1
|
Gao X, Wang Z, Sun X, Gao W, Jiang W, Wang X, Zhang F, Wang X, Yang L, Zhou Y. Characteristics, source apportionment and health risks of indoor and outdoor fine particle-bound polycyclic aromatic hydrocarbons in Jinan, North China. PeerJ 2024; 12:e18553. [PMID: 39703913 PMCID: PMC11657193 DOI: 10.7717/peerj.18553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/29/2024] [Indexed: 12/21/2024] Open
Abstract
To investigate the pollution characteristics of polycyclic aromatic hydrocarbons (PAHs) indoors and outdoors and their influencing factors, PM2.5 samples were systematically collected from both environments in Jinan during the summer and autumn seasons. During the observation period, the concentration of ∑ 19PAHs was 18.57 ± 10.50 ng/m3 indoors and 23.79 ± 16.13 ng/m3 outdoors. Most PAHs exhibited indoor-to-outdoor (I/O) ratios less than 1, indicating that indoor PAHs were primarily derived from the infiltration of outdoor sources. Correlation analysis underscored the significant influence of temperature on both outdoor concentrations and I/O ratios of PAHs. By utilizing diagnostic ratios and principal component analysis (PCA), vehicle emissions were identified as the predominant source of outdoor PAHs. Our study found that the toxic equivalents of benzo[a]pyrene (TEQBaP) values exceeded the European Commission's standard of 1 ng/m3, with indoor values at 2.78 ng/m3 and outdoor values at 3.57 ng/m3. Moreover, the total incremental lifetime cancer risk (ILCRTotal) associated with exposure to PM2.5-bound PAHs surpassed the acceptable level of 10E-6, indicating potential adverse health effects. These results underscore the urgent necessity for more stringent regulatory measures to reduce PAH emissions. Additionally, our findings provide valuable insights into how environmental factors shape the relationship between indoor and outdoor PAHs.
Collapse
Affiliation(s)
- Xiaomei Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province, China
| | - Ziyi Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong Province, China
| | - Xiaoyan Sun
- Jinan Ecological and Environmental Monitoring Center, Jinan, Shandong Province, China
| | - Weidong Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province, China
| | - Wei Jiang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province, China
| | - Xi Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province, China
| | - Fenfen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong Province, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, Shandong Province, China
| | - Yang Zhou
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong Province, China
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Zhao X, Xu H, Li Y, Liu Y, Guo C, Li Y. Status and frontier analysis of indoor PM 2.5-related health effects: a bibliometric analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:479-498. [PMID: 36976918 DOI: 10.1515/reveh-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data indicate atmospheric particulate matter, especially fine particulate matter (PM2.5), has many negative effects on human health. Of note, people spend about 90% of their time indoors. More importantly, according to the World Health Organization (WHO) statistics, indoor air pollution causes nearly 1.6 million deaths each year, and it is considered as one of the major health risk factors. In order to obtain a deeper understanding of the harmful effects of indoor PM2.5 on human health, we used bibliometric software to summarize articles in this field. In conclusion, since 2000, the annual publication volume has increased year by year. America topped the list for the number of articles, and Professor Petros Koutrakis and Harvard University were the author and institution with the most published in this research area, respectively. Over the past decade, scholars gradually paid attention to molecular mechanisms, therefore, the toxicity can be better explored. Particularly, apart from timely intervention and treatment for adverse consequences, it is necessary to effectively reduce indoor PM2.5 through technologies. In addition, the trend and keywords analysis are favorable ways to find out future research hotspots. Hopefully, various countries and regions strengthen academic cooperation and integration of multi-disciplinary.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhang L, Fang B, Wang H, Zeng H, Wang N, Wang M, Wang X, Hao Y, Wang Q, Yang W. The role of systemic inflammation and oxidative stress in the association of particulate air pollution metal content and early cardiovascular damage: A panel study in healthy college students. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121345. [PMID: 36841422 DOI: 10.1016/j.envpol.2023.121345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with adverse cardiovascular outcomes. However, the effects of toxic metals in PM2.5 on cardiovascular health remain unknown. To investigate the early cardiovascular effects of specific PM2.5 metal constituents at the personal level, we conducted a panel study on 45 healthy college students in Caofeidian, China. Personal exposure concentrations and cardiovascular effect markers were monitored simultaneously within one year in four study periods. Four linear mixed-effects models were used to analyze the relationship between personal exposure to PM2.5 and 15 metal fractions (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, and Pb) with soluble CD36 (sCD36), C-reactive protein (CRP), and oxidized low-density lipoprotein (OX-LDL) levels, heart rate, and blood pressure. The concentrations of most individual metals (Mn, Cu, Zn, As, Se, Mo, Cd, Sb and Pb) were the highest in winter. Meanwhile, there were significant differences in inflammatory (sCD36 and CRP) and oxidative stress (OX-LDL) markers in the serum of participants over the four seasons. In particular, the estimated effects of personal metal exposure (such as V, As, Se, Cd, and Pb) on sCD36 and pulse pressure (PP) levels were consistently significant across the four LME models. A significant mediating role of sCD36 was also found in the relationship between personal exposure to Zn and Cr and changes in PP levels. Our findings provide clues and potential mechanisms regarding the cardiovascular effects of specific toxic constituents of PM2.5 in healthy young adults.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, Henan, China
| | - Haotian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Nan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - ManMan Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| |
Collapse
|
4
|
Ghetu C, Rohlman D, Smith BW, Scott RP, Adams KA, Hoffman PD, Anderson KA. Wildfire Impact on Indoor and Outdoor PAH Air Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10042-10052. [PMID: 35803593 PMCID: PMC9301925 DOI: 10.1021/acs.est.2c00619] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air quality impacts from wildfires are poorly understood, particularly indoors. As frequencies increase, it is important to optimize methodologies to understand and reduce chemical exposures from wildfires. Public health recommendations use air quality estimates from outdoor stationary air monitors, discounting indoor air conditions, and do not consider chemicals in the vapor phase, known to elicit adverse effects. We investigated vapor-phase polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air before, during, and after wildfires using a community-engaged research approach. Paired passive air samplers were deployed at 15 locations across four states. Twelve unique PAHs were detected only in outdoor air during wildfires, highlighting a PAH exposure mixture for future study. Heavy-molecular-weight (HMW) outdoor PAH concentrations and average Air Quality Index (AQI) values were positively correlated (p < 0.001). Indoor PAH concentrations were higher in 77% of samples across all sampling events. Even during wildfires, 58% of sampled locations still had higher indoor PAH air concentrations. When AQI values exceeded 140 (unhealthy for sensitive groups), outdoor PAH concentrations became similar to or higher than indoors. Cancer and noncancer inhalation risk estimates from vapor-phase PAHs were higher indoors than outdoors, regardless of the wildfire impact. Consideration of indoor air quality and vapor-phase PAHs could inform public health recommendations regarding wildfires.
Collapse
Affiliation(s)
- Christine
C. Ghetu
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Diana Rohlman
- College
of Public Health and Human Sciences, Oregon
State University, Corvallis, Oregon 97331, United States
| | - Brian W. Smith
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Richard P. Scott
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kaley A. Adams
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Peter D. Hoffman
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kim A. Anderson
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
5
|
Zeng H, Fang B, Hao K, Wang H, Zhang L, Wang M, Hao Y, Wang X, Wang Q, Yang W, Rong S. Combined effects of exposure to polycyclic aromatic hydrocarbons and metals on oxidative stress among healthy adults in Caofeidian, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113168. [PMID: 34999341 DOI: 10.1016/j.ecoenv.2022.113168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) and metals is associated with many adverse effects on human health, accompanied by oxidative stress. This study aimed to investigate the effects of co-exposure to PAHs and metals on oxidative stress in healthy adults. A preliminary longitudinal panel study was conducted between 2017 and 2018 in 45 healthy college students in Caofeidian, China. Six urinary monohydroxylated-PAHs (OH-PAHs), ten metals, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α) were measured. Linear mixed effects (LME) models and Bayesian kernel machine regression (BKMR) models were used to explore the associations of urinary OH-PAHs and metals with 8-OHdG and 8-iso-PGF2α. LME models showed that most urinary OH-PAHs and metals were positively associated with 8-OHdG and 8-iso-PGF2α. For example, a one-unit increase in the ln-transformed level of 1-hydroxypyrene (1-OHPyr) and vanadium (V) was associated with an increase of 143.8% (95% CI: 105.7 - 188.9%) and 105.8% (95% CI: 79.2-136.4%) in 8-OHdG; 8-iso-PGF2α increased by 118.9% (95% CI: 99.2-140.5%) and 83.9% (95% CI: 67.2-102.2%) with a one-unit increase in the ln-transformed level of 3-hydroxyphenanthrene (3-OHPhe) and aluminum (Al). BKMR models indicated the overall positive associations of the mixture of six OH-PAHs, ten metals, or six OH-PAHs and ten metals with 8-OHdG and 8-iso-PGF2α. Urinary 1-OHPyr and V were identified as the major contributors to the increased urinary 8-OHdG levels, while urinary 3-OHPhe and Al were the most vital contributors to the increased urinary 8-iso-PGF2α levels. The results revealed the longitudinal dose-response relationships of urinary OH-PAHs and metals with oxidative stress among healthy adults in Caofeidian; this finding serves as an evidence regarding the early health hazard caused by exposure to PAHs and metals and has implications for the environmental management of PAH and metal emissions in this area.
Collapse
Affiliation(s)
- Hao Zeng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Kelu Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Haotian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Lei Zhang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China.
| | - Suying Rong
- Department of Clinical Medicine, Tangshan Vocational and Technical College, No. 120 Xinhua West Road, Tangshan 063000, China
| |
Collapse
|
6
|
Zhang L, Wang H, Yang Z, Fang B, Zeng H, Meng C, Rong S, Wang Q. Personal PM 2.5-bound PAH exposure, oxidative stress and lung function: The associations and mediation effects in healthy young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118493. [PMID: 34780758 DOI: 10.1016/j.envpol.2021.118493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Decreased lung function is an early hazard of respiratory damage from fine particulate matter (PM2.5) exposure. Limited studies have explored the association between PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and lung function, but studies at the personal level in healthy young adults are scarce. Here, we assessed personal PM2.5 and PM2.5-bound PAH levels in a panel of 45 healthy young adults by a time-weighted model. The aims were to investigate the relationship between personal exposure and lung function by a linear mixed effect model, and to explore the mediating effects of oxidative stress in this association. The results showed that personal exposure to PM2.5 and PAHs had the greatest negative effect on forced expiratory volume in 1 s (FEV1), peak expiratory flow rate (PEF) and forced expiratory flow between 25% and 75% vital capacity (FEF25-75) at lag 3 days. An IQR increase in personal PM2.5 exposure was associated with a change of 0.35% (95% CI: 0.27%, 0.42%) in FEV1, 0.39% (95% CI: 0.29%, 0.47%) in PEF and 0.36% (95% CI: 0.27%, 0.45%) in FEF25-75. An IQR increase in personal PAH exposure was associated with a decrease of 0.63% (95% CI: 0.55%, 0.69%) in FEV1, 0.69% (95% CI: 0.61%, 0.75%) in PEF and 0.66% (95% CI: 0.57%, 0.72%) in FEF25-75. Additionally, exposure to PM2.5 and PAHs resulted in the strongest positive effects on urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Of these, 8-OHdG mediated 10.33%, 8.87% and 9.45% of the associations of personal PM2.5 exposure with FEV1, PEF and FEF25-75, respectively. Our results revealed that personal exposure to PM2.5 and PAHs was associated with lung function decline in healthy young adults, and urinary 8-OHdG mediated the association between personal PM2.5 and lung function.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hongwei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ze Yang
- Department of Occupational and Environmental Health, Tianjin Medical University, Tianjin, 300041, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Chunyan Meng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Suying Rong
- Department of Clinical Medicine, Tangshan Vocational and Technical College, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|