1
|
Visconti D, Carrino L, Fiorentino N, El-Nakhel C, Todisco D, Fagnano M. Phytomanagement of shooting range soils contaminated by Pb, Sb, and as using Ricinus communis L.: effects of compost and AMF on PTE stabilization, growth, and physiological responses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:129. [PMID: 40121371 DOI: 10.1007/s10653-025-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Shooting ranges represent a critical case of soil contamination due to the accumulation of Pb, Sb, and As from bullet residues. Effective and sustainable remediation strategies are required to mitigate environmental and health risks while enabling land valorization. This study investigates the potential of Ricinus communis L. for phytomanagement of Pb-, Sb-, and As-contaminated soils, evaluating the combined effects of compost, mineral fertilizer, and arbuscular mycorrhizal fungi (AMF) on plant growth, PTE accumulation and bioavailability, and biomass production. A mesocosm experiment was conducted using highly contaminated soil (about 5000 mg kg⁻1 Pb, 100 mg kg⁻1 Sb). Despite severe contamination, Ricinus communis L. achieved stable biomass and seed yield (about 5.7 Mg ha⁻1 seeds, 2-3 Mg ha⁻1 oil), similar to values reported in non-contaminated soils of the Mediterranean area. Compost and AMF increased PTE bioavailability in the rhizosphere, likely due to root exudate activity, but maintained low translocation factors (TF < 1), indicating limited PTE uptake into aerial biomass. These findings confirm the phytostabilization potential of Ricinus communis L., reducing PTE dispersion while promoting renewable energy production preventing competition for land used for growing food crops.
Collapse
Affiliation(s)
- Donato Visconti
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy.
| | - Linda Carrino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy.
| | - Nunzio Fiorentino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Daniele Todisco
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Massimo Fagnano
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| |
Collapse
|
2
|
Sarma H, Gogoi B, Guan CY, Yu CP. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. CHEMOSPHERE 2024; 356:141795. [PMID: 38548078 DOI: 10.1016/j.chemosphere.2024.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are persistent pollutants that have been introduced into the environment as a result of human activities. They are produced when PAHs undergo oxidation and are highly resistant to degradation, resulting in prolonged exposure and significant health risks for wildlife and humans. Nitro-PAHs' potential to induce cancer and mutations has raised concerns about their harmful effects. Furthermore, their ability to accumulate in the food chain seriously threatens the ecosystem and human health. Moreover, nitro-PAHs can disrupt the normal functioning of the endocrine system, leading to reproductive and developmental problems in humans and other organisms. Reducing nitro-PAHs in the environment through source management, physical removal, and chemical treatment is essential to mitigate the associated environmental and human health risks. Recent studies have focused on improving nitro-PAHs' phytoremediation by incorporating microorganisms and biostimulants. Microbes can break down nitro-PAHs into less harmful substances, while biostimulants can enhance plant growth and metabolic activity. By combining these elements, the effectiveness of phytoremediation for nitro-PAHs can be increased. This study aimed to investigate the impact of introducing microbial and biostimulant agents on the phytoremediation process for nitro-PAHs and identify potential solutions for addressing the environmental risks associated with these pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Bhoirob Gogoi
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University. B.S., Civil Engineering, National Taiwan University, Taiwan
| |
Collapse
|
3
|
Caporale AG, Porfido C, Roggero PP, Di Palma A, Adamo P, Pinna MV, Garau G, Spagnuolo M, Castaldi P, Diquattro S. Long-term effect of municipal solid waste compost on the recovery of a potentially toxic element (PTE)-contaminated soil: PTE mobility, distribution and bioaccessibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122858-122874. [PMID: 37979102 PMCID: PMC10724333 DOI: 10.1007/s11356-023-30831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Compost from municipal solid waste (MSWC) can represent a resource for the environmental management of soils contaminated with potentially toxic elements (PTEs), since it can reduce their mobility and improve soil fertility. However, the long-term impact of compost on soil recovery has been poorly investigated. To this end, the influence of a MSWC added at different rates (i.e. 1.5, 3.0 and 4.5% w/w) to a multi-PTE-contaminated (e.g. Sb 412 mg kg-1, Pb 2664 mg kg-1 and Zn 7510 mg kg-1) sub-acidic soil (pH 6.4) was evaluated after 6 years since its addition. The MSWC significantly enhanced soil fertility parameters (i.e. total organic carbon, Olsen P and total N) and reduced the PTE labile fractions. The distribution maps of PTEs detected through µXRF analysis revealed the presence of Zn and Pb carbonates in the amended soils, or the formation of complexes between these PTEs and the functional groups of MSWC. A higher oral, inhalation and dermal bioaccessibility of each PTE was detected in the soil fine-grained fractions (< 2 and 2-10 µm) than in coarse particles (10-20 and 20-50 µm). The MSWC amendment generally did not modify the PTE bioaccessibility, while the relative bioaccessibility of cationic PTEs was greater than that of anionic ones (e.g. Cd > Zn > Pb > Sb > As). Pb and Sb showed the highest hazard quotients (e.g. 2.2 and 10 for Sb and Pb, respectively, in children). Overall, the results indicated that the MSWC used can be an effective option for the recovery of PTE-contaminated soils, even in the long term.
Collapse
Affiliation(s)
- Antonio Giandonato Caporale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Naples, Italy
| | - Carlo Porfido
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Pier Paolo Roggero
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Anna Di Palma
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Naples, Italy
- Research Institute On Terrestrial Ecosystems, National Research Council (IRET-CNR) Monterotondo Scalo, Rome, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Naples, Italy
| | - Maria Vittoria Pinna
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giovanni Garau
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Matteo Spagnuolo
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Paola Castaldi
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.
| | - Stefania Diquattro
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Di Ricerca Sulla Desertificazione, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
4
|
Arbuscular mycorrhizal fungi affecting the growth, nutrient uptake and phytoremediation potential of different plants in a cadmium-polluted soil. Biometals 2022; 35:1243-1253. [PMID: 36098857 DOI: 10.1007/s10534-022-00439-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Heavy metals stress is of great concern as it contaminates the environment affecting human health and the growth and quality of different plants including the medicinal ones. The use of soil microbes is among the most efficient methods for treating heavy-metal polluted soils. The objective was to investigate the effects of arbuscular mycorrhizal (AM) fungi (Glomus mosseae) on the nutrient uptake (N, P, K, Fe, and Mn,) and Cd removal of different plants including rosemary (Salvia rosmarinus), amaranth (Amaranthus sp.), and ornamental cabbage (Brassica oleracea) in a Cd-polluted soil. The experiment was a three-way factorial on the basis of a randomized complete block design with three replicates. The experimental soil was sprayed with Cd (0, 10, 25, 50, 75 and 100 mg kg-1), and after 2 months it was inoculated with 100 g of mycorrhizal inoculums, and was planted in 4-kg pots. Plant growth (root and aerial part) and nutrient uptake as well as Cd removal from the contaminated soil were significantly affected by the experimental treatments. AM fungi significantly increased plant P uptake (35%) compared with N (24%), K (4%), Fe (24%) and Mn (13%). According to the results, rosemary was the most effective plant for the bioremediation of the soil. There were significant differences between plant roots and aerial part in terms of plant nutrient uptake and phytoremediation potential. Although increasing Cd concentration decreased plant growth and nutrient uptake, mycorrhizal fungi was able to alleviate the stress by significantly increasing plant growth, nutrient uptake and phytoremediation potential.
Collapse
|
5
|
Poria V, Dębiec-Andrzejewska K, Fiodor A, Lyzohub M, Ajijah N, Singh S, Pranaw K. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. FRONTIERS IN PLANT SCIENCE 2022; 13:999866. [PMID: 36340355 PMCID: PMC9634634 DOI: 10.3389/fpls.2022.999866] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 05/13/2023]
Abstract
Land that has little to no utility for agriculture or industry is considered marginal land. This kind of terrain is frequently found on the edge of deserts or other arid regions. The amount of land that can be used for agriculture continues to be constrained by increasing desertification, which is being caused by climate change and the deterioration of agriculturally marginal areas. Plants and associated microorganisms are used to remediate and enhance the soil quality of marginal land. They represent a low-cost and usually long-term solution for restoring soil fertility. Among various phytoremediation processes (viz., phytodegradation, phytoextraction, phytostabilization, phytovolatilization, phytofiltration, phytostimulation, and phytodesalination), the employment of a specific mechanism is determined by the state of the soil, the presence and concentration of contaminants, and the plant species involved. This review focuses on the key economically important plants used for phytoremediation, as well as the challenges to plant growth and phytoremediation capability with emphasis on the advantages and limits of plant growth in marginal land soil. Plant growth-promoting bacteria (PGPB) boost plant development and promote soil bioremediation by secreting a variety of metabolites and hormones, through nitrogen fixation, and by increasing other nutrients' bioavailability through mineral solubilization. This review also emphasizes the role of PGPB under different abiotic stresses, including heavy-metal-contaminated land, high salinity environments, and organic contaminants. In our opinion, the improved soil fertility of marginal lands using PGPB with economically significant plants (e.g., Miscanthus) in dual precession technology will result in the reclamation of general agriculture as well as the restoration of native vegetation.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Klaudia Dębiec-Andrzejewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marharyta Lyzohub
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nur Ajijah
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Kumar Pranaw, ;
| |
Collapse
|