1
|
Deng Q, Sun G, Li F, Guo L, Shi D, Zhang L, Sun Z, Yang J. Assessment of heavy metal pollution in sediments from the urban section of Yihe River, Linyi City, China. PLoS One 2025; 20:e0318579. [PMID: 39946448 PMCID: PMC11824964 DOI: 10.1371/journal.pone.0318579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The Yihe River is the largest mountain torrent river in Shandong Province, which plays an important role in flood control, irrigation and climate regulation. Due to the impacts of the upstream and urban domestic sewage, as well as industrial and agricultural wastewater, the Linyi City section of the Yihe River is expected to have a high risk of metal pollution. Sediments are the main reservoir and potential release source of metals (metalloid) in river systems. Assessment of metals in sediments can identify anthropogenic pollution. In this study, 25 sediment samples were collected from the Linyi City section of the Yihe River and its tributaries, and the concentration of As, Cd, Cr, Cu, Ni, Pb and Zn were quantified by inductively coupled plasma mass spectrometry (ICP-MS), and the concentration of Hg was determined by atomic fluorescence spectrometry (AFS). The pollution levels were evaluated by determining the contamination factor, pollution load index, geoaccumulation index, potential ecological risk assessment and toxicity risk index. Correlation analysis and absolute principal component-multiple linear regression (APCS-MLR) were used to conduct source apportionment. Cr, Cu, Pb, Zn, Ni, Cd, As, and Hg were detected in all sediment samples. Overall, the concentration of metals (metalloid) in the sediments of the main stream of the Yihe River is mostly within the environmental background value, and the overall state is from no pollution to slightly polluted, while the tributaries of the Yihe River are in a slightly polluted state. Hg and Cd are the two main metal pollutants in the surface sediments of the study area, with the average content of 1.65 and 1.11 times the background value, respectively. Most areas of the main stream of the Yihe River are free of metal pollution, with low ecological risk and no toxicity risk. The ecological risks in the tributaries (Suhe River, Benghe River, Liuqinghe River) and the river center island (Yihe River North Island) are high and assessed as presenting low toxicity. Source analysis showed that Cr, Ni, Cu, Zn, and As mainly come from natural sources and agricultural activities, while Cd, Pb, and Hg are mainly the result of transportation and industry. The results help us understand the distribution and pollution of metals (metalloid) in the river sediments, and also provide management support to local environmental management departments and relevant national departments.
Collapse
Affiliation(s)
- Qinghai Deng
- Collage of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China
| | - Guizong Sun
- Collage of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China
| | - Fuquan Li
- The Seventh Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Linyi, Shandong Province, China
| | - Lei Guo
- The Seventh Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Linyi, Shandong Province, China
| | - Dan Shi
- The Seventh Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Linyi, Shandong Province, China
| | - Liping Zhang
- Collage of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China
| | - Zhenzhou Sun
- Collage of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China
| | - Jingjing Yang
- Collage of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Guo Z, Wang M, Pan Y, Lu H, Pan S. Ecological assessment of stream water polluted by phosphorus chemical plant: Physiological, biochemical, and molecular effects on zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 247:118173. [PMID: 38224935 DOI: 10.1016/j.envres.2024.118173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The rapid development of the phosphorus chemical industry has caused serious pollution problems in the regional eco-environment. However, understanding of their ecotoxic effects remains limited. This study aimed to investigate the developmental toxicity of a stream polluted by a phosphorus chemical plant (PCP) on zebrafish embryos. For this, zebrafish embryos were exposed to stream water (0, 25, 50, and 100% v/v) for 96 h, and developmental toxicity, oxidative stress, apoptosis, and DNA damage were assessed. Stream water-treated embryos exhibited decreased hatching rates, heart rates, and body lengths, as well as increased mortality and malformation rates. The general morphology score system indicated that the swim bladder and pigmentation were the main abnormal morphological endpoints. Stream water promoted antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx)), lipid peroxidation, and DNA damage. It also triggered apoptosis in the embryos' heads, hearts, and spines by activating apoptotic enzymes (Caspase-3 and Caspase-9). Additionally, stream water influenced growth, oxidative stress, and apoptosis-related 19 gene expression. Notably, tyr, sod (Mn), and caspase9 were the most sensitive indicators of growth, oxidative stress, and apoptosis, respectively. The current trial concluded that PCP-polluted stream water exhibited significant developmental toxicity to zebrafish embryos, which was regulated by the oxidative stress-mediated activation of endogenous apoptotic signaling pathways.
Collapse
Affiliation(s)
- Ziyu Guo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Min Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongliang Lu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Sha Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
3
|
Uddin MG, Diganta MTM, Sajib AM, Rahman A, Nash S, Dabrowski T, Ahmadian R, Hartnett M, Olbert AI. Assessing the impact of COVID-19 lockdown on surface water quality in Ireland using advanced Irish water quality index (IEWQI) model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122456. [PMID: 37673321 DOI: 10.1016/j.envpol.2023.122456] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The COVID-19 pandemic has significantly impacted various aspects of life, including environmental conditions. Surface water quality (WQ) is one area affected by lockdowns imposed to control the virus's spread. Numerous recent studies have revealed the considerable impact of COVID-19 lockdowns on surface WQ. In response, this research aimed to assess the impact of COVID-19 lockdowns on surface water quality in Ireland using an advanced WQ model. To achieve this goal, six years of water quality monitoring data from 2017 to 2022 were collected for nine water quality indicators in Cork Harbour, Ireland, before, during, and after the lockdowns. These indicators include pH, water temperature (TEMP), salinity (SAL), biological oxygen demand (BOD5), dissolved oxygen (DOX), transparency (TRAN), and three nutrient enrichment indicators-dissolved inorganic nitrogen (DIN), molybdate reactive phosphorus (MRP), and total oxidized nitrogen (TON). The results showed that the lockdown had a significant impact on various WQ indicators, particularly pH, TEMP, TON, and BOD5. Over the study period, most indicators were within the permissible limit except for MRP, with the exception of during COVID-19. During the pandemic, TON and DIN decreased, while water transparency significantly improved. In contrast, after COVID-19, WQ at 7% of monitoring sites significantly deteriorated. Overall, WQ in Cork Harbour was categorized as "good," "fair," and "marginal" classes over the study period. Compared to temporal variation, WQ improved at 17% of monitoring sites during the lockdown period in Cork Harbour. However, no significant trend in WQ was observed. Furthermore, the study analyzed the advanced model's performance in assessing the impact of COVID-19 on WQ. The results indicate that the advanced WQ model could be an effective tool for monitoring and evaluating lockdowns' impact on surface water quality. The model can provide valuable information for decision-making and planning to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Md Galal Uddin
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland.
| | - Mir Talas Mahammad Diganta
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| | - Abdul Majed Sajib
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| | - Azizur Rahman
- School of Computing, Mathematics and Engineering, Charles Sturt University, Wagga Wagga, Australia; The Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, Australia
| | - Stephen Nash
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland
| | | | - Reza Ahmadian
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AQ, UK
| | - Michael Hartnett
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Agnieszka I Olbert
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| |
Collapse
|
4
|
Zhou H, Luo X, Wang S, Wang Z, Chen Y, Li X, Tan Z. Findings on agricultural cleaner production in the three Gorges Reservoir Area. Heliyon 2023; 9:e14477. [PMID: 36994411 PMCID: PMC10040507 DOI: 10.1016/j.heliyon.2023.e14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The 'rural revitalization strategy' is important to achieve sustainable development in the Three Gorges Reservoir Area (TGRA), the largest reservoir in China, located in the poverty alleviation region of the Qinling-Daba mountains, and characterized as mountainous and hilly dominated by backwards resettlements. Pig farming around the reservoir area is a key industry, accounting for 0.90% of the arable land area in the country, while the annual pig market represents a 1.37% share of the national figure. Here, 12 study sites were investigated on-site for understanding agricultural green development in the TGRA. We found two main prevailing models: one of ecological circulation (EC), based on animal husbandry and recycling. Of the 12 site, six cases of the ecological circulation model relied on pig husbandry, combined with cropping (grains/fruits/vegetables) by eco-industrial chains, such as pig-biogas-fruit (grain/vegetables), to prevent environmental pollution, while promoting agricultural economic growth by recycling fecal residues and wastewater (FSW) from pig-husbandry facilities to the fields. Our analysis predicted that a farm holding 10,000 pigs may save inorganic nitrogen and phosphorus fertilizers by as much as 74.36 and 11.15 ton·a-1, respectively. On the other hand, five cases of ecological models oriented towards agritourism provided tourists with high-quality ecological products while coordinating environment protection with economic development. In addition, 11 research points applied water and fertilizer integration system for the purpose of saving water. However, lack of sufficient supporting arable land made intensive pig farming a risk of ecological degradation. Green control technologies are rarely used leading to an increase in the type and amount of pesticides. Our study has theoretical and practical significance for decision-makers to promote agricultural cleaner production (ACP).
Collapse
Affiliation(s)
- Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiaolan Luo
- Institute of Safety, Environmental Protection and Technical Supervision, PetroChina Southwest Oil & Gas Field Company, Chengdu, Sichuan, 610041, China
| | - Shuai Wang
- Chongqing Agricultural Technology Extension Station, Chongqing, 401121, China
| | - Zhaoli Wang
- Chengdu Pollution Resource Monitoring Center, Chengdu, 610011, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
- Corresponding author.
| |
Collapse
|
5
|
Cai Y, Mao L, Deng X, Zhou C, Zhang Y. Trace elements in surface sediments from Xinyanggang River of Jiangsu Province, China: Spatial distribution, risk assessment and source appointment. MARINE POLLUTION BULLETIN 2023; 187:114550. [PMID: 36608478 DOI: 10.1016/j.marpolbul.2022.114550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The Xinyanggang River in Yancheng City, one of the essential rivers entering the Yellow sea, has imported abundant pollutants to the coast of Jiangsu Province. Trace elements (Cr, Ni, Cu, Zn, As, Rb, Sr, Mo, Pb, Th, U, Sc, Ga, Se, Zr, Nb, and Sn) in surface sediments in the Xinyanggang River were measured to analyze the spatial distribution, risk assessment, and source appointment. The results showed that the parts of 17 trace elements presented high average values in river sediments, such as Zr (309.19 mg/kg), Sr (182.72 mg/kg), Zn (77.67 mg/kg), and Cr (70.63 mg/kg). Compared with some coastal rivers, the Xinyanggang River was polluted by certain trace elements, such as Cr, Zn, and As. Based on the analysis of the enrichment factor (EF), the contamination factor (CF), the pollution load index (PLI), and the geoaccumulation index (Igeo), trace elements in sediments showed unpolluted to moderate contamination and mild to moderate enrichment. Among them, Zn, Pb, and Sn were highly polluted. The multivariate analysis, the principal component analysis-multiple linear regression (APCS-MLR) model, and the Unmix model identified four contributing trace element sources. Cr, Th, U, Se, Zr, and Nb originated from manufacturing industries and hydrodynamic transport erosion. Ni, Rb, Sc, and Ga were attributed to natural source. Cu, Zn, Mo, Pb, and Sn were contributed from mixed sources including industrial wastewater and transportation emissions. As and Sr were associated mainly with mixed sources of agriculture and combustion. These four sources of metals accounted for 22.5 %, 5.7 %, 15.3 %, and 11.1 % by using the APCS-MLR model, whereas 22.9 %, 39.7 %, 17.5 %, and 19.9 % by using the Unmix model, respectively.
Collapse
Affiliation(s)
- Yuqi Cai
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Longjiang Mao
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaoqian Deng
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaofan Zhou
- Jiangsu Provincial Environmental Monitoring Center, Nanjing 210019, China
| | - Yuanzhi Zhang
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
6
|
Jawad-Ul-Haque, Siddique MAB, Islam MS, Ali MM, Tokatli C, Islam A, Pal SC, Idris AM, Malafaia G, Islam ARMT. Effects of COVID-19 era on a subtropical river basin in Bangladesh: Heavy metal(loid)s distribution, sources and probable human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159383. [PMID: 36240937 PMCID: PMC9551124 DOI: 10.1016/j.scitotenv.2022.159383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2023]
Abstract
The COVID-19 era has profoundly affected everyday human life, the environment, and freshwater ecosystems worldwide. Despite the numerous influences, a strict COVID-19 lockdown might improve the surface water quality and thus provide an unprecedented opportunity to restore the degraded freshwater resource. Therefore, we intend to investigate the spatiotemporal water quality, sources, and preliminary health risks of heavy metal(loid)s in the Karatoya River basin (KRB), a tropical urban river in Bangladesh. Seventy water samples were collected from 35 stations in KRB in 2019 and 2022 during the dry season. The results showed that the concentrations of Ni, Cu, Zn, Pb, Cd, and Cr were significantly reduced by 89.3-99.7 % during the post-lockdown period (p < 0.05). However, pH, Fe, Mn, and As concentrations increased due to the rise of urban waste and the usage of disinfectants during the post-lockdown phase. In the post-lockdown phase, the heavy metal pollution index, heavy metal evaluation index, and Nemerow's pollution index values lessened by 8.58 %, 42.86 %, and 22.86 %, respectively. Besides, the irrigation water quality indices also improved by 59 %-62 %. The total hazard index values increased by 24 % (children) and 22 % (adults) due to the rise in Mn and As concentrations during the lockdown. In comparison, total carcinogenic risk values were reduced by 54 % (children) and 53 % (adults) in the post-lockdown. We found no significant changes in river flow, rainfall, or land cover near the river from the pre to post-lockdown phase. The results of semivariogram models have demonstrated that most attributes have weak spatial dependence, indicating restricted industrial and agricultural effluents during the lockdown, significantly improving river water quality. Our study confirms that the lockdown provides a unique opportunity for the remarkable improvement of degraded freshwater resources. Long-term management policies and regular monitoring should reduce river pollution and clean surface water.
Collapse
Affiliation(s)
- Jawad-Ul-Haque
- Department of Disaster Management, Begum Bekeya University, Rangpur 5400, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Cem Tokatli
- Trakya University, Laboratory Technology Department, İpsala, Edirne,Turkey
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata 700 014, West Bengal, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Abubakar M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | | |
Collapse
|
7
|
Haghnazar H, Belmont P, Johannesson KH, Aghayani E, Mehraein M. Human-induced pollution and toxicity of river sediment by potentially toxic elements (PTEs) and accumulation in a paddy soil-rice system: A comprehensive watershed-scale assessment. CHEMOSPHERE 2023; 311:136842. [PMID: 36273611 DOI: 10.1016/j.chemosphere.2022.136842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to assess pollution by potentially toxic elements (PTEs) in the Zarjoub and Goharroud river basins in northern Iran. Due to exposure to various types of pollution sources, these rivers are two of the most polluted rivers in Iran. They also play an important role in irrigation of paddy fields in the study area, increasing concerns about the contamination of rice grains by PTEs. Hence, we analyzed the concentrations of eight PTEs (i.e., As, Co, Cr, Cu, Mn, Ni, Pb, and Zn) at ten channel bed sediment sampling sites in each river, fifteen samples of paddy soils and fifteen co-located rice samples in the relevant watersheds. Results of the index-based assessment indicate moderate to heavy pollution and moderate toxicity for sediments in the Goharroud River, while both pollution and toxicity of the Zarjoub River sediment were characterized as moderate. Paddy soils in the watersheds were found to be moderate to heavily polluted by PTEs, but the values of the rice bioconcentration factor (RBCF) indicated intermediate absorption for Cu, Zn, and Mn, and weak and very weak absorption for Pb/Ni and As/Co/Cr, respectively. The concentration of Zn, Cu, Pb, and Cr was negatively correlated to the corresponding values of RBCF, highlighting the ability of rice grains to control bioaccumulation and regulate concentrations. Industrial/agricultural effluents, municipal wastewater, leachate of solid waste, traffic-related pollution, and weathering of parent materials were found to be responsible for pollution of the Zarjoub and Goharroud watersheds by PTEs. Mn, Cu, and Pb in rice grains might be responsible for non-carcinogenic diseases. Although weak absorption was observed for As and Cr in rice grains, the concentrations of these elements in rice grains indicate a high level of cancer risk if ingested. This study provides insights to control the pollution of sediment, paddy soils, and rice.
Collapse
Affiliation(s)
- Hamed Haghnazar
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Patrick Belmont
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Karen H Johannesson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran
| | | |
Collapse
|
8
|
Uddin MM, Peng G, Huang L. Trophic transfer, bioaccumulation, and potential health risk of trace elements in water and aquatic organisms of Yundang Lagoon at Xiamen in China. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Mazbah Uddin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guogan Peng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Spatial Distribution and Source Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh. WATER 2022. [DOI: 10.3390/w14091356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Pasur River is a vital reservoir of surface water in the Sundarbon area in Bangladesh. Mongla seaport is located on the bank of this river. Many industries and other commercial sectors situated in this port area are discharging waste into the river without proper treatment. For this reason, geospatial analysis and mapping of water pollutant distribution were performed to assess the physicochemical and toxicological situation in the study area. We used different water quality indices such as Metal Index (MI), Comprehensive Pollution Index (CPI), and Weighted Arithmetic Water Quality Index Method (WQI) to improve the understanding of pollution distribution and processes determining the quality of river water. Multivariate statistical methods were used to evaluate loads and sources of pollutants in the Pasur River system. The results indicate that the sources of contaminants are both geogenic and anthropogenic, including untreated or poorly treated wastewater from industries and urban domestic waste discharge. The concentration range of total suspended solid (TSS), chloride, iron (Fe), and manganese (Mn) were from 363.2 to 1482.7, 108.2 to 708.93, 1.13 to 2.75, and 0.19 to 1.41 mg/L, respectively, significantly exceeding the health-based guideline of WHO and Bangladeshi standards. The high Fe and Mn contents are contributions from geogenic and anthropogenic sources such as industrial waste and construction activities. The average pH value was 8.73, higher than the WHO and Bangladeshi standard limit. WQI (ranging from 391 to 1336), CPI (6.71 to 23.1), and MI (7.23 to 23.3) were very high and greatly exceeded standard limits indicating that the Pasur River water is highly polluted. The results of this study can be used as a first reference work for developing a surface water quality monitoring system and guide decisionmakers for priorities regarding wastewater treatment.
Collapse
|
10
|
Haghnazar H, Cunningham JA, Kumar V, Aghayani E, Mehraein M. COVID-19 and urban rivers: Effects of lockdown period on surface water pollution and quality- A case study of the Zarjoub River, north of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27382-27398. [PMID: 34981401 PMCID: PMC8723709 DOI: 10.1007/s11356-021-18286-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/19/2021] [Indexed: 05/15/2023]
Abstract
Due to the spreading of the coronavirus (COVID-19) in Iran, restrictions and lockdown were announced to control the infection. In order to determine the effects of the lockdown period on the status of the water quality and pollution, the concentrations of Al, As, Ba, Cr, Cu, Mo, Ni, Pb, Se, and Zn, together with Na+, Mg2+, Ca2+ and electrical conductivity (EC), were measured in the Zarjoub River, north of Iran, in both pre-lockdown and post-lockdown periods. The results indicated that water pollution and associated human health risk reduced by an average of 30% and 39%, respectively, during the lockdown period. In addition, the multi-purpose water quality index also improved by an average of 34%. However, the water salinity and alkalinity increased during the lockdown period due to the increase of municipal wastewater and the use of disinfectants. The major sources of pollution were identified as weathering, municipal wastewater, industrial and agricultural effluents, solid waste, and vehicular pollution. PCA-MLR receptor model showed that the contribution of mixed sources of weathering and municipal wastewater in water pollution increased from 23 to 50% during the lockdown period. However, the contribution of mixed sources of industrial effluents and solid wastes reduced from 64 to 45%. Likewise, the contribution of traffic-related sources exhibited a reduction from 13% in the pre-lockdown period to 5% together with agricultural effluent in the post-lockdown period. Overall, although the lockdown period resulted in positive impacts on diminishing the level of water pollution caused by industrial and vehicular contaminants, the increase of municipal waste and wastewater is a negative consequence of the lockdown period.
Collapse
Affiliation(s)
- Hamed Haghnazar
- Department of Watershed Sciences, Utah State University, Logan, UT , USA
| | - Jeffrey A Cunningham
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, USA
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban, 182,144, India
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran
| | - Mojtaba Mehraein
- Faculty of Engineering, Kharazmi University, 15,719-14,911, No.43 South Mofatteh Ave, Tehran, Iran.
| |
Collapse
|
11
|
Zhang S, Wang W, Wang F, Zhang D, Rose NL. Temporal-spatial variations, source apportionment, and ecological risk of trace elements in sediments of water-level-fluctuation zone in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18282-18297. [PMID: 34687419 DOI: 10.1007/s11356-021-17066-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The Three Gorges Reservoir (TGR) plays a crucial role in providing electricity for mega-cities across China. However, since the impoundment was completed in 2006, attention to environmental concerns has also been intensive. In order to determine the distribution, sources, and pollution status of trace elements in the water fluctuation zone of the TGR following ten years of repeated "submergence" and "exposure", we systematically collected 16 paired surface sediment samples (n = 32) covering the entire main body of the TGR in March 2018 (following 6 months of submergence) and September 2018 (after 6 months of exposure), and quantitatively analyzed 13 elements (e.g., Mn, Fe, V, Cr, Ni, Cu, Zn, As, Sr, Y, Zr, Ba, and Pb) using X-ray fluorescence spectrophotometry (XRF). The results showed that, except for Sr, concentrations of trace metals following submergence were generally higher than those after exposure due to the less settling of suspended solids at the faster flow velocity during the drawdown period. Assessment using enrichment factors (EFs) and a geo-accumulation index (Igeo) both characterized a relatively serious anthropogenic pollution status of metals in the upper reaches of the TGR with respect to the middle-lower reaches. Source apportionment by positive matrix factorization (PMF) analysis indicated that agricultural activities (24.8 and 24.3%, respectively) and industrial emissions (24.5 and 22.9%, respectively) were the two major sources in these two periods, followed by natural sources, domestic sewage, and ore mining. Ecological risk assessment showed that metalloid arsenic (As) could be the main potential issue of risk to aquatic organisms and human health. A new source-specific risk assessment method (pRI) combined with PMF revealed that agricultural activities could be the major source of potential ecological risk and should be prioritized as the focus of metal/metalloid risk management in the TGR.
Collapse
Affiliation(s)
- Siyuan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China
| | - Weiru Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China
| | - Fengwen Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China.
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China
| | - Neil L Rose
- Environmental Change Research Centre, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
Proshad R, Kormoker T, Abdullah Al M, Islam MS, Khadka S, Idris AM. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127030. [PMID: 34482078 DOI: 10.1016/j.jhazmat.2021.127030] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Metal accumulation (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in Korotoa River sediment was studied in order to determine the metal content, distribution, sources, and their possible ecological impacts on the riverine ecosystem. Our study found significant spatial patterns of toxic metal concentration and principal coordinate analysis (PCoA) accounted for 45.2% of spatial variation from upstream to downstream. Metal contents were compared to sediment quality standards and found all studied metal concentrations exceeded the Threshold Effect Level (TEL) whereas Cr and Ni surpassed probable effect levels. All metal concentrations were higher than Average Shale Value (ASV) except Mn and Hg. The positive matrix factorization (PMF) and absolute principal component score-multiple linear regression models (APCS-MLR) were applied to identify promising sources of metals in sediment samples. Both models identified three potential sources i.e. natural source, traffic emission, and industrial pollution, which accounted for 50.32%, 20.16%, and 29.51% in PMF model whereas 43.56%, 29.42%, and 27.02% in APCS-MLR model, respectively. Based on ecological risk assessment, pollution load index (7.74), potential ecological risk (1078.45), Nemerow pollution index (5.50), and multiple probable effect concentrations quality (7.73) showed very high contamination of toxic metal in sediment samples.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh
| | - Mamun Abdullah Al
- University of Chinese Academy of Sciences, Beijing 100049, China; Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, 8602 Patuakhali, Bangladesh
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 9004, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413 P.O. Box 9004, Saudi Arabia
| |
Collapse
|
13
|
Yang J, Xie Q, Wang Y, Wang J, Zhang Y, Zhang C, Wang D. Exposure of the residents around the Three Gorges Reservoir, China to chromium, lead and arsenic and their health risk via food consumption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112997. [PMID: 34808509 DOI: 10.1016/j.ecoenv.2021.112997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrological management of the Three Gorges Dam has resulted in the interception of heavy metals in the Three Gorges Reservoir (TGR). However, the exposure to heavy metals and health risks among local residents remained poorly understood. Here we collected 208 biomarker samples (hair) and 20 food species from typical regions in the TGR to assess the exposure levels of three toxic metals (Cr, Pb and As) in residents of the TGR, and subsequently investigated their health risk via dietary intake. Results indicated that hair Cr and As levels were below the reference value for normal people and threshold of skin lesions, respectively, whereas about 22% hair Pb exceeded the reference for clinical medicine, indicating a potential Pb exposure of local residents. Smoking habit and fish consumption were found to be predictors for hair Pb. In addition, the concentrations of heavy metals in all investigated food samples were below the limits of contaminants in food in China, except for Pb in the sweet potato and fish. The estimated daily intake of metals (DIMs) revealed that the intakes of Cr and As from studied food were under the recommended thresholds of Cr and As. However, the intake of Pb via diet exceeded the limit of the prevalence of chronic kidney disease and closed to the threshold for cardiovascular, which was probably associated with the high Pb concentrations of fish and sweet potato. Overall, residents around the TGR were at low exposure to Cr and As, but Pb exposure may need more attention.
Collapse
Affiliation(s)
- Jingwen Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qing Xie
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongjiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Department of Environment and Quality Test, Chongqing Chemical Industry Vocational College, Chongqing 401220, China
| | - Cheng Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Abdelhafiz MA, Seleem EMM, El Nazer HA, Zeid SAM, Salman SA, Meng B. Shallow groundwater environmental investigation at northeastern Cairo, Egypt: quality and photo-treatment evaluation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4533-4551. [PMID: 33900509 DOI: 10.1007/s10653-021-00933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Groundwater represents the primary source of freshwater for more than 35% of world people, and its contamination became a worldwide challenge. Egypt is suffering from water quantity and quality, especially in desert areas. El Obour city and environs Northeast Cairo face waterlogging owing to the elevated-shallow groundwater table. In the present research work, the water quality of the shallow groundwater aquifer was studied. The remediation efficiency of polluted water using photocatalytic treatment technique in the presence of modified nano-titania and solar radiation has also been investigated. Twenty-eight representative samples have been collected from different locations, and their microbial, physical, and chemical characteristics were determined. The average contents of Pb (214.96 µg/L), As (1517 µg/L), Cd (8.79 µg/L), total bacterial count (2.22 × 105 CFU/ml), and bacterial indicators (MPN-index/100 ml): total coliform (497.4), fecal coliform (358.3), and fecal streptococci (115.9) were higher than WHO permissible limits for drinking water, possibly due to higher industrialization, agricultural, and urbanization rates. The organic pollutants reached critical concentrations (chemical oxygen demand up to 960.8 mg O2/L). Most of the studied samples contained acceptable concentrations of the major ions, (e.g., K+, Mg2+, HCO3-), for drinking and irrigation purposes. The statistical analyses (e.g., principal component analysis and cluster analysis) pointed out the control of water-rock interaction and anthropogenic activities in water composition. The hydrochemical data show that most of the water samples (96.4%) are Na2SO4 and NaHCO3 type, indicating its meteoric origin. The contamination with human and animal fecal substances, NO3¯, and NH4+ was identified in all samples, which pointed out the control of anthropogenic activities in water pollution. The photocatalytic technique efficiently eliminated more than 82-95% of organic contents and microbial pollutants, respectively, but it was inefficient in reducing heavy metal levels. According to the current results, shallow groundwater injection into the deep aquifer must be constrained and reusable after treatment. Finally, more studies are imperative to disseminate the applied treatment techniques to elude bacteria and organic pollutants from water at a pilot scale.
Collapse
Affiliation(s)
- Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu district, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - El-Montser M Seleem
- Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Hossam A El Nazer
- Photochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Salah A M Zeid
- Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Salman A Salman
- Geological Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu district, Guiyang, 550081, China.
| |
Collapse
|
15
|
Proshad R, Zhang D, Idris AM, Islam MS, Kormoker T, Sarker MNI, Khadka S, Sayeed A, Islam M. Comprehensive evaluation of chemical properties and toxic metals in the surface water of Louhajang River, Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49191-49205. [PMID: 33932212 DOI: 10.1007/s11356-021-14160-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/23/2021] [Indexed: 04/16/2023]
Abstract
Louhajang River, Bangladesh, which crosses Tangail as a densely industrialized and urbanized city, supplies water for different purposes. This study reports the levels of pH, electrical conductivity (EC), and some toxic heavy metals in 40 water samples collected during the summer and winter seasons from Louhajang River. The winter season reported higher levels of the examined parameters than the summer season with significant variation (p < 0.05) for all parameters, with the exception of Cd. The metal contents were assessed against local and international standards for drinking, irrigation, and aquatic life purposes where different trends were observed. The heavy metal evaluation index and the ecological risk index reported low to moderate risks. The spatial distribution of metal contents assigned hot spots in some sites along the riverbed. The health risk assessment for three population categories, i.e., adult male, adult female, and children, was examined. Cr and Cd recorded hazard index > 1 in all cases, indicating possible non-cancer risk. The total carcinogenic risk values during both seasons were > 1.0 × 10-6, indicating possible cancer risk. The adopted collection of different approaches (comparison against standard levels of toxicants, statistical analysis, spatial distribution, and health risk assessment) successfully demonstrates a whole picture of the environmental status of Louhajang River, Bangladesh.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| | - Abubakr Mustafa Idris
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
| | - Md Nazirul Islam Sarker
- School of Political Science and Public Administration, Neijiang Normal University, Neijiang, 641100, China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Abu Sayeed
- Department of Post-Harvest Technology and Marketing, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
| |
Collapse
|
16
|
Karunanidhi D, Subramani T, Roy PD, Li H. Impact of groundwater contamination on human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:643-647. [PMID: 33486701 DOI: 10.1007/s10653-021-00824-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- D Karunanidhi
- Department of Civil Engineering, Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, 641062, India.
| | - T Subramani
- Department of Geology, College of Engineering Guindy (CEG), Anna University, Chennai, 600025, India
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, Ciudad de México, C.P, Mexico
| | - Hui Li
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|