1
|
Grassi E, Greco M, Guidi L, Pasquariello M, Al-Enezi E, Trifuoggi M, Frontalini F, Semprucci F. Exploring the effects of decabromodiphenyl ether on meiofaunal communities: An experimental approach. MARINE POLLUTION BULLETIN 2025; 214:117762. [PMID: 40054311 DOI: 10.1016/j.marpolbul.2025.117762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP), prevalent in Kuwait's coastal-industrial zones, on meiofaunal communities. A mesocosm experiment was conducted, exposing sediment-dwelling meiofaunal communities from sediments near Failaka Island (Kuwait) to gradient concentrations of BDE-209 (0.01-20 mg/kg) over a 4-week period. The effect on meiofaunal communities was evaluated by changes in the taxonomic composition, alpha and beta diversity metrics, and the Nematodes/Copepods (Ne/Co) ratio. Our findings reveal that BDE-209 exposure significantly reduced alpha diversity and induced shifts in the community structure, favouring resilient taxa such as nematodes. The increasing Ne/Co ratio underscores structural changes and highlights the pollutant's potential to disrupt sedimentary ecosystem functions. Temporal analyses confirm the persistence of BDE-209 in sediments despite partial degradation, reinforcing its classification as a POP with long-term ecological risks. This study provides valuable insights into the responses of meiofaunal communities to POPs like BDE-209, demonstrating their efficacy as bioindicators for sediment quality. By integrating meiofaunal biomonitoring metrics with mesocosm experiments, this research provides a robust method for assessing the ecological impacts of BDE-209, particularly in regions lacking regulatory frameworks. It also raises awareness of the broader implications of POPs in marine ecosystems. These findings highlight the urgent need for enhanced monitoring programs and stricter regulations to mitigate PBDE contamination in marine ecosystems. Future research should focus on field-based validation of mesocosm results and investigate the interactive effects of BDE-209 with other pollutants to better understand its cumulative ecological impact.
Collapse
Affiliation(s)
- E Grassi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| | - M Greco
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain.
| | - L Guidi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| | - M Pasquariello
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| | - E Al-Enezi
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - M Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| | - F Frontalini
- Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy.
| | - F Semprucci
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| |
Collapse
|
2
|
Zhang LN, Peng PA, Li HR, Liu MY, Hu JF. Halogenated aromatic pollutants in routine animal-derived food of south China: Occurrence, sources, and dietary intake risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124002. [PMID: 38636834 DOI: 10.1016/j.envpol.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.
Collapse
Affiliation(s)
- Li-Na Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping-An Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou, 510640, China
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Ming-Yang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Fang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
3
|
Li T, Liu R, Wang Q, Rao J, Liu Y, Dai Z, Gooneratne R, Wang J, Xie Q, Zhang X. A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133831. [PMID: 38402684 DOI: 10.1016/j.jhazmat.2024.133831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jiaqian Rao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yuanjia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| |
Collapse
|
4
|
Xu K, Li Z, Qiao J, Wang S, Xie P, Zong Z, Hu C. Persistent organic pollutants exposure and risk of autism spectrum disorders: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122439. [PMID: 37619697 DOI: 10.1016/j.envpol.2023.122439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Accumulating number of epidemiological studies has recently proposed that improvement in the risk of autism spectrum disorders (ASD) is associated with persistent organic pollutants (POPs) exposure. However, evidence from current researches is limited and inconsistent. Thus, we conducted a systematic review and meta-analysis to investigate the potential associations comprehensively. We systematically and extensively searched two electronic databases (PubMed and EMBASE) from inception to July 3, 2022 and an updated search was performed before submission. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were derived from stratified random-effects meta-analyses by type of exposure and outcome. We also tested the potential heterogeneity across studies, conducted sensitivity analysis and evaluated publication bias. A total of 20 studies were finally included in our study. Meta-analytical effect estimates indicated a positive association between prenatal exposure to PCB-138, PCB-153 and PCB-170 and an increased risk of ASD, with OR of 1.89 (95% CI = 1.21-2.95, I2 = 0%), 1.61 (95% CI = 1.05-2.47, I2 = 0%) and 1.46 (95% CI = 1.03-2.06, I2 = 0%) respectively. In contrast, PFDA was found inversely associated with the risk of ASD (OR = 0.70, 95% CI = 0.52-0.94, I2 = 0%). The level of evidence supporting a link between ASD risk and exposure to PCB-138, PCB-153, PCB-170, and PFDA was respectively categorized as low, low, moderate, and low. In summary, this systematic review and meta-analysis suggest that exposure to PCB-138, PCB-153, and PCB-170 correlates with a heightened risk of ASD, with evidence levels rated as "low", "low", and "moderate", respectively. In contrast, PFDA exposure appears to be inversely associated with ASD risk, with a "low" level of supporting evidence. However, due to the limited number of studies available for each exposure and outcome pairing, these results should be interpreted with caution. Sufficiently powered studies are needed to validate our findings.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhuoyan Li
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jianchao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Senzheng Wang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Pinpeng Xie
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhiqiang Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
5
|
Yu Y, Quan X, Wang H, Zhang B, Hou Y, Su C. Assessing the health risk of hyperuricemia in participants with persistent organic pollutants exposure - a systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114525. [PMID: 36640578 DOI: 10.1016/j.ecoenv.2023.114525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Based on a systematic review and meta-analysis of articles published in PubMed, Embase, Cochrane, and Web of Science, we identified nine articles that provide evidence of the relationship between persistent organic pollutants and hyperuricemia. Our researchers assess the quality of the included studies and their risk of bias using the recommended method and tool. This study uses meta-analyses of the random effects of each exposure and outcome to estimate combined odds ratios (ORs) and 95% confidence intervals (CIs). We found that the risk of hyperuricemia was strongly associated with three perfluorinated compounds, PFNA, PFOA, and PFOS, with the OR(95%CI) of 1.26 (1.07-1.47), 1.44(1.15-1.79), and 1.23(1.01-1.50) respectively. We also found a weak association between two other perfluorinated compounds, PFDA and PFHxS. Other than that, the summary ORs (95% CIs) of incident hyperuricemia were 2.34 (1.79-3.08) for DDT, 3.25(2.40-4.39) for DDE, 2.57 (1.37-4.81) for PCBs and 3.05(2.22-4.19) in trans-nonanchlor. Therefore, DDT and its breakdown product, DDE, PCBs, and trans-nonanchlor have also been linked with an increased risk of hyperuricemia in humans. This study finds that persistent organic pollutant is a critical factor for hyperuricemia, and further studies in specific regions will be considered in the future.
Collapse
Affiliation(s)
- Yipei Yu
- Peking University Health Science Center, China
| | - Xuyuan Quan
- Peking University Health Science Center, China
| | - Huijun Wang
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health, China; Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China
| | - Bing Zhang
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health, China; Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China
| | - Yan Hou
- Peking University Health Science Center, China.
| | - Chang Su
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health, China; Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China.
| |
Collapse
|