1
|
Suazo-Hernández J, Mlih R, Bustamante M, Castro-Castillo C, Mora MDLL, Sepúlveda-Parada MDLÁ, Mella C, Cornejo P, Ruiz A. Immobilization of Inorganic Phosphorus on Soils by Zinc Oxide Engineered Nanoparticles. TOXICS 2025; 13:363. [PMID: 40423442 DOI: 10.3390/toxics13050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025]
Abstract
The overuse of inorganic phosphate fertilizers in soils has led to the transfer of inorganic phosphorus (Pi) to aquatic ecosystems, resulting in eutrophication. Adsorption-desorption studies in batch systems were used to evaluate the effect of adding 1% zinc oxide (ZnO) engineered nanoparticles (ENPs) on Pi retention in Ultisol, and Mollisol soils. The 1% ZnO-ENPs showed increased chemical properties such as pH, electrical conductivity, and organic matter content, and reduce nutrient bioavailability (P, N, and Zn), and physical properties such as surface area and pore size of the two soils. The kinetic data of Pi adsorption on Ultisol, Mollisol, Ultisol + 1% ZnO-ENP, and Mollisol + 1% ZnO-ENP systems fitted well to the pseudo-second-order model (r2 ≥ 0.942, and χ2 ≤ 61), and the Elovich model (r2 ≥ 0.951, and χ2 ≤ 32). Pi adsorption isotherms for the Ultisol soil adequately fitted to the Freundlich model (r2 = 0.976, and χ2 = 16), and for the Mollisol soil, the Langmuir model (r2 = 0.991, and χ2 = 3) had a better fit to the data. With 1% ZnO-ENPs, the linear, Langmuir, and Freundlich models correctly described the Pi adsorption data. Pi desorption was reduced in the Ultisol compared to the Mollisol soil, and with 1% ZnO-ENPs further decreased Pi desorption in both soils. Therefore, ENPs can be used as a new alternative material for Pi fixation in agricultural soils and contribute to mitigating eutrophication issues of aqueous systems.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, Temuco 01145, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - Rawan Mlih
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich (FZJ), 52425 Juelich, Germany
- Institute of Water and Environment (IWE), Al Azhar University-Gaza, Gaza P.O. Box 1277, Palestine
| | - Marion Bustamante
- Doctoral Program in Engineering at the MacroFacultad de Ingeniería UFRO-UBB-UTAL, Temuco 4780000, Chile
| | - Carmen Castro-Castillo
- LabMAM, Department of Chemical Engineering, Biotechnology and Materials, FCFM, Universidad de Chile, Santiago 8370456, Chile
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, Temuco 01145, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - María de Los Ángeles Sepúlveda-Parada
- Spectroscopy Laboratory (Vis-IF) and Sustainable Soil Management, Department of Soil Science and Natural Resources, Faculty of Agronomy, Universidad de Concepción, Vicente Méndez 595, Casilla 537, Chillán 3812120, Chile
| | - Catalina Mella
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pablo Cornejo
- Plant Stress Physiology Laboratory, Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile
- Centro Tecnológico de Suelos y Cultivos (CTSyC), Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile
| | - Antonieta Ruiz
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| |
Collapse
|
2
|
Pulikova EP, Ivanov FD, Alliluev IA, Chernikova NP, Krepakova MR, Gorovtsov AV, Minkina TM, Bauer TV, Tsitsuashvili VS, Garg MC, Kumar S, Rajput VD. Effects of bulk forms and nanoparticles of zinc and copper oxides on the abundance, nitrogen cycling and enzymatic activities of microbial communities, morphometric parameters and antioxidant status of Hordeum vulgare L. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:494. [PMID: 39508891 DOI: 10.1007/s10653-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Uncontrolled use or improper disposal of bulk forms and nanoparticles of heavy metals may lead to their release into the environment. Coastal and floodplain ecosystems are particularly vulnerable, and the effects of metal nanoparticles on Fluvisol and Stagnic Fluvisol are poorly studied. This study aims to examine the effect of heavy metals on the enzymatic activity of the soil, the abundance of culturable microorganisms, growth, and antioxidant status of H. vulgare L. A model experiment was carried out with contamination of Stagnic Fluvisol Humic and Fluvisol with 2200 and 1320 mg kg-1 Zn and Cu, to assess the ecotoxicity of bulk forms and nanoparticles of ZnO and CuO in floodplain soils. The abundance of culturable microorganisms, namely copiotrophs, prototrophs, oligotrophs and nitrogen fixers increased. However, a sharp decrease in dehydrogenase activity and denitrification occurred. This effect was more pronounced in Fluvisol (7 times) than in Stagnic Fluvisol Humic (3 times). The accumulation of HMs was also higher in plants grown in Fluvisol (16-32 times) than in Stagnic Fluvisol Humic (13-24 times), which led to a decrease in plant growth and activation of antioxidant defense systems. An increase in the level of malondialdehyde, and the activity of superoxide dismutase and catalase indicates the induction of oxidative stress. Heavy metals have a greater impact on the biological properties of Fluvisol compared to Stagnic Fluvisol Humic. The presence of heavy metals boosts the abundance of culturable microorganisms, while nanoparticles hinder plant growth more than bulk heavy metals.
Collapse
Affiliation(s)
- E P Pulikova
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation.
| | - F D Ivanov
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - I A Alliluev
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - N P Chernikova
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - M R Krepakova
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - A V Gorovtsov
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - T M Minkina
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - T V Bauer
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - V S Tsitsuashvili
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - M C Garg
- Amity Institute of Environmental Science (AIES), Amity University Uttar Pradesh, Sector-125, Gautam Budh Nagar, Noida, 201313, India
| | - S Kumar
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | - V D Rajput
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| |
Collapse
|
3
|
Adil MF, Sehar S, Ma Z, Tahira K, Askri SMH, El-Sheikh MA, Ahmad A, Zhou F, Zhao P, Shamsi IH. Insights into the alleviation of cadmium toxicity in rice by nano-zinc and Serendipita indica: Modulation of stress-responsive gene expression and antioxidant defense system activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123952. [PMID: 38641035 DOI: 10.1016/j.envpol.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 μM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.
Collapse
Affiliation(s)
- Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Khajista Tahira
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanrui Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Cáceres-Wenzel MI, Bernassani FN, Fuchs JS, Cortón E, Cochón AC. Mixture toxicity study of two metal oxide nanoparticles and chlorpyrifos on Eisenia andrei earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35470-35482. [PMID: 38730216 DOI: 10.1007/s11356-024-33604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Co-exposure soil studies of pollutants are necessary for an appropriate ecological risk assessment. Here, we examined the effects of two-component mixtures of metal oxide nanoparticles (ZnO NPs or goethite NPs) with the insecticide chlorpyrifos (CPF) under laboratory conditions in short-term artificial soil assays using Eisenia andrei earthworms. We characterized NPs and their mixtures by scanning electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential, and evaluated effects on metal accumulation, oxidative stress enzymes, and neurotoxicity related biomarkers in single and combined toxicity assays. Exposure to ZnO NPs increased Zn levels compared to control in single and combined exposure (ZnO NPs + CPF) at 72 h and 7 days, respectively. In contrast, there was no indication of Fe increase in organisms exposed to goethite NPs. One of the most notable effects on oxidative stress biomarkers was produced by single exposure to goethite NPs, showing that the worms were more sensitive to goethite NPs than to ZnO NPs. Acetylcholinesterase and carboxylesterase activities indicated that ZnO NPs alone were not neurotoxic to earthworms, but similar degrees of inhibition were observed after single CPF and ZnO NPs + CPF exposure. Differences between single and combined exposure were found for catalase and superoxide dismutase (goethite NPs) and for glutathione S-transferase (ZnO NPs) activities, mostly at 72 h. These findings suggest a necessity to evaluate mixtures of NPs with co-existing contaminants in soil, and that the nature of metal oxide NPs and exposure time are relevant factors to be considered when assessing combined toxicity, as it may have an impact on ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Marcela I Cáceres-Wenzel
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
| | - Florencia N Bernassani
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Julio S Fuchs
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Eduardo Cortón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Adriana C Cochón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| |
Collapse
|
5
|
Zhang F, Li S, Wang L, Li X. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. Int J Mol Sci 2024; 25:1896. [PMID: 38339174 PMCID: PMC10855730 DOI: 10.3390/ijms25031896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The extensive utilization of zinc oxide nanoparticles in consumer products and the industry has led to their substantial entry into the soil through air and surface runoff transportation, which causes ecotoxicity in agro-ecosystems and detrimental effects on crop production. Nanobubbles (diameter size < 1 µm) have many advantages, such as a high surface area, rapid mass transfer, and long retention time. In this study, wheat seedlings were irrigated with a 500 mg L-1 zinc oxide nanoparticle solution delivered in the form of nanobubble watering (nanobubble-ZnO-NPs). We found that nanobubble watering improved the growth and nutrient status of wheat exposed to zinc oxide nanoparticles, as evidenced by increased total foliar nitrogen and phosphorus, along with enhanced leaf dry mass per area. This effect can be attributed to nanobubbles disassembling zinc oxide aggregates formed due to soil organic carbon, thereby mitigating nutrient absorption limitations in plants. Furthermore, nanobubbles improved the capability of soil oxygen input, leading to increased root activity and glycolysis efficiency in wheat roots. This work provides valuable insights into the influence of nanobubble watering on soil quality and crop production and offers an innovative approach for agricultural irrigation that enhances the effectiveness and efficiency of water application.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun Wang
- Key Laboratory of Crop Eco-Physiology and Farming System in the Northeastern, Institute of Agricultural Resources and Environment, Ministry of Agriculture and Rural Affair, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xiangnan Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li C, Li G, Wang Y, Wang J, Liu H, Gao W, Qin S, Sui F, Fu H, Zhao P. Supplementing two wheat genotypes with ZnSO 4 and ZnO nanoparticles showed differential mitigation of Cd phytotoxicity by reducing Cd absorption, preserving root cellular ultrastructure, and regulating metal-transporter gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108199. [PMID: 38100890 DOI: 10.1016/j.plaphy.2023.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.
Collapse
Affiliation(s)
- Chang Li
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Guangxin Li
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Yun Wang
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Jun Wang
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Hongen Liu
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Wei Gao
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Shiyu Qin
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Fuqing Sui
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Haichao Fu
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Peng Zhao
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Suazo-Hernández J, Arancibia-Miranda N, Mlih R, Cáceres-Jensen L, Bolan N, Mora MDLL. Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:572. [PMID: 36770533 PMCID: PMC9919586 DOI: 10.3390/nano13030572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability. In general, we found that the presence of metal and metallic oxide ENPs in soils can increase hydraulic conductivity and soil porosity and reduce the distance between soil particles, as well as causing a variation in pH, cation exchange capacity (CEC), electrical conductivity (EC), redox potential (Eh), and soil organic matter (SOM) content. Furthermore, ENPs or the metal cations released from them in soils can interact with nutrients like phosphorus (P) forming complexes or precipitates, decreasing their bioavailability in the soil solution. The results depend on the soil properties and the doses, exposure duration, concentrations, and type of ENPs. Therefore, we suggest that particular attention should be paid to every kind of metal and metallic oxide ENPs deposited into the soil.
Collapse
Affiliation(s)
- Jonathan Suazo-Hernández
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolás Arancibia-Miranda
- Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 8320000, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Rawan Mlih
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich (FZJ), 52425 Juelich, Germany
| | - Lizethly Cáceres-Jensen
- Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago 776019, Chile
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile
- Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
8
|
Vu KA, Mulligan CN. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. Int J Mol Sci 2023; 24:ijms24031916. [PMID: 36768251 PMCID: PMC9915329 DOI: 10.3390/ijms24031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Oil-contaminated soil is one of the most concerning problems due to its potential damage to human, animals, and the environment. Nanoparticles have effectively been used to degrade oil pollution in soil in the lab and in the field for a long time. In recent years, surfactant foam and nanoparticles have shown high removal of oil pollutants from contaminated soil. This review provides an overview on the remediation of oil pollutants in soil using nanoparticles, surfactant foams, and nanoparticle-stabilized surfactant foams. In particular, the fate and transport of oil compounds in the soil, the interaction of nanoparticles and surfactant foam, the removal mechanisms of nanoparticles and various surfactant foams, the effect of some factors (e.g., soil characteristics and amount, nanoparticle properties, surfactant concentration) on remediation efficiency, and some advantages and disadvantages of these methods are evaluated. Different nanoparticles and surfactant foam can be effectively utilized for treating oil compounds in contaminated soil. The treatment efficiency is dependent on many factors. Thus, optimizing these factors in each scenario is required to achieve a high remediation rate while not causing negative effects on humans, animals, and the environment. In the future, more research on the soil types, operating cost, posttreatment process, and recycling and reuse of surfactants and nanoparticles need to be conducted.
Collapse
Affiliation(s)
- Kien A. Vu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
- Correspondence:
| |
Collapse
|
9
|
Rahman SU, Wang X, Shahzad M, Bashir O, Li Y, Cheng H. A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119916. [PMID: 35944778 DOI: 10.1016/j.envpol.2022.119916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs. Moreover, NPs could reduce and/or restrict the bioavailability of TEs to plants due to their high sorption ability. In this review, we summarize the potential influence of NPs on plant physiological attributes, mineral absorption, and TEs sorption, accumulation, and translocation. It also unveils the NPs-mediated TE scavenging-mechanisms at plant and soil interface. NPs immobilized TEs in soil solution effectively by altering the speciation of TEs and modifying the physiological, biochemical, and biological properties of soil. In plants, NPs inhibit the transfer of TEs from roots to shoots by inducing structural modifications, altering gene transcription, and strengthening antioxidant defense mechanisms. On the other hand, the mechanisms underpinning NPs-mediated TEs absorption and cytotoxicity mitigation differ depending on the NPs type, distribution strategy, duration of NP exposure, and plants (e.g., types, varieties, and growth rate). The review highlights that NPs may bring new possibilities for resolving the issue of TE cytotoxicity in crops, which may also assist in reducing the threats to the human dietary system. Although the potential ability of NPs in decontaminating soils is just beginning to be understood, further research is needed to uncover the sub-cellular-based mechanisms of NPs-induced TE scavenging in soils and absorption in plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Muhammad Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Owais Bashir
- Division of Soil Science and Agricultural Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 190025, Kashmir, India
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Bech J. Special issue "Soil and plant contamination and remediation: Part 1". ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1-6. [PMID: 34893944 DOI: 10.1007/s10653-021-01170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona, Barcelona, UB, Spain.
| |
Collapse
|