1
|
Li X, Zhang C, Wang A, Zhang T, He Z, Zhao Y, Liu W, Zhou Q. Research progress on environmental behavior of arsenic in Qinghai-Tibet Plateau soil. J Environ Sci (China) 2025; 153:237-250. [PMID: 39855796 DOI: 10.1016/j.jes.2024.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 01/27/2025]
Abstract
The Qinghai-Tibet Plateau, with its high altitude and cold climate, is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic (As) levels in the soil, largely due to its rich mineral and geothermal resources. This review provides a comprehensive analysis of As content, focusing on its distribution, environmental migration, and transformation behavior across the plateau. The review further evaluates the distribution of As in different functional areas, revealing that geothermal fields (107.2 mg/kg), mining areas (53.8 mg/kg), and croplands (39.3 mg/kg) have the highest As concentrations, followed by river and lake sediments and adjacent areas (33.1 mg/kg). These elevated levels are primarily attributed to the presence of As-rich minerals, such as arsenopyrite and pyrite. Additionally, human activities, including mining and geothermal energy production, exacerbate the release of As into the environment. The review also highlights the role of local microorganisms, particularly those from the phyla Proteobacteria and Actinobacteria, which possess As metabolic genes that facilitate As translocation. Given the unique climatic conditions of the plateau, conventional methods for As control may not be fully effective. However, the review identifies promising remediation strategies that are environmentally adaptable, such as the use of local microorganisms, specific adsorbents, and integrated technologies, which offer potential solutions for managing and utilizing As-contaminated soils on the plateau.
Collapse
Affiliation(s)
- Xitong Li
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chuangchuang Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Aofan Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Tieliang Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Qiwen Zhou
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
2
|
Basti S, Sahu C, Dash PK, Pati SS, Sahu SK. Sediment heavy metal speciation of Hirakud Reservoir-a Ramsar site in Mahanadi River in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:417. [PMID: 40100442 DOI: 10.1007/s10661-025-13898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Heavy metal speciation is an important tool for the assessment of sediment quality. This work was conducted to investigate the geochemical occurrence, distribution, and spatial variability of sediment heavy metals in the Hirakud Reservoir (a Ramsar site) of the Mahanadi River in India. Estimation based on a single-extraction (speciation) method revealed the dominance of Fe-Mn-bound (39.33%) fractions suggesting the potential mobility of heavy metals. Co-dominance of residual (35.03%) and organic matter-sulfide (23.02%) fractions indicate lattice-bound associations of elements under natural conditions and suggest anthropogenic organic input contribution respectively. The heavy metals distribution was spatially affected (p < 0.05). While, Ag, Cd, Hg, and Mo displayed extremely severe enrichment (EF > 50) and very strong geo-accumulation conditions (Igeo > 5); Cd and Hg displayed very high ecological risk (ERF > 320). However, the contamination factor for all heavy metals except Cd and Hg showcased low contamination (CF < 1). The principal component and cluster analysis revealed that the source of Mn, Mo, Hg, and Ag was mainly from anthropogenic or biogenic origin. The Fe and Al however displayed signs of being derived from multiple sources. However, the risk assessment code (RAC) results suggest that As exhibited a medium to very high risk (11 < RAC < 30) of bio-availability. Thus, the results of this study can be used for the formulation of strategies for the reduction of anthropogenic loads, planning for sediment quality management, and regular monitoring to curb the rising pollution issues of the reservoir.
Collapse
Affiliation(s)
- Sradhanjali Basti
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Chandan Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India.
- Gangadhar Meher University, Amruta Vihar, Sambalpur, 768004, India.
| | - Pratik Kumar Dash
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Sharada Shrinivas Pati
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
- State Pollution Control Board, Bhubaneswar, India
| | - Sanjat Kumar Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| |
Collapse
|
3
|
Liu P, Han X, Chao S, Lu X, Wang Z, Yang Y, Fan X, Yu B, Lei K. Identification of priority factors for risk control of trace toxic elements in surface resuspended dust of university campuses. Sci Rep 2024; 14:29366. [PMID: 39592801 PMCID: PMC11599780 DOI: 10.1038/s41598-024-80846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
The surface resuspended dust (SRD) that accumulates trace toxic elements (TTEs) can be suspended in the atmosphere and can be transported to other areas, such as campuses, through airflow. The risks and sources of TTEs in university campus SRD have not been thoroughly explored, especially the priority factors for TTEs pollution and risk control in the SRD. Taking Xi'an as a case, this study quantitatively apportioned the sources of TTEs in the SRD of university campuses using positive matrix factorization method, evaluated the ecological and health risks of the specific-source TTEs in the SRD using Monte Carlo simulation method, and determined the priority factors for risk control of TTEs in the SRD. We found that the pollution of Zn, Pb, and Cu in the SRD was severe, with significantly high to very high enrichment levels. The comprehensive pollution of TTEs in the SRD was high to extremely high levels, with Pb and Zn as the main contributors. The four sources of TTEs identified in the SRD were traffic exhaust, traffic non-exhaust, mixed, and natural sources, accounting for 19.1%, 43.3%, 11.2%, and 26.3% of the total TTE concentrations, respectively. The ecological risk of TTEs was quite serious, mainly caused by traffic exhaust Pb. TTEs in the SRD had a certain cancer risk to college students, mainly contributed by traffic exhaust. Traffic exhaust source is the main factor that needs to be controlled.
Collapse
Affiliation(s)
- Purui Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiufeng Han
- College of Ecology and Environment, Baotou Teachers' College, Baotou, 014000, China
| | - Shigang Chao
- Qinghai Research and Design Institute of Environmental Science, Xining, 810007, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| |
Collapse
|
4
|
Zhao Z, Li S, Li Y. Controlling factors and sources-specific ecological risks associated with toxic metals in core sediments from cascade reservoirs in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171570. [PMID: 38460694 DOI: 10.1016/j.scitotenv.2024.171570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Toxic metals (TMs) in reservoir sediments pose significant risks to ecosystem security and human safety, yet their presence in the cascade reservoirs of the Lancang River remains understudied. This research examined TMs in core sediments from the Manwan (MW) and Dachaoshan (DCS) cascade reservoirs, aiming to elucidate contamination characteristics, controlling factors, and source-specific ecological risks. The study revealed that the concentrations of As, Cd, Cr, Cu, Hg, Ni, and Zn in the MW Reservoir (37.3, 0.54, 95.1, 44.0, 0.09, 44.8, and 135.7 mg/kg) were notably higher compared to the DCS Reservoir (14.6, 0.30, 82.6, 31.0, 0.08, 36.6, and 108.7 mg/kg). While both reservoirs demonstrated elevated contamination levels of Cd and Hg, the MW Reservoir also exhibited high levels of As, whereas the DCS Reservoir showed relatively high levels of Pb. Mining activities in upstream metal deposits significantly correlated Cd, Hg, and Zn in the MW Reservoir with sulfur. In both reservoir sediments, Cr and Ni displayed a greater affinity for iron oxides, while As, Cd, Cu, Hg, and Zn showed more affinity with manganese oxides. Ecological risk index (RI) values in half of the sediments from the MW Reservoir ranged from 300 to 600, denoting a significant ecological risk. Conversely, in the DCS Reservoir, 93.3 % of the sediments exhibited RI values between 150 and 300, signifying a moderate ecological risk. Source-oriented ecological risks highlighted the need for particular attention to Cd from anthropogenic sources in the MW Reservoir. These findings underscore the importance of implementing measures for TM contamination prevention and control, contributing to strategic planning for sustainable water resource management in the Lancang-Mekong River.
Collapse
Affiliation(s)
- Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yunlong Li
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| |
Collapse
|
5
|
Zheng T, Lin H, Jiang Y, Deng Y, Du X, Xie Y, Yuan J, Pei X. Insights from distribution and fractionation of the rare earth elements into As enrichment in the Singe Tsangpo River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167388. [PMID: 37758139 DOI: 10.1016/j.scitotenv.2023.167388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The geogenic As enrichment occurs extensively in the major river basin from the Tibetan Plateau, while the knowledge involved with the underlying mechanisms is far from completion. The present study utilized the geochemical behaviors of rare earth elements (REE) to study the hydrogeochemical evolution and As enrichment in the Singe Tsnagpo River basin, a typical As-rich river basin in the Tibetan Plateau. The river water was characterized by significant positive Eu anomalies and slight negative Ce anomalies, indicating the hydrogeochemical control of oxidative weathering of sourcing rocks and the contribution of felsic rocks. The PHREEQC modeling results suggested that the carbonate weathering contributed to the complexation of REE in the river water, where REE(CO3)+ and REE(CO3)2- were the predominant complex species. Besides, the reversing scenarios of HREE/LREE enrichment in the river water/sediments suggested a critical control of iron (hydr)oxides on the REE fractionation due to the preferential adsorption of LREE compared with HREE. Interestingly, the variations in Y/Ni and Cr/V ratios from the river sediments suggested a different contribution of sourcing rock weathering along the river flow path, where ultramafic rock showed a substantial contribution to the river sediments in the lower reaches and granite source is predominant in the upper reaches. It was also notable that the concurrent enrichment of REE and As in the river waters showed a response to the substantial enhancement of chemical weathering in the upper reaches of the STR basin, which was evidenced by the corresponding increases in the electrical conductivity and the δ18O values in the river waters. The present study thus provides new insights into utilizing REE as environmental tracers for studying hydrogeochemical evolution and As enrichment in the STR basin, which could also apply to similar alpine arid and cold river basins.
Collapse
Affiliation(s)
- Tianliang Zheng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; Tianfu Yongxing Laboratory, Chengdu 610213, PR China.
| | - He Lin
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yue Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yang Deng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xingguo Du
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yanhua Xie
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jianfei Yuan
- Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu 610081, PR China
| | - Xiangjun Pei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; Tianfu Yongxing Laboratory, Chengdu 610213, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| |
Collapse
|
6
|
Sakan S, Mihajlidi-Zelić A, Ašković K, Sakan N, Trifunović S, Đorđević D. The significance of applying different factors for the evaluation of sediment contamination by toxic elements and estimation of the ecological risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53461-53477. [PMID: 36854944 DOI: 10.1007/s11356-023-26111-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The optimized three-step sequential extraction procedure for the fractionation of micro- and macroelements, was conducted to determine fractional characteristics of PTEs (potentially toxic elements) in surface sediments of rivers in the Vlasina watershed. The sequential extraction results, which enable the evaluation of mobility of the studied elements, have indicated that Zn, Ni, Cu, Cr, and As can be considered slightly mobile, whereas Pb, Mn, Cd, and Co were regarded as possibly mobile elements. Lead was dominantly bounded (specifically adsorbed or co-precipitated) to iron and manganese oxides (up to 80%) and may be released by reduction. Since the content of the exchangeable fraction (F1) is an indicator for anthropogenic impact on the aquatic environment, a low percentage (0-8%) of studied toxic elements in this fraction indicated that these elements have lithogenic origin in most sampling locations in the area of study. Except for Pb, the substantial positive correlations between Al and other elements showed that studied elements came primarily from terrigenous sources. Although the values obtained for the risk assessment code (RAC) indicated a slightly increased mobility of some elements (up to 22.44%), the values of the modified risk assessment code (mRAC), which include toxic effects on the environment, showed there is no danger of pollution by studied elements (all values were < 1%). Our recommendation is to use mRAC instead of RAC in ecochemical studies and assessment of the degree of sediment and soil pollution, because mRAC includes toxic effects of elements. Based on ATI values, river sediments show no toxic to a low toxic degree. Even though obtained results indicate that there was no considerable risk for river water contamination, the ecological risk for Fe and Pb should be monitored in the future.
Collapse
Affiliation(s)
- Sanja Sakan
- Centre of Excellence in Environmental Chemistry and Engineering - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11158, Belgrade, Serbia.
| | - Aleksandra Mihajlidi-Zelić
- Centre of Excellence in Environmental Chemistry and Engineering - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11158, Belgrade, Serbia
| | - Ksenija Ašković
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Nenad Sakan
- Institute of Physics, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11000, Belgrade, Serbia
| | - Snežana Trifunović
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Dragana Đorđević
- Centre of Excellence in Environmental Chemistry and Engineering - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11158, Belgrade, Serbia
| |
Collapse
|
7
|
Zhao Z, Hao M, Li Y, Li S. Contamination, sources and health risks of toxic elements in soils of karstic urban parks based on Monte Carlo simulation combined with a receptor model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156223. [PMID: 35643134 DOI: 10.1016/j.scitotenv.2022.156223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding the health risks of toxic elements (TEs) in urban park soils and determining their priority control factors are crucial for public health and pollution management. Soil samples were collected from 33 urban parks in Guiyang, a typical karstic city. For each park, 15-45 topsoil samples were collected according to the area and then thoroughly mixed to obtain a representative sample. The results showed that the mean concentrations of TEs in park soils (22.5, 0.37, 88.6, 43.7, 0.26, 39.9, 44.7, and 101.0 mg/kg for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively) were higher than their background values. Approximately 54.5% and 33.3% of enrichment factor (EF) values reached moderately enriched to significantly enriched levels for Cd and Hg, respectively. Moreover, 54.5% and 42.4% of monomial potential ecological index (EI) values were at considerable to high risk levels for Cd and Hg, respectively. These results illustrate that Cd and Hg pose high ecological risks. According to the potential ecological risk index (RI) values, 21.2% of the parks were exposed to considerable ecological risk and 48.5% were at moderate risk. Based on the positive matrix factorization (PMF) model, four sources governing TE contamination (including coal combustion, natural sources, traffic emissions, and industrial activities) were identified, with contribution rates of 32.3%, 31.0%, 19.6%, and 17.1%, respectively. A probabilistic health risk assessment showed acceptable non-carcinogenic risks and high levels of carcinogenic risk in all populations. Based on the source-specific health risk assessment, arsenic from coal combustion was determined to be a major contributor to human health risks. Although several efforts have been made by the local government to eliminate coal-borne arsenicosis, our results revealed that the accumulation of arsenic in the soil due to coal combustion poses a potential threat to human health.
Collapse
Affiliation(s)
- Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ming Hao
- College of Medical humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yunlong Li
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
8
|
Toller S, Funari V, Zannoni D, Vasumini I, Dinelli E. Sediment quality of the Ridracoli fresh water reservoir in Italy: Insights from aqua regia digestion and sequential extractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154167. [PMID: 35231522 DOI: 10.1016/j.scitotenv.2022.154167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The inter-element relationships and the forms in which metals exist strongly influence their mobility and, in turn, have a signature on the environment and human health. Located in the northern Apennines within the Emilia-Romagna region, the Ridracoli artificial lake is one of Italy's most important reservoirs that provides drinking water for about one million people. This work characterized the reservoir sediments by ICP-MS after aqua regia digestion (ARD), comparing the limits by law to assess environmental compliance and XRF data from the same sample-set taken as total concentrations. The Degree of Extraction (DE) from pseudo-total concentrations of ARD analysis allows assessing elements mobility and the associated environmental risk. Principal Component Analysis (PCA) on the obtained data helped to investigate inter-element relationships better; for example, we observed carbonate-sourced sediments, many trace elements (e.g., Ni, Zn) linked to FeMn oxyhydroxides, the importance of the grain size in elements distribution, and the central role of the organic matter in element partitioning. In addition, a Sequential Extraction Procedure (SEP) was applied to the sediment samples to understand the partitioning of many analytes, including Potentially Harmful Elements (PHE) such as Fe, Mn, Cu, Cr, Ni, Pb, and Zn. The results indicated that the most easily mobilized forms were predominant in the area near the dam, in correspondence to sediments affected by the formation of a seasonal anoxic layer.
Collapse
Affiliation(s)
- Simone Toller
- University of Parma, Department of Chemical, Life and Environmental Sustainability Sciences (SCVSA), Parco Area delle Scienze, 17/A Parma, Italy; National Research Council of Italy, Department of Scienze Del Sistema Terra e Tecnologie per l'Ambiente (ISMAR-CNR), Bologna Research Area, via P. Gobetti, 101 Bologna, Italy.
| | - Valerio Funari
- National Research Council of Italy, Department of Scienze Del Sistema Terra e Tecnologie per l'Ambiente (ISMAR-CNR), Bologna Research Area, via P. Gobetti, 101 Bologna, Italy; Marine Biotechnology Department, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Denis Zannoni
- University of Bologna, Department of Biological, Geological and Environmental Sciences (BiGeA), via San'Alberto, 163 Ravenna, Italy
| | - Ivo Vasumini
- Romagna Acque Società delle Fonti S.p.a., Piazza Orsi Mangelli, 10 Forlì, Italy
| | - Enrico Dinelli
- University of Bologna, Department of Biological, Geological and Environmental Sciences (BiGeA), Piazza di Porta San Donato, 1 Bologna, Italy
| |
Collapse
|