1
|
Zhang Y, Sun L, Li X, Fu Z, Li Y, Sun W, Sun Y, Huang R, Guo M. Developing Eco-Friendly, High-Performance Soy Protein Plywood Adhesive via Core-Shell Hybridization and Borate Chemistry. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1144. [PMID: 40077370 PMCID: PMC11902272 DOI: 10.3390/ma18051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Developing eco-friendly, high-performance adhesives is crucial for sustainable industrial applications but remains a significant challenge. Herein, a synergistic strategy combining core-shell hybridization and borate chemistry was employed to fabricate a multifunctional soy protein (SPI) adhesive with excellent adhesion. Specifically, a reactive core-shell hybrid (POSS-U) was synthesized via free-radical polymerization using octavinyl-POSS as the core and urushiol (U) as the shell. Sodium borate (SB) was then added as a crosslinker, along with POSS-U and SPI, to prepare the SPI/POSS-U/SB adhesive. The SPI/POSS-U/SB adhesive exhibited a 100% increase in dry shear strength (2.46 MPa) and a wet shear strength of 0.74 MPa, meeting indoor application standards. Due to the thermal shielding and char formation of POSS and SB, the peak heat release rate of the modified adhesive reduced by 25.4%, revealing excellent flame retardancy. Additionally, the modified adhesive remained mold-free for 144 h due to the antifungal properties of urushiol and boron. This work provides an innovative approach for enhancing protein-based adhesives and contributes to the advancement of multifunctional composite materials.
Collapse
Affiliation(s)
- Yi Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (X.L.); (Z.F.); (Y.L.); (W.S.)
| | | | - Xinyu Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (X.L.); (Z.F.); (Y.L.); (W.S.)
| | - Ziye Fu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (X.L.); (Z.F.); (Y.L.); (W.S.)
| | - Yang Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (X.L.); (Z.F.); (Y.L.); (W.S.)
| | - Weisheng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (X.L.); (Z.F.); (Y.L.); (W.S.)
| | - Yawei Sun
- North Information Control Research Academy Group Co., Ltd., Nanjing 211100, China;
| | - Rongfeng Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Minghui Guo
- Key Laboratory of Bio-Based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| |
Collapse
|
2
|
Ramadhan SA, Ali DS. Innovations in Core-Shell Nanoparticles: Advancing Drug Delivery Solutions and Precision Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:73-86. [PMID: 39981668 DOI: 10.1089/omi.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Drug delivery innovation is an important pillar of systems pharmacology wherein nanotechnology offers significant prospects. This expert review examines and unpacks how core-shell nanoparticles (NPs) could revolutionize drug delivery systems and play a key role in advancing personalized and precision medicine. Core-shell NPs have gained attention as flexible tools for drug delivery due to their distinct structure, which features a core material enclosed by a protective shell. This setup offers multiple benefits, such as effective drug encapsulation, shielding the drug from degradation, and allowing for controlled release. Accordingly, the core serves as a safe storage area for the drug while the shell manages the release speed, providing added stability and supporting sustained delivery. By enabling targeted drug release, this controlled mechanism can help improve treatment outcomes and reduce side effects. Various materials, including polymers, lipids, and inorganic substances create these NPs. Biodegradable polymers, such as poly(lactic-co-glycolic acid) and poly(lactic acid), are popular choices because they offer adjustable degradation rates, which further control how the drug is released. These materials can be tailored for better drug loading, compatibility with the host organism, and specific chemical properties to suit different therapeutic needs. Research into core-shell NPs has been advancing in many therapeutic areas, highlighting their potential for drug delivery innovations. The potential of core-shell NPs to revolutionize drug delivery is not just a possibility but a promising reality that could significantly advance the field of personalized/precision medicine.
Collapse
Affiliation(s)
- Suren A Ramadhan
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
| | - Diyar S Ali
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
3
|
Fidelis MZ, Baroncello GB, Abreu E, Dos Santos Filho E, de Souza ÉCF, Lenzi GG, Brackmann R. TiO 2/Fe 2O 3 and Fe 2O 3/TiO 2 heterojunction nanocomposites applied to As(III) decontamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6839-6855. [PMID: 40016605 DOI: 10.1007/s11356-025-36156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Arsenic contamination in water, particularly in its toxic form As(III), is a significant environmental issue in Brazil and globally. To address this, simple oxides of Fe2O3 and TiO2, along with heterojunction structures TiO2/Fe2O3 and Fe2O3/TiO2, were synthesized using an adapted Pechini method for the decontamination of As(III) via heterogeneous photocatalysis. TiO2 exhibited only the anatase phase, while Fe2O3 showed only the hematite phase (α-Fe2O3). The Fe2O3/TiO2 structure displayed both the hematite and anatase phases, whereas the TiO2/Fe2O3 heterojunction exhibited the anatase, rutile, hematite, and maghemite (γ-Fe2O3) phases. The materials displayed micro/mesoporous characteristics, with surface areas ranging from 20 to 45 m2 g-1, and band gap energies in the range of 2.1 to 3 eV. Hematite was the most effective adsorbent for arsenic. Under UV light irradiation, photolysis achieved 87% oxidation of As(III) in 20 min. The decontamination efficiencies achieved were 63%, 88%, 88%, and 99% for Fe2O3, TiO2, Fe2O3/TiO2, and TiO2/Fe2O3, respectively. Catalyst reuse tests demonstrated excellent stability, with all catalysts maintaining over 80% decontamination efficiency after four cycles. These results highlight the promising potential of TiO2/Fe2O3 heterojunctions for efficient and sustainable As(III) decontamination from contaminated water.
Collapse
Affiliation(s)
- Michel Zampieri Fidelis
- Department of Chemical Engineering, State University of Maringá (UEM), Av. Colombo, 5790 - Bloco D90 - Zona 7, Maringá, Paraná, CEP 87020-680, Brazil.
| | - Gabriele Bolzan Baroncello
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Via Do Conhecimento, Km 01, Fraron, Pato Branco, Paraná, CEP 85503-390, Brazil
| | - Eduardo Abreu
- Department of Chemical Engineering, State University of Maringá (UEM), Av. Colombo, 5790 - Bloco D90 - Zona 7, Maringá, Paraná, CEP 87020-680, Brazil
| | - Edivaldo Dos Santos Filho
- Institute of Science and Technology - Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Rodovia MGT 367 - Km 583, 5000, Alto da Jacuba, Diamantina, Minas Gerais, CEP 39100-000, Brazil
| | - Éder Carlos Ferreira de Souza
- Department of Chemistry, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, Paraná, CEP 84030-900, Brazil
| | - Giane Gonçalves Lenzi
- Department of Chemical Engineering, Federal University of Technology - Paraná (UTFPR), Doutor Washington Subtil Chueire, 330, Ponta Grossa, Paraná, CEP 84017-220, Brazil
| | - Rodrigo Brackmann
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Via Do Conhecimento, Km 01, Fraron, Pato Branco, Paraná, CEP 85503-390, Brazil
| |
Collapse
|
4
|
Gu J, Liang J, Tian T, Lin Y. Current Understanding and Translational Prospects of Tetrahedral Framework Nucleic Acids. JACS AU 2025; 5:486-520. [PMID: 40017737 PMCID: PMC11862954 DOI: 10.1021/jacsau.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Tetrahedral framework nucleic acids (tFNAs) represent a promising advancement in nucleic acid nanotechnology due to their unique structural properties, high biocompatibility, and multifaceted biomedical applications. Constructed through a one-pot annealing method, four single-stranded DNAs self-assemble into stable, three-dimensional tetrahedral nanostructures with enhanced mechanical robustness and physiological stability, resisting enzymatic degradation. Their ability to permeate mammalian cells without transfection agents, coupled with modifiable surfaces, positions tFNAs as versatile carriers for drug and gene delivery systems. The tFNA-based platforms exhibit superior therapeutic efficacy, including antioxidative and anti-inflammatory effects, alongside efficient cellular uptake and tissue penetration. These features underpin their role in precision medicine, enabling targeted delivery of diverse therapeutic agents such as synthetic compounds, peptides, and nucleic acids. Additionally, tFNAs demonstrate significant potential in regenerative medicine, immune modulation, antibacterial strategies, and oncology. By addressing challenges in translational integration, tFNAs stand poised to accelerate the development of biomedical research and clinical applications, fostering novel therapies and enhancing therapeutic outcomes across a wide spectrum of diseases. This Perspective thoroughly details the unique attributes and diverse applications of tFNAs and critically evaluates tFNAs' clinical translational potential, outlining inherent implementation challenges and exploring potential solutions to these obstacles.
Collapse
Affiliation(s)
- Junjie Gu
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Jiale Liang
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Taoran Tian
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunfeng Lin
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Sichuan
Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
5
|
Jiang M, Yang Y, Feng J, Wang Z, Deng W. Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures. Molecules 2025; 30:954. [PMID: 40005264 PMCID: PMC11858729 DOI: 10.3390/molecules30040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core-shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol-gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol-gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol-gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol-gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures.
Collapse
Affiliation(s)
- Mingxiu Jiang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (M.J.); (Y.Y.); (J.F.); (Z.W.)
| | - Yuanyuan Yang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (M.J.); (Y.Y.); (J.F.); (Z.W.)
| | - Jiawei Feng
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (M.J.); (Y.Y.); (J.F.); (Z.W.)
| | - Zhaopan Wang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (M.J.); (Y.Y.); (J.F.); (Z.W.)
| | - Wei Deng
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (M.J.); (Y.Y.); (J.F.); (Z.W.)
- Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
6
|
Rodriguez-Nieves AL, Shah S, Taylor ML, Alle M, Huang X. Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:264. [PMID: 39997827 PMCID: PMC11858323 DOI: 10.3390/nano15040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Nanoparticles have been widely used in cancer diagnostics and treatment research due to their unique properties. Magnetic nanoparticles are popular in imaging techniques due to their ability to alter the magnetization field around them. Plasmonic nanoparticles are mainly applied in cancer treatments like photothermal therapy due to their ability to convert light into heat. While these nanoparticles are popular among their respective fields, magnetic-plasmonic core-shell nanoparticles (MPNPs) have gained popularity in recent years due to the combined magnetic and optical properties from the core and shell. MPNPs have stood out in cancer theranostics as a multimodal platform capable of serving as a contrast agent for imaging, a guidable drug carrier, and causing cellular ablation through photothermal energy conversion. In this review, we summarize the different properties of MPNPs and the most common synthesis approaches. We particularly discuss applications of MPNPs in cancer diagnosis and treatment based on different mechanisms using the magnetic and optical properties of the particles. Lastly, we look into current challenges they face for clinical applications and future perspectives using MPNPs for cancer detection and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (A.L.R.-N.); (S.S.); (M.L.T.); (M.A.)
| |
Collapse
|
7
|
Xu F, Wang W, Zhao W, Zheng H, Xin H, Sun W, Ma Q. All-aqueous microfluidic fabrication of calcium alginate/alkylated chitosan core-shell microparticles with time-sequential functions for promoting whole-stage wound healing. Int J Biol Macromol 2024; 282:136685. [PMID: 39454904 DOI: 10.1016/j.ijbiomac.2024.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Wound healing comprises a series of complex physiological processes, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Designing new functional biomaterials by biological macromolecules with tailored therapeutic effects to precisely match the unique requirements of each stage is cherished but rarely discussed. Here, we employ all-aqueous microfluidics to fabricate multifunctional core-shell microparticles aimed at promoting whole-stage wound healing. These microparticles feature a core comprising calcium alginate, cellulose nanocrystals and epidermal growth factor, surrounded by a shell made of alkylated chitosan, alginate, and ciprofloxacin (EGF + CNC@Ca-ALG/CIP@ACS core-shell microparticles, D-CSMP). Response surface methodology (RSM) with a combination of central composite rotatable design (CCRD) is used to meticulously optimize the fabrication processes, endowing the resulting D-CSMP with superior capabilities for efficiently encapsulating and controlled releasing CIP and EGF tailored to each stage aligning the healing timeline. The developed D-CSMP demonstrate notable time-sequential functionalities, including promoting blood coagulation, enhancing hemostasis, and exerting antibacterial effects. Furthermore, in a skin injury model, D-CSMP significantly expedite and enhance the chronic wound healing process. In conclusion, our core-shell microparticles with notable time-sequential functions present a versatile and robust approach for wound treatment and related biomedical applications.
Collapse
Affiliation(s)
- Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wenbin Zhao
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huan Xin
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
8
|
Ccahuana D, De Biasi E. Exploring magnetic disorder in inverted core-shell nanoparticles: the role of surface anisotropy and core/shell coupling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:055301. [PMID: 39476492 DOI: 10.1088/1361-648x/ad8d2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
In this work, we have studied the effect of internal coupling in magnetic nanoparticles with inverted core-shell structure (antiferromagnet-ferrimagnet) and also magnetic surface anisotropy, performing Monte Carlo simulations based on a micromagnetic model applied in the limit of lattice size equal to the crystalline unit cell. In the treatment, different internal regions of the particle were labeled in order to analyze the magnetic order and the degree of coupling between them. The results obtained are in agreement with experimental observations in CoO/CoFe2O4and ZnO/CoFe2O systems, which we have taken as reference. It is observed that the surface anisotropy decreases the coercive field and the blocking temperature of the system. However, the core/shell coupling improves these properties and magnetically hardens the system. Our study shows that a significant magnetic stress is generated in the system, leading to magnetic disorder in the spins of the particle interface. On the other hand, in cases of high surface anisotropy, within a range of interfacial exchange values, a clear magnetic disorder is observed in the shell, which leads to anomalous behavior because the magnetization reversal process is no longer coherent.
Collapse
Affiliation(s)
- Dámaso Ccahuana
- Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| | - Emilio De Biasi
- Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
9
|
Mirheidari M, Abbas AK, Safaei-Ghomi J. Supported phenylalanine on core-shell mesoporous microsphere as a catalyst for the synthesis of triazolo[1,2-a] indazole-triones and spiro triazolo[1,2-a] indazole-tetraones. Sci Rep 2024; 14:26500. [PMID: 39489767 PMCID: PMC11532543 DOI: 10.1038/s41598-024-78018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, mesoporous silica materials have gained attention due to their unique properties, such as high surface area, pore volume, size, and chemical stability. These characteristics make them effective in various fields, particularly efficient supports in heterogeneous catalytic reactions. The present study developed a novel type of core-shell mesoporous microsphere material by anchoring phenylalanine on a core-shell SiO2@NiO@MS support. The catalyst support (SiO2@NiO@MS) was synthesized through homogeneous precipitation and sol-gel methods, with NiO encapsulated within the porous silica. The catalyst was characterized using various techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), Elemental mapping analysis, N2 adsorption-desorption, Transmission electron microscopy (TEM), Vibrating sample magnetometer (VSM), and Thermogravimetric analysis (TGA). It was then employed for the synthesis of triazolo[1,2-a]indazole-trione and spiro triazolo[1,2-a]indazole-tetraones compounds from 4-phenyl urazole, dimedone, and aromatic aldehydes or isatin derivatives. This synthetic approach offers multiple advantages, including high yields, faster reaction times, low catalyst requirements, and environmentally sustainable conditions.
Collapse
Affiliation(s)
- Mahnaz Mirheidari
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Ali Kareem Abbas
- College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Yang J, He J, Yue T, Pei H, Xiong S, Tang Y, Hou J. The clinical prospects and challenges of photothermal nanomaterials in myocardium recovery after myocardial infarction. Front Bioeng Biotechnol 2024; 12:1491581. [PMID: 39539693 PMCID: PMC11558533 DOI: 10.3389/fbioe.2024.1491581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The high morbidity and mortality rates associated with myocardial infarction pose a serious threat to human health. Early diagnosis and appropriate treatment are crucial in saving the lives of patients. In recent years, nanomaterials-based technologies have played a significant role in developing new strategies for cardiac repair, particularly in the use of photothermal nanomaterials, which show great potential in treating myocardial infarction. This review aims to describe the characteristics of photothermal nanomaterials, their effects on cardiomyocyte proliferation and angiogenesis, and the mechanism of cardiac tissue repair. This review serves as a valuable reference for the application of photothermal nanomaterials in the treatment of myocardial infarction, with the ultimate goal of expediting the translation of these treatment strategies into clinical practice.
Collapse
Affiliation(s)
- Jiali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jian He
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Yue Tang
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Cardiology, Chengdu Cardiovascular Disease Research Institute, The Third People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
11
|
Dinali LF, da Silva ATM, Borges KB. Silver Core Coated with Molecularly Imprinted Polymer as Adsorbent in Pipet-Tip Solid Phase Extraction for Neonicotinoids Determination from Coconut Water. ACS MEASUREMENT SCIENCE AU 2024; 4:556-567. [PMID: 39430962 PMCID: PMC11487786 DOI: 10.1021/acsmeasuresciau.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/22/2024]
Abstract
In this work, we report an innovative adsorbent named Ag-MPS@MIP that has a core@shell structure, i.e., silver nanoparticles modified with 3-methacryloxypropyltrimethoxysilane as the core and molecularly imprinted polymer based on methacrylic acid as its shell. Thiamethoxam, imidacloprid, and acetamiprid were extracted from coconut water samples using Ag-MPS@MIP in pipet-tip solid phase, prior to high-performance liquid chromatography analysis. The separation was carried out on isocratic mode using a mobile phase consisting of C18 column (Phenomenex, 150 mm × 4.6 mm, 5 μm), ultrapure water acidified with 0.3% phosphoric acid:acetonitrile (78:22, v/v), flow rate at 1.0 mL min-1, injection volume of 10 μL, temperature of 25 °C, and wavelength at 260 nm. The adsorbent and precursor materials were properly characterized by different instrumental techniques. The main factors affecting the recovery of analytes from coconut water samples by pipet-tip solid phase were optimized, such as sample volume (250 μL), sample pH (pH = 5.0), ionic strength (1%, m/v), washing solvent (300 μL ultrapure water), volume and type of eluent (500 μL methanol), amount of adsorbent (15 mg), cycle of percolation-dispensing (1×), and reuse (5×). Thereby, the neonicotinoids presented extraction recoveries between 82.80 and 96.36%, enrichment factor of 5, linearity ranged from 15 to 4000 ng mL-1, correlation coefficient (r) > 0.99, limit of detection of 5 ng mL-1, satisfactory selectivity, stability, and proper precision (RSD%: 0.52-9.64%) and accuracy (RE%: -5.19-6.45%). The method was successfully applied to real samples of coconut water.
Collapse
Affiliation(s)
- Laíse
Aparecida Fonseca Dinali
- Departamento de Ciências
Naturais, Universidade Federal de São
João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Anny Talita Maria da Silva
- Departamento de Ciências
Naturais, Universidade Federal de São
João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências
Naturais, Universidade Federal de São
João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|
12
|
Hülagü D, Tobias C, Dao R, Komarov P, Rurack K, Hodoroaba VD. Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy. Sci Rep 2024; 14:17936. [PMID: 39095507 PMCID: PMC11297195 DOI: 10.1038/s41598-024-68797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Recently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle's boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared.
Collapse
Affiliation(s)
- Deniz Hülagü
- Division 6.1 Surface and Thin Film Analysis, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203, Berlin, Germany.
| | - Charlie Tobias
- Division 1.9 Chemical and Optical Sensing, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Radek Dao
- NenoVision S.R.O., Purkyňova 649/127, 612 00, Brno, Czech Republic
| | - Pavel Komarov
- NenoVision S.R.O., Purkyňova 649/127, 612 00, Brno, Czech Republic
| | - Knut Rurack
- Division 1.9 Chemical and Optical Sensing, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Vasile-Dan Hodoroaba
- Division 6.1 Surface and Thin Film Analysis, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203, Berlin, Germany.
| |
Collapse
|
13
|
Sun G, Niu S, Chen T. Synthesis of a novel magnetic calcium-rich biochar nanocomposite for efficient removal of phosphate from aqueous solution. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:283. [PMID: 38963423 DOI: 10.1007/s10653-024-02056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
Phosphorus (P) scarcity and eutrophication have triggered the development of new materials for P recovery. In this work, a novel magnetic calcium-rich biochar nanocomposite (MCRB) was prepared through co-precipitation of crab shell derived biochar, Fe2+ and Fe3+. Characteristics of the material demonstrated that the MCRB was rich in calcite and that the Fe3O4 NPs with a diameter range of 18-22 nanometers were uniformly adhered on the biochar surface by strong ether linking (C-O-Fe). Batch tests demonstrated that the removal of P was pH dependent with an optimal pH of 3-7. The MCRB exhibited a superior P removal performance, with a maximum removal capacity of 105.6 mg g-1, which was even higher than the majority lanthanum containing compounds. Study of the removal mechanisms revealed that the P removal by MCRB involved the formation of hydroxyapatite (HAP-Ca5(PO4)3OH), electrostatic attraction and ligand exchange. The recyclability test demonstrated that a certain level (approximately 60%) was still maintained even after the six adsorption-desorption process, suggesting that MCRB is a promising material for P removal from wastewater.
Collapse
Affiliation(s)
- Guangyin Sun
- Hebei Technology Innovation Center of Water Pollution Control and Water Ecological Remediation, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, China
| | - Shaojun Niu
- Hebei Technology Innovation Center of Water Pollution Control and Water Ecological Remediation, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, China
| | - Tao Chen
- Hebei Technology Innovation Center of Water Pollution Control and Water Ecological Remediation, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, China.
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China.
- College of Energy and Environmental Engineering, Hebei University of Engineering, No 19, Taiji Road, Handan, Hebei, 056038, China.
| |
Collapse
|
14
|
Proniewicz E. Gold and Silver Nanoparticles as Biosensors: Characterization of Surface and Changes in the Adsorption of Leucine Dipeptide under the Influence of Substituent Changes. Int J Mol Sci 2024; 25:3720. [PMID: 38612534 PMCID: PMC11011725 DOI: 10.3390/ijms25073720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Early detection of diseases can increase the chances of successful treatment and survival. Therefore, it is necessary to develop a method for detecting or sensing biomolecules that cause trouble in living organisms. Disease sensors should possess specific properties, such as selectivity, reproducibility, stability, sensitivity, and morphology, for their routine application in medical diagnosis and treatment. This work focuses on biosensors in the form of surface-functionalized gold (AuNPs) and silver nanoparticles (AgNPs) prepared using a less-time-consuming, inexpensive, and efficient synthesis route. This allows for the production of highly pure and stable (non-aggregating without stabilizers) nanoparticles with a well-defined spherical shape, a desired diameter, and a monodisperse distribution in an aqueous environment, as confirmed by transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM-EDS), X-ray diffraction (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible (UV-VIS) spectroscopy, and dynamic light scattering (DLS). Thus, these nanoparticles can be used routinely as biomarker sensors and drug-delivery platforms for precision medicine treatment. The NPs' surface was coated with phosphonate dipeptides of L-leucine (Leu; l-Leu-C(R1)(R2)PO3H2), and their adsorption was monitored using SERS. Reproducible spectra were analyzed to determine the orientation of the dipeptides (coating layers) on the nanoparticles' surface. The appropriate R2 side chain of the dipeptide can be selected to control the arrangement of these dipeptides. This allows for the proper formation of a layer covering the nanoparticles while also simultaneously interacting with the surrounding biological environment, such as cells, tissues, and biological fluids.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Krakow, 30-059 Krakow, Poland
| |
Collapse
|
15
|
Wang Y, Zhang C, Yu R, Wu Z, Wang Y, Wang W, Lai Y. Robust and sensitive determination of nitrites in pickled food by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123794. [PMID: 38154308 DOI: 10.1016/j.saa.2023.123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Nitrites are ubiquitous in food and pose a serious threat to human health. Therefore, the rapid and accurate determination of nitrite ion concentration in food is a prerequisite for eliminating the damage of nitrites. In this study, a robust, rapid, and sensitive method is proposed for nitrite detection in pickled food, in which Au@Ag nanoparticles are used as a reliable surface-enhanced Raman spectroscopy (SERS) substrate taking advantage of the high enhancement effect of silver and the good stability of gold. Nitrites were anchored to the surface of the SERS substrate by bridging with 4-aminophenylthiophenol (PATP). With Raman scattering cross-section amplification and internal calibration by PATP, a satisfactory linear relationship (R2 = 0.987) was established for nitrite detection in the concentration range of 5.00-100.00 μM, and the limit of detection (LOD) was 0.17 μM. This SERS-based method demonstrated high selectivity, good precision (RSD < 7.00 %), and satisfying recovery rates (101.42-107.35 %) in real samples, thus improving the determination method for nitrites. Therefore, this method has application potential in food safety and supervision.
Collapse
Affiliation(s)
- Yufei Wang
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Cui Zhang
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ruiying Yu
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhe Wu
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingjie Wang
- Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Wei Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yongchao Lai
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
16
|
Kułak L, Schlichtholz A, Bojarski P. General model of nonradiative excitation energy migration on a spherical nanoparticle with attached chromophores. Sci Rep 2024; 14:5479. [PMID: 38443509 PMCID: PMC11319653 DOI: 10.1038/s41598-024-55193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Theory of multistep excitation energy migration within the set of chemically identical chromophores distributed on the surface of a spherical nanoparticle is presented. The Green function solution to the master equation is expanded as a diagrammatic series. Topological reduction of the series leads to the expression for emission anisotropy decay. The solution obtained behaves very well over the whole time range and it remains accurate even for a high number of the attached chromophores. Emission anisotropy decay depends strongly not only on the number of fluorophores linked to the spherical nanoparticle but also on the ratio of critical radius to spherical nanoparticle radius, which may be crucial for optimal design of antenna-like fluorescent nanostructures. The results for mean squared excitation displacement are provided as well. Excellent quantitative agreement between the theoretical model and Monte-Carlo simulation results was found. The current model shows clear advantage over previously elaborated approach based on the Padé approximant.
Collapse
Affiliation(s)
- L Kułak
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - A Schlichtholz
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308, Gdańsk, Poland
| | - P Bojarski
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308, Gdańsk, Poland.
| |
Collapse
|
17
|
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, Mostufa S, Xu K, Wang JP, Gómez-Pastora J, Wu K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304848. [PMID: 37732364 DOI: 10.1002/smll.202304848] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean M Sanders
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haotong Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
18
|
Liu IC, Hu X, Fei B, Lee C, Fan S, Xin JH, Noor N. Fluorine-free nanoparticle coatings on cotton fabric: comparing the UV-protective and hydrophobic capabilities of silica vs. silica-ZnO nanostructures. RSC Adv 2024; 14:4301-4314. [PMID: 38304558 PMCID: PMC10828638 DOI: 10.1039/d3ra08835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Robust, hydrophobic woven cotton fabrics were obtained through the sol-gel dip coating of two different nanoparticle (NP) architectures; silica and silica-ZnO. Water repellency values as high as 148° and relatively low tilt angles for fibrous fabrics (12°) were observed, without the need for fluorinated components. In all cases, this enhanced functionality was achieved with the broad retention of water vapor permeability characteristics, i.e., less than 10% decrease. NP formation routes indicated direct bonding interactions in both the silica and silica-ZnO structures. The physico-chemical effects of NP-compatibilizer (i.e., polydimethoxysilane (PDMS) and n-octyltriethoxysilane (OTES) at different ratios) coatings on cotton fibres indicate that compatibilizer-NP interactions are predominantly physical. Whenever photoactive ZnO-containing additives were used, there was a minor decrease in hydrophobic character, but order of magnitude increases in UV-protective capability (i.e., UPF > 384); properties which were absent in non-ZnO-containing samples. Such water repellency and UPF capabilities were stable to both laundering and UV-exposure, resisting the commonly encountered UV-induced wettability transitions associated with photoactive ZnO. These results suggest that ZnO-containing silica NP coatings on cotton can confer both excellent and persistent surface hydrophobicity as well as UV-protective capability, with potential uses in wearables and functional textiles applications.
Collapse
Affiliation(s)
- Irene ChaoYun Liu
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Xin Hu
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Bin Fei
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Chenghao Lee
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Suju Fan
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - John H Xin
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| | - Nuruzzaman Noor
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR
| |
Collapse
|
19
|
Zhai W, Wei D, Cao M, Wang Z, Wang M. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review. Food Chem 2023; 429:136944. [PMID: 37487389 DOI: 10.1016/j.foodchem.2023.136944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied. By comparison with monocomponent NPs, core-shell nanostructures exhibit unique optical, electric, magnetic, plasmonic, and catalytic properties due to the combination of functionalities and synergistic effects, resulting in significant improvement of sensing capacities in various platforms, such as surface-enhanced Raman spectroscopy, fluorescence, lateral flow immunoassay and electrochemical sensors. This review focused on the development of core-shell NPs based biosensors for the sensitive and accurate detection of mycotoxins in food samples. Recent developments were categorised and summarised, along with detailed discussion of advantages and shortcomings. The future potential of utilising core-shell NPs in food safety testing was also highlighted.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenyu Wang
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
20
|
New Core-Shell Nanostructures for FRET Studies: Synthesis, Characterization, and Quantitative Analysis. Int J Mol Sci 2022; 23:ijms23063182. [PMID: 35328604 PMCID: PMC8952644 DOI: 10.3390/ijms23063182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
This work describes the synthesis and characterization of new core-shell material designed for Förster resonance energy transfer (FRET) studies. Synthesis, structural and optical properties of core-shell nanostructures with a large number of two kinds of fluorophores bound to the shell are presented. As fluorophores, strongly fluorescent rhodamine 101 and rhodamine 110 chloride were selected. The dyes exhibit significant spectral overlap between acceptor absorption and donor emission spectra, which enables effective FRET. Core-shell nanoparticles strongly differing in the ratio of donors to acceptor numbers were prepared. This leads to two different interesting cases: typical single-step FRET or multistep energy migration preceding FRET. The single-step FRET model that was designed and presented by some of us recently for core-shell nanoparticles is herein experimentally verified. Very good agreement between the analytical expression for donor fluorescence intensity decay and experimental data was obtained, which confirmed the correctness of the model. Multistep energy migration between donors preceding the final transfer to the acceptor can also be successfully described. In this case, however, experimental data are compared with the results of Monte Carlo simulations, as there is no respective analytical expression. Excellent agreement in this more general case evidences the usefulness of this numerical method in the design and prediction of the properties of the synthesized core-shell nanoparticles labelled with multiple and chemically different fluorophores.
Collapse
|
21
|
Zhao W, Zhang Y, Liu L, Gao Y, Sun W, Sun Y, Ma Q. Microfluidic-based functional materials: new prospects for wound healing and beyond. J Mater Chem B 2022; 10:8357-8374. [DOI: 10.1039/d2tb01464e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Microfluidics has been applied to fabricate high-performance functional materials contributing to all physiological stages of wound healing. The advances of microfluidic-based functional materials for wound healing have been summarized.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yage Zhang
- Department of Mechanical, University of Hong Kong, Hong Kong SAR, China
| | - Lijun Liu
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yang Gao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
22
|
Abstract
Iron oxide magnetic nanoparticles were synthesized with different sizes (11 and 30 nm). Subsequently they were shelled with a silica layer allowing grafting of an organic phosphine ligand that coordinated to the [MoI2(CO)3] organometallic core. The silica layer was prepared by the Stöber method using either mechanical (both 11 and 30 nm nanoparticles) or ultrasound (30 nm only) stirring. The latter nanoparticles once coated with silica were obtained with less aggregation, which was beneficial for the final material holding the organometallic moiety. The Mo loadings were found to be 0.20, 0.18, and 0.34 mmolMo·g−1 for MNP30-Si-phos-Mo,MNP11-Si-phos-Mo, and MNP30-Sius-phos-Mo, respectively, with the ligand-to-metal ratio reaching 4.6, 4.8, and 3.2, by the same order, confirming coordination of the Mo moieties to two phos ligands. Structural characterization obtained from powder X-ray diffraction (XRD), scanning electron microscopy (SEM)/ transmission electron microscopy (TEM) analysis, and Fourier-transform infrared (FTIR) spectroscopy data confirmed the successful synthesis of all nanomaterials. Olefin epoxidation of several substrates catalyzed by these organometallic nano-hybrid materials using tert-butyl hydroperoxide (tbhp) as oxidant, achieved very good results. Extensive testing of the catalysts showed that they are highly active, selective, recyclable, and efficient concerning oxidant consumption.
Collapse
|