1
|
Gialluisi A, Costanzo S, De Bartolo MI, Veronesi G, Renzi M, Cembalo A, Tirozzi A, Falciglia S, Ricci M, Bonanni A, Martone F, Zazzaro G, Pepe A, Belvisi D, Ferrario MM, Gianfagna F, Cerletti C, Donati MB, Massari S, Berardelli A, de Gaetano G, Iacoviello L. Prominent role of PM10 in the link between air pollution and incident Parkinson's Disease. NPJ Parkinsons Dis 2025; 11:101. [PMID: 40335495 PMCID: PMC12059118 DOI: 10.1038/s41531-025-00935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025] Open
Abstract
Air pollution has been associated with Parkinson's Disease (PD) risk, although this relationship remains unclear. We estimated yearly levels of exposure to ten air pollutants (period 2006-2018) in an Italian population cohort, the Moli-sani study (N = 24,325; ≥35 years; 51.9% women), and derived three principal components, testing their associations with incident PD risk over 23,841 participants (213 cases, median(IQR) follow-up 11.2(2.0) years). This revealed a statistically significant association of PC1 (explaining 38.2% of common variance, tagging PM10 levels), independent on sociodemographic, professional and lifestyles covariates (Hazard Ratio [95%CI] = 1.04[1.02-1.07]). The association was confirmed testing average PM10 levels during follow-up (18[13-24]% increase of PD risk per 1 μg/m3 increase of PM10). Among different circulating markers, lipoprotein a explained a significant proportion of this association (2.8[0.9; 8.4]%). These findings suggest PM10 as a target to lower PD risk at the population level and a potential implication of lipoprotein a in PD etiology.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy.
- Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| | - Simona Costanzo
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Maria Ilenia De Bartolo
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Veronesi
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | | | - Alfonsina Tirozzi
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Stefania Falciglia
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | - Moreno Ricci
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | - Americo Bonanni
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Antonietta Pepe
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Daniele Belvisi
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Mario Ferrario
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Francesco Gianfagna
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Chiara Cerletti
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Stefania Massari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni de Gaetano
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Licia Iacoviello
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| |
Collapse
|
2
|
Trentalange A, Badaloni C, Porta D, Michelozzi P, Renzi M. Association between air quality and neurodegenerative diseases in River Sacco Valley: A retrospective cohort study in Latium, central Italy. Int J Hyg Environ Health 2025; 267:114578. [PMID: 40245549 DOI: 10.1016/j.ijheh.2025.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Research on the relationship between air pollution and neurodegenerative diseases is growing. However, few studies focus on this association in contaminated sites. We investigated the association between long-term air pollution exposure and dementia/Parkinson's disease (PD) incidence in the River Sacco Valley, a contaminated site in central Italy. Through a retrospective cohort study, we enrolled 298,919 40+ years-old residents in 95 municipalities across the study area from 2007 to 2018. Residential exposure to benzene (C6H6), NO2, O3, PM10, PM2.5 and SO2 was estimated through FARM dispersion models with 1-4 km2 resolution. Risks were computed for interquartile range (IQR) increases of each pollutant. Incidence of dementia and PD was determined combining electronic health records. We used Cox proportional hazard regression with age as time axis and sex, socio-economic position (SEP) and municipality of residence as covariates. Study population was formed by 53 % females, 65 % 40-64 years old, 32 % medium-low SEP. Among 40+ years-old individuals, increased risks (HR; 95 % CIs) of dementia resulted from IQR increases of C6H6 (1.15; 1.11-1.18), NO2 (1.17; 1.14-1.21), PM10 (1.08; 1.04-1.11) and PM2.5 (1.10; 1.07-1.13). Increased risks of PD resulted from IQR increases of O3 (1.17; 1.14-1.21) and PM2.5 (1.02; 1.00-1.05). Vascular dementia's risk increases resulted from IQR increases of NO2 and PM2.5. Results for dementia and PD varied based on the pollutant analyzed. Our results concord with previous literature and the biological mechanisms that link air pollution to neurodegeneration. Air pollution might be a risk factor for dementia and PD.
Collapse
Affiliation(s)
| | - Chiara Badaloni
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Daniela Porta
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Paola Michelozzi
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| |
Collapse
|
3
|
Liu X, Zhang X, Chang T, Zhao Z, Zhang Y, Yang X, Lu M. Causal relationships between genetically predicted particulate air pollutants and neurodegenerative diseases: A two-sample Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116960. [PMID: 39208585 DOI: 10.1016/j.ecoenv.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Accumulating observational studies have linked particulate air pollutants to neurodegenerative diseases (NDDs). However, the causal links and the direction of their associations remain unclear. Therefore, we adopted a two-sample Mendelian randomization (TSMR) design using the GWAS-based genetic instruments of particulate air pollutants (PM2.5 and PM10) from the UK Biobank to explore their causal influence on four common neurodegenerative diseases. Estimates of causative relationships were generated by the Inverse variance weighted (IVW) method with multiple sensitive analyses. The heterogeneity and pleiotropy tests were additionally performed to verify whether our findings were robust. Genetically predicted PM2.5 and PM10 could elevate the occurrence of AD (odds ratio [OR] = 2.22, 95 % confidence interval [CI] 1.53-3.22, PIVW = 2.85×10-5, PFalsediscovery rate[FDR]= 2.85×10-4 and OR = 2.41, 95 % CI: 1.26-4.60, PIVW = 0.008, PFDR=0.039, respectively). The results were robust in sensitive analysis. However, no evidence of causality was found for other NDDs. Our present study suggests that PM2.5 and PM10 have a detrimental effect on AD, which indicates that improving air quality to prevent AD may have pivotal public health implications.
Collapse
Affiliation(s)
- Xinjie Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuening Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tongmin Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengle Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Chen TB, Liang CS, Chang CM, Yang CC, Yu HL, Wu YS, Huang WJ, Tsai IJ, Yan YH, Wei CY, Yang CP. Association Between Exposure to Particulate Matter and the Incidence of Parkinson's Disease: A Nationwide Cohort Study in Taiwan. J Mov Disord 2024; 17:313-321. [PMID: 38887056 PMCID: PMC11300401 DOI: 10.14802/jmd.24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Emerging evidence suggests that air pollution exposure may increase the risk of Parkinson's disease (PD). We aimed to investigate the association between exposure to fine particulate matter (PM2.5) and the risk of incident PD nationwide. METHODS We utilized data from the Taiwan National Health Insurance Research Database, which is spatiotemporally linked with air quality data from the Taiwan Environmental Protection Administration website. The study population consisted of participants who were followed from the index date (January 1, 2005) until the occurrence of PD or the end of the study period (December 31, 2017). Participants who were diagnosed with PD before the index date were excluded. To evaluate the association between exposure to PM2.5 and incident PD risk, we employed Cox regression to estimate the hazard ratio and 95% confidence interval (CI). RESULTS A total of 454,583 participants were included, with a mean (standard deviation) age of 63.1 (9.9) years and a male proportion of 50%. Over a mean follow-up period of 11.1 (3.6) years, 4% of the participants (n = 18,862) developed PD. We observed a significant positive association between PM2.5 exposure and the risk of PD, with a hazard ratio of 1.22 (95% CI, 1.20-1.23) per interquartile range increase in exposure (10.17 μg/m3) when adjusting for both SO2 and NO2. CONCLUSION We provide further evidence of an association between PM2.5 exposure and the risk of PD. These findings underscore the urgent need for public health policies aimed at reducing ambient air pollution and its potential impact on PD.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Hwa-Lung Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Yuh-Shen Wu
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
| | - Winn-Jung Huang
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Horng Yan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Cristaldi A, Oliveri Conti G, Pellitteri R, La Cognata V, Copat C, Pulvirenti E, Grasso A, Fiore M, Cavallaro S, Dell'Albani P, Ferrante M. In vitro exposure to PM 2.5 of olfactory Ensheathing cells and SH-SY5Y cells and possible association with neurodegenerative processes. ENVIRONMENTAL RESEARCH 2024; 241:117575. [PMID: 37925127 DOI: 10.1016/j.envres.2023.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
PM2.5 exposure represents a risk factor for the public health. PM2.5 is able to cross the blood-alveolar and blood-brain barriers and reach the brain through three routes: nasal olfactory pathway, nose-brain pathway, blood-brain barrier pathway. We evaluated the effect of PM2.5 to induce cytotoxicity and reduced viability on in vitro cultures of OECs (Olfactory Ensheathing Cells) and SH-SY5Y cells. PM2.5 samples were collected in the metropolitan area of Catania, and the gravimetric determination of PM2.5, characterization of 10 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs) were carried out for each sample. PM2.5 extracts were exposed to cultures of OECs and SH-SY5Y cells for 24-48-72 h, and the cell viability assay (MTT) was evaluated. Assessment of mitochondrial and cytoskeleton damage, and the assessment of apoptotic process were performed in the samples that showed lower cell viability. We have found an annual average value of PM2.5 = 16.9 μg/m3 and a maximum value of PM2.5 = 27.6 μg/m3 during the winter season. PM2.5 samples collected during the winter season also showed higher concentrations of PAHs and trace elements. The MTT assay showed a reduction in cell viability for both OECs (44%, 62%, 64%) and SH-SY5Y cells (16%, 17%, 28%) after 24-48-72 h of PM2.5 exposure. Furthermore, samples with lower cell viability showed a decrease in mitochondrial membrane potential, increased cytotoxicity, and also impaired cellular integrity and induction of the apoptotic process after increased expression of vimentin and caspase-3 activity, respectively. These events are involved in neurodegenerative processes and could be triggered not only by the concentration and time of exposure to PM2.5, but also by the presence of trace elements and PAHs on the PM2.5 substrate. The identification of more sensitive cell lines could be the key to understanding how exposure to PM2.5 can contribute to the onset of neurodegenerative processes.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy.
| | - Rosalia Pellitteri
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Valentina La Cognata
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Chiara Copat
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Eloise Pulvirenti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Alfina Grasso
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Sebastiano Cavallaro
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Paola Dell'Albani
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy
| |
Collapse
|
6
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
7
|
Gong Y, Zhang X, Zhao X, Chang H, Zhang J, Gao Z, Mi Y, Chen Y, Zhang H, Huang C, Yu Z. Global ambient particulate matter pollution and neurodegenerative disorders: a systematic review of literature and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39418-39430. [PMID: 36763275 DOI: 10.1007/s11356-023-25731-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Previous studies on particulate matter (PM) exposure and neurodegenerative disorders showed inconsistent results, and few studies systematically examined the long-term effect of PM on neurodegenerative diseases, including all-cause dementia, Alzheimer's disease, Parkinson's disease, vascular dementia, amyotrophic lateral sclerosis, and cognitive function decline. We systematically searched for published studies in PubMed, Embase, Cochrane Library, and Web of Science up to October 31, 2022. To facilitate a comparison of effect sizes from different studies, we standardized units across studies to a 10 μg/m3 increase for PM. Heterogeneity was assessed by Cochran's Q test and I2 statistic. Publication bias was evaluated using funnel plots and Egger's tests. Subgroup analysis, meta-regression, and sensitivity analysis were performed. The protocol for this review was registered with PROSPERO (CRD42021277112). Of the 3403 originally identified studies, a meta-analysis was finally performed in 49 studies. The results showed that there was a significant positive association between long-term PM2.5 exposure and all-cause dementia, Alzheimer's disease as well as Parkinson's disease, with pooled OR of 1.30 (95%CI: 1.14, 1.47, I2 = 99.3%), 1.65 (95%CI: 1.37, 1.94, I2 = 98.2%), and 1.17 (95%CI: 1.00, 1.33, I2 = 91.8%). A positive association between PM10 and vascular dementia was observed (OR = 1.12, 95%CI: 1.04, 1.21, I2 = 0.0%). Association between PM exposure and decreased cognitive function score was found. Our results highlight the important role of PM pollution, particularly PM2.5, in the risk of age-related neurodegenerative diseases and cognitive function decline.
Collapse
Affiliation(s)
- Yuting Gong
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Chen
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.,NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| |
Collapse
|
8
|
Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders. Hum Exp Toxicol 2023; 42:9603271231191436. [PMID: 37537902 DOI: 10.1177/09603271231191436] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.
Collapse
Affiliation(s)
- Xin-Qi Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Chao Song
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tian-Liang Zhang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yong-Ping Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Li Yu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Malek AM, Arena VC, Song R, Whitsel EA, Rager JR, Stewart J, Yanosky JD, Liao D, Talbott EO. Long-term air pollution and risk of amyotrophic lateral sclerosis mortality in the Women's Health Initiative cohort. ENVIRONMENTAL RESEARCH 2023; 216:114510. [PMID: 36220441 DOI: 10.1016/j.envres.2022.114510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no cure. Although the etiology of sporadic ALS is largely unknown, environmental exposures may affect ALS risk. OBJECTIVE We investigated relationships between exposure to long-term ambient particulate matter (PM) and gaseous air pollution (AP) and ALS mortality. METHODS Within the Women's Health Initiative (WHI) cohort of 161,808 postmenopausal women aged 50-79 years at baseline (1993-1998), we performed a nested case-control study of 256 ALS deaths and 2486 matched controls with emphasis on PM constituents (PM2.5, PM10, and coarse PM [PM10-2.5]) and gaseous pollutants (NOx, NO2, SO2, and ozone). Time-varying AP exposures estimates were averaged 5, 7.5, and 10 years prior to ALS death using both a GIS-based spatiotemporal generalized additive mixed model and ordinary kriging (empirical and multiple imputation, MI). Conditional logistic regression was used to estimate the relative risk of ALS death. RESULTS In general, PM2.5 and PM10-related risks were not significantly elevated using either method. However, for PM10-2.5, odds ratios (ORs) were >1.0 for both methods at all time periods using MI and empirical data for PM10-2.5 (coarse) except for 5 and 7.5 years using the kriging method with covariate adjustment. CONCLUSION This investigation adds to the body of information on long-term ambient AP exposure and ALS mortality. Specifically, the 2019 US Environmental Protection Agency (EPA) Integrated Science Assessment summarized the neurotoxic effects of PM2.5, PM10, and PM10-2.5. The conclusion was that evidence of an effect of coarse PM is suggestive but the data is presently not sufficient to infer a causal relationship. Further research on AP and ALS is warranted. As time from symptom onset to death in ALS is ∼2-4 years, earlier AP measures may also be of interest to ALS development. This is the first study of ALS and AP in postmenopausal women controlling for individual-level confounders.
Collapse
Affiliation(s)
- Angela M Malek
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Vincent C Arena
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ruopu Song
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Judith R Rager
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - James Stewart
- Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, Penn State University, Hershey, PA, 17033, USA
| | - Duanping Liao
- Department of Public Health Sciences, Penn State University, Hershey, PA, 17033, USA
| | - Evelyn O Talbott
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
10
|
Khreis H, Bredell C, Wai Fung K, Hong L, Szybka M, Phillips V, Abbas A, Lim YH, Jovanovic Andersen Z, Woodcock J, Brayne C. Impact of long-term air pollution exposure on incidence of neurodegenerative diseases: A protocol for a systematic review and exposure-response meta-analysis. ENVIRONMENT INTERNATIONAL 2022; 170:107596. [PMID: 36308811 DOI: 10.1016/j.envint.2022.107596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ambient air pollution is a pervasive and ubiquitous hazard, which has been linked to premature morbidity and a growing number of morbidity endpoints. Air pollution may be linked to neurodegeneration, and via this or other pathways, to neurodegenerative diseases. Emerging evidence suggests that air pollution may contribute to neurodegenerative diseases such as dementia, Parkinson's Disease (PD), Multiple Sclerosis (MS) and Motor Neuron Diseases (MND), although this evidence remains inconsistent and very limited for MS and MND. In addition, this evidence base is rapidly emerging and would benefit from a wide and critical synthesis, including a better understanding of heterogeneity. OBJECTIVES In this paper, we present a protocol for a systematic review and meta-analysis and specify our methods a priori. The main aim of the planned systematic review is to answer the question of whether long-term exposure (>1 year) to ambient (outdoor) air pollution (exposure, compared to lower exposure) increases the risk of adult (population) incidence of neurodegenerative diseases (outcomes) in epidemiological observational studies (study design). Another aim is to meta-analyze the associations between long-term exposure to ambient air pollutants and the risk of the selected outcomes and assess the shape of exposure-response functions. To set the stage for the proposed work, we also overview the existing epidemiological evidence in this protocol, but do not critically evaluate it, as these results will be fully presented in the planned systematic review. SEARCH AND STUDY ELIGIBILITY We will search the electronic databases Medline (via Ovid), Embase (via Ovid), Cochrane Library, Cinahl (via Ebscohost), Global Health (via Ebscohost), PsycINFO (via Ebscohost), Scopus, Web of Science (Core Collection), from inception to October 2022. Eligible studies must contain primary research investigating the link between 1-year + exposure to any outdoor air pollutant, from any source, and dementia, PD, MS, and MND, or dementia subtypes: Alzheimer's Disease, vascular dementia, and mixed dementia. The search strategy and eligibility criteria are pre-determined and described in full in this protocol. STUDY APPRAISAL AND SYNTHESIS METHODS Articles will be stored and screened using Rayyan QCRI. Title and abstract screening, full text review, data extraction, risk of bias assessment and data preparation for statistical analysis will be conducted independently by two reviewers using pre-defined forms and criteria, described in this protocol. All these steps will also be piloted and the forms and/or methods adapted if issues arise. Meta-analysis and assessment of the shape of the exposure-response functions will be conducted if four independent exposure-outcomes pairs are available, and the remainder of results will be synthesized in the forms of tables and via a narrative summary. Certainty in the body of evidence will be assessed using the OHAT approach. This protocol describes the planned analysis and synthesis a priori and serves to increase transparency and impact of this systematic review and meta-analysis.
Collapse
Affiliation(s)
- Haneen Khreis
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom.
| | - Christiaan Bredell
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Kwan Wai Fung
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Lucy Hong
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Magdalena Szybka
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Veronica Phillips
- University of Cambridge Medical Library, University of Cambridge School of Clinical Medicine, Hills Rd, Cambridge CB2 0SP, United Kingdom
| | - Ali Abbas
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Youn-Hee Lim
- Section of Environmental and Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 15 Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental and Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 15 Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - James Woodcock
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge CB2 0SR, United Kingdom
| |
Collapse
|
11
|
Ren F, Xu X, Xu J, Mei Y, Zhang J, Wang X, Li F. Compound essential oils relieve oxidative stress caused by PM 2 .5 exposure by inhibiting autophagy through the AMPK/mTOR pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1765-1774. [PMID: 34037319 DOI: 10.1002/tox.23297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5 ) potentially damages the respiratory system and causes respiratory diseases. Compound essential oils (CEOs) have been shown to alleviate the damage to the lung and macrophages caused by PM2.5 . However, the effect of PM2.5 exposure on the brain has rarely been investigated. When oxidative stress occurs in the brain, it readily causes neurological diseases. Autophagy is intimately involved in many physiological processes, especially processes important for the brain. Blocked or excessive autophagy causes a series of brain diseases, such as cerebral ischemia and stroke. This study investigated whether CEOs regulate excessive autophagy and reduce the oxidative stress caused by PM2.5 in the brain and BV2 microglial cells. PM2.5 increased the levels of ROS, Nox2, NF-κB and MDA while decreasing superoxide dismutase and HO-1 levels, which led to oxidative stress in the brain. The increased LC3 level and decreased P62 level suggested that PM2.5 exposure increased the level of autophagy. After exposure to PM2.5 , the levels of 5'-adenosine monophosphate-activated protein kinase (AMPK) increased, while the levels of mammalian target of rapamycin (mTOR) decreased, suggesting that PM2.5 might induce autophagy by activating the AMPK/mTOR pathway. In addition, CEOs alleviated oxidative stress and autophagy induced by PM2.5 . Therefore, we concluded that CEOs reduce oxidative stress induced by PM2.5 exposure by inhibiting autophagy via the AMPK/mTOR signaling pathway, and these findings provide new opportunities for the prevention of PM2.5 -induced brain diseases.
Collapse
Affiliation(s)
- Fei Ren
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuhui Mei
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jiahua Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xuguang Wang
- Environmental Monitoring Station of Langfang, Langfang Environmental Protection Bureau, Langfang, Hebei Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
12
|
Kawada T. Letter to the Editor regarding Wang Y, Liu Y, Yan H. 2020. Effect of long-term particulate matter exposure on Parkinson's risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1759-1760. [PMID: 33411167 DOI: 10.1007/s10653-020-00789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
13
|
The Impact of Air Pollution on Neurodegenerative Diseases. Ther Drug Monit 2021; 43:69-78. [PMID: 33009291 DOI: 10.1097/ftd.0000000000000818] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the development of industrialization in human society, ambient pollutants are becoming more harmful to human health. Epidemiological and toxicological studies indicate that a close relationship exists between particulate matter with a diameter ≤2.5 µm (PM2.5) and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). To further confirm the relationship, we focus on possible relevant mechanisms of oxidative stress and neuroinflammation underlying the association between PM2.5 and neurodegenerative diseases in the review. METHODS A literature search was performed on the studies about PM2.5 and neurodegenerative diseases via PubMed. A total of 113 articles published were selected, and 31 studies were included. RESULTS PM2.5 can enter the central nervous system through 2 main pathways, the blood-brain barrier and olfactory neurons. The inflammatory response and oxidative stress are 2 primary mechanisms via which PM2.5 leads to toxicity in the brain. PM2.5 abnormally activates microglia, inducing the neuroinflammatory process. Inflammatory markers such as IL-1β play an essential role in neurodegenerative diseases such as AD and PD. Moreover, the association between lipid mechanism disorders related to PM2.5 and neurodegenerative diseases has been gaining momentum. CONCLUSIONS In conclusion, PM2.5 could significantly increase the risk of neurological disorders, such as AD and PD. Furthermore, any policy aimed at reducing air-polluting emissions and increasing air quality would be protective in human beings.
Collapse
|