pyridine (Py)/carboxylated multiwalled carbon nanotubes (C-MWCNTs)/glassy carbon electrode (GCE) was prepared for the sensitive analysis of As(III) by cast-coating of C-MWCNTs on a GCE, electroreduction of 4-cyanopyridine (cPy) to Py, adsorption of gold nanoparticles (AuNPs), and gold staining. The Py/C-MWCNTs/GCE can provide abundant active surface sites for the stable loading of AuNPs and then the AuNPs-initiated Au staining in HAuCl4 + NH2OH solution, giving a large surface area of Au on the Aus/Py/C-MWCNTs/GCE for the linear sweep anodic stripping voltammetry (LSASV) analysis of As(III). At a high potential-sweep rate of 5 V s-1, sharp two-step oxidation peaks of As(0) to As(III) and As(III) to As(V) were obtained to realize the sensitive dual-signal detection of As(III). Under optimal conditions, the ASLSV peak currents for oxidation of As(0) to As(III) and of As(III) to As(V) are linear with a concentration of As(III) from 0.01 to 8 μM with a sensitivity of 0.741 mA μM-1 and a limit of detection (LOD) of 3.3 nM (0.25 ppb) (S/N = 3), and from 0.01 to 8.0 μM with a sensitivity of 0.175 mA μM-1 and an LOD of 16.7 nM (1.20 ppb) (S/N = 3), respectively. Determination of As(III) in real water samples yielded satisfactory results.
Collapse
Affiliation(s)
- Yun Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Changsha Center for Diseases Prevention and Control, Changsha 410004, China
| | - Chenglong Sun
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yuru Shen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Luyao Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Mingjian Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hongbo Xiao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
10
|
A covalent organic framework containing bipyridine groups as a fluorescent chemical probe for the ultrasensitive detection of arsenic (III). J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Ahmed MF, Mokhtar MB, Alam L. Carcinogenic and non-carcinogenic health risk of arsenic ingestion via drinking water in Langat River Basin, Malaysia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:897-914. [PMID: 32372251 DOI: 10.1007/s10653-020-00571-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/10/2020] [Indexed: 05/25/2023]
Abstract
The prolonged persistence of toxic arsenic (As) in environment is due to its non-biodegradable characteristic. Meanwhile, several studies have reported higher concentrations of As in Langat River. However, it is the first study in Langat River Basin, Malaysia, that As concentrations in drinking water supply chain were determined simultaneously to predict the health risks of As ingestion. Water samples collected in 2015 from the four stages of drinking water supply chain were analysed for As concentration by inductively coupled plasma mass spectrometry. Determined As concentrations along with the time series data (2004-2015) were significantly within the maximum limit 0.01 mg/L of drinking water quality standard set by World Health Organization. The predicted As concentration by auto-regression moving average was 3.45E-03 mg/L in 2020 at 95% level based on time series data including climatic control variables. Long-term As ingestion via household filtration water at Langat Basin showed no potential lifetime cancer risk (LCR) 9.7E-06 (t = 6.68; p = 3.37E-08) as well as non-carcinogenic hazard quotient (HQ) 4.8E-02 (t = 6.68; p = 3.37E-08) risk at 95% level. However, the changing landscape, ex-mining ponds and extensive use of pesticides for palm oil plantation at Langat Basin are considered as the major sources of increased As concentration in Langat River. Therefore, a two-layer water filtration system at Langat Basin should be introduced to accelerate the achievement of sustainable development goal of getting safe drinking water supply.
Collapse
Affiliation(s)
- Minhaz Farid Ahmed
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Mazlin Bin Mokhtar
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|