1
|
Uddin R, Hopke PK, Van Impe J, Sannigrahi S, Salauddin M, Cummins E, Nag R. Source identification of heavy metals and metalloids in soil using open-source Tellus database and their impact on ecology and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175987. [PMID: 39244067 DOI: 10.1016/j.scitotenv.2024.175987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The presence of heavy metals and metalloids (metal(loid)s) in the food chain is a global problem, and thus, metal(loid)s are considered to be Potentially Toxic Elements (PTEs). Arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) are identified as prominent hazards related to human health risks throughout the food chain. This study aimed to carry out a source attribution for metal(loid)s in shallow topsoil of north-midlands, northwest, and border counties of the Republic of Ireland, followed by an assessment of the potential ecological and human health risks. The positive Matrix Factorization (PMF) was used for source characterization of PTEs, followed by the Monte Carlo simulation method, used for a probabilistic model to evaluate potential human health risks. The mean concentrations of prioritized metal(loid)s in the topsoil range in the order of Pb (28.83 mg kg-1) > As (7.81 mg kg-1) > Cd (0.51 mg kg-1) > Hg (0.11 mg kg-1) based on the open-source Tellus dataset. This research identified three primary sources of metal(loid) pollution: geogenic sources (36 %), mixed sources of historical mining and natural origin (33 %), and anthropogenic activities (31 %). The ecological risk assessment showed that Ireland's soil exhibits low-moderate pollution levels however, concerns remain for Cd and As levels. All metal(loid)s except Cd showed acceptable non-carcinogenic risk, while Cd and As accounted for high to moderate potential cancer risks. Potato consumption (if grown on land with elevated metal(loid) levels), Cd concentration in soil, and bioaccumulation factor of Cd in potatoes were the three most sensitive parameters. In conclusion, metal(loid)s in Ireland present low to moderate ecological and human health risks. It underscores the need for policies and remedial strategies to monitor metal(loid) levels in agricultural soil regularly and the production of crops with low bioaccumulation in regions with elevated metal(loid) levels.
Collapse
Affiliation(s)
- Rayhan Uddin
- UCD School of Biosystems and Food Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Box 5708, Potsdam, NY 13699, USA.
| | - Jan Van Impe
- Department of Chemical Engineering, BioTeC + Chemical and Biochemical Process Technology and Control, KU Leuven, 9000 Gent, Belgium.
| | - Srikanta Sannigrahi
- UCD School of Geography, Newman Building, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Md Salauddin
- UCD School of Civil Engineering, Richview Newstead, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Enda Cummins
- UCD School of Biosystems and Food Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Rajat Nag
- UCD School of Biosystems and Food Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
2
|
Naeem MA, Shabbir A, Imran M, Ahmad S, Shahid M, Murtaza B, Amjad M, Khan WUD. Silicon-nanoparticles loaded biochar for soil arsenic immobilization and alleviation of phytotoxicity in barley: Implications for human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23591-23609. [PMID: 38418792 DOI: 10.1007/s11356-024-32580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
Arsenic (As)-induced environmental pollution and associated health risks are recognized on a global level. Here the impact of cotton shells derived biochar (BC) and silicon-nanoparticles loaded biochar (nano-Si-BC) was explored on soil As immobilization and its phytotoxicity in barley plants in a greenhouse study. The barley plants were grown in a sandy loam soil with varying concentrations of BC and nano-Si-BC (0, 1, and 2%), along with different levels of As (0, 5, 10, and 20 mg kg-1). The FTIR spectroscopy, SEM-EDX, and XRD were used to characterize BC and nano-Si-BC. Results revealed that As treatment had a negative impact on barley plant development, grain yield, physiology, and anti-oxidative response. However, the addition of nano-Si-BC led to a 71% reduction in shoot As concentration compared to the control with 20 mg kg-1 of As, while BC alone resulted in a 51% decline. Furthermore, the 2% nano-Si-BC increased grain yield by 94% compared to control and 28% compared to BC. The addition of 2% nano-Si-BC to As-contaminated soil reduced oxidative stress (34% H2O2 and 48% MDA content) and enhanced plant As tolerance (92% peroxidase and 46% Ascorbate peroxidase activity). The chlorophyll concentration in barley plants decreased due to oxidative stress. Additionally, the incorporation of 2% nano-Si-BC resulted in a 76% reduction in water soluble and NaHCO3 extractable As. It is concluded that the use of BC or nano-Si-BC in As contaminated soil for barley resulted in a low human health risk (HQ < 1), as it effectively immobilized As and promoted higher activity of antioxidants.
Collapse
Affiliation(s)
- Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan.
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Sajjad Ahmad
- Department of Civil Engineering, COMSATS University Islamabad, Sahiwal Campus, Islamabad, 57000, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Imtiaz H, Naeem S, Ahmad M. Investigating the potential of nanobonechar toward climate-smart agriculture. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:128. [PMID: 38483731 DOI: 10.1007/s10653-024-01899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/03/2024] [Indexed: 03/19/2024]
Abstract
Extreme climates and the unpredictability of the weather are significant obstacles to agricultural productivity. This study is the first attempt to explore the capacity of nanobonechar (NBC) for promoting climate-smart agriculture. A pot experiment was performed on maize (Zea mays L.) under a deficit irrigation system (40, 70, and 100% irrigation rates) using different soil application rates of the NBC (0, 0.5, 1, and 2% wt/wt). Additionally, the CO2-C efflux rate and cumulative CO2-C were measured in an incubation experiment. The results indicated the best performance of the 1% NBC treatment under a 70% irrigation rate in terms of the fresh and dry weights of maize plants. Total PO43- and Ca2+ were significantly higher in the plants grown in the NBC-amended soil as compared to the control, showing a gradual increase with an increase in the NBC application rate. The improved productivity of maize plants under a deficit irrigation system was associated with enhanced water-holding capacity, organic matter, and bioavailability of cations (Ca2+, K+, and Na+) and anions (PO43- and NO3-) in the soils amended with NBC. The CO2-C efflux rate and cumulative CO2-C emissions remain higher in the NBC-amended soil than in the un-amended soil, pertaining to the high contents of soil organic matter emanating from the NBC. We conclude that NBC could potentially be used as a soil amendment for promoting maize growth under a water stress condition.
Collapse
Affiliation(s)
- Hina Imtiaz
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sana Naeem
- Land Resources Research Institute, National Agricultural Research Center, Islamabad, 45500, Pakistan
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Guo G, Chen S, Zhang D, Wang J, Lei M, Ju T, Wei H. Influence of biochar on the arsenic phytoextraction potential of Pteris vittata in soils from an abandoned arsenic mining site. CHEMOSPHERE 2024; 352:141389. [PMID: 38336043 DOI: 10.1016/j.chemosphere.2024.141389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Biochar (BC) has a strong potential for activating arsenic (As) in soil; thus, the phytoremediation efficiency of As-polluted soils is enhanced with Pteris vittata L. A pot experiment was conducted to investigate the potential of BC to assist in phytoremediation with P. vittata. The effects of BC on physicochemical properties, available As, enzyme activities, and the bacterial community in the rhizosphere soil were investigated, and the biomass, physiology, and As uptake of P. vittata were analyzed. The results indicated that applying BC facilitated available As in the P. vittata rhizosphere soil, and the phytoremediation efficiency percentage increased in the As-polluted soils, such as 3.80% and 8.01% under the 2% and 5% BC treatments compared to the control, respectively. Phytoremediation with P. vittata and BC significantly improved soil organic matter content, available N, P, and K, enzyme activities, and the bacterial community. BC promoted Streptomyces (26.6-54.2%) and Sphingomonas (12.3-30.8%) abundance which regulated the growth and As uptake by P. vittata. Moreover, applying BC increased the biomass, and As uptake by P. vittata. Overall, BC strengthened the phytoremediation of As-polluted soils by improving soil pH, nutrient concentrations, enzyme activities, bacterial community structure, and soil arsenic activation, growth, and absorption by P. vittata.
Collapse
Affiliation(s)
- Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiqi Chen
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; HongHe University, Mengzi, 661100, Yunnan, China.
| | - Jing Wang
- Kunming University of Science and Technology, Kunming, 650500, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tienan Ju
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Wei
- Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
5
|
Gao Y, Chen H, Fang Z, Niazi NK, Adusei-Fosu K, Li J, Yang X, Liu Z, Bolan NS, Gao B, Hou D, Sun C, Meng J, Chen W, Quin BF, Wang H. Coupled sorptive and oxidative antimony(III) removal by iron-modified biochar: Mechanisms of electron-donating capacity and reactive Fe species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122637. [PMID: 37769707 DOI: 10.1016/j.envpol.2023.122637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.
Collapse
Affiliation(s)
- Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Zheng Fang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Kwasi Adusei-Fosu
- Resilient Agriculture, AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Zhongzhen Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Bert F Quin
- Quin Environmentals (NZ) Ltd., PO Box 125122, St. Heliers, Auckland, 1740, New Zealand
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Mensah AK, Shaheen SM, Rinklebe J, Heinze S, Marschner B. Phytoavailability and uptake of arsenic in ryegrass affected by various amendments in soil of an abandoned gold mining site. ENVIRONMENTAL RESEARCH 2022; 214:113729. [PMID: 35803343 DOI: 10.1016/j.envres.2022.113729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Abandoned gold mining spoils pose socio-environmental, human, and animal health impacts and threaten sustainability of mineral extraction. Green trials and ecological solutions are required to effectively remediate these contaminated soils and mitigate the associated risks. Here, we carried out a pot experiment using a highly contaminated soil (mean total As = 5104.0 mg/kg) collected from an abandoned mine spoil in Ghana. We aimed to quantify the impacts of compost, iron oxide, and poultry manure on the mobilization, fractionation, and uptake of As by ryegrass (Lolium perenne). The soil amendments were applied at a rate of 5% (w/w) each, separately or in combination. We extracted the mine spoil soil readily-bioavailable As and specific-sorbed As, and determined the As contents in plant and the uptake after harvest. The plant transfer indices for soil-to-root (bioconcentration factor, BCF), soil-to-shoot (bioaccumulation concentration- BAC), and root-to-shoot (translocation factor- TF) were also calculated. Addition of manure increased the mining readily-bioavailable As by 243% and specific-sorbed As by 38%, as compared to the control. Manure addition further aided root As-uptake by 134%, whilst its combination with compost increased uptake by 101%. Lone addition of manure and in combination with compost resulted in BCF above 1, indicating increased As-phytostability. The presence of carbon and iron in the roots of the ryegrass sorbed or precipitated As limited its soil-to-shoot and root-to-shoot transfer. These findings indicate that manure alone and in combination with compost can be used to augment the phytoremediation efficiency of ryegrass in the As-contaminated spoil.
Collapse
Affiliation(s)
- Albert Kobina Mensah
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany; Council for Scientific and Industrial Research- Soil Research Institute, Academy Post Office, Kwadaso, Kumasi, Ghana.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| | - Stefanie Heinze
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|