1
|
Islam MS, Al Bakky A, Saikat MSM, Antu UB, Akter R, Roy TK, Ismail Z, Ibrahim KA, Idris AM. Toxicity factors, ecological and health risk assessments of heavy metal in the urban soil: a case study of an agro-machinery area in a developing country. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:437. [PMID: 39316128 DOI: 10.1007/s10653-024-02213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
The contribution of heavy metals in surface soils by the influences of agro-machinery factories is a significant growing concern. Heavy metals were analyzed by inductively coupled plasma mass spectrometry technique to assess human and ecological risks. The concentrations of Fe, Cd, Cr, Cu, As, Pb, Mn, Ni, and Zn in soil ranged from 18,274-22,652, 2.06-4.92, 24.8-41.9, 126.8-137.5, 9.20-25.2, 17.8-46.1, 114.4-183.1, 86.9-118.1, and 101.6-159.6 mg/kg, respectively. The enrichment factor values of heavy metals were greater than 1.5, suggesting severe anthropogenic activities such as untreated waste discharging, burning of metallic wastes, wear, and tear, and dismantling of old batteries for heavy metals enrichment in studied soil. The contamination factor indicates considerable to very high contamination of heavy metals in soil. Moderate to high ecological risk was observed for analyzed metals which mainly originated from the maintenance and repairing of various engines in the workshop and welding and soldering of metallic substances. The target hazard quotient (THQ) was ranged from 6.99E-04 to 2.21E-01 for adults and 5.59E-03 to 1.82E + 00 for children, respectively; indicating children were more sensitive to heavy metals exposure from soil dust. The carcinogenic risk of As (1.72E-05) exceeded the USEPA acceptable limits indicating cancer risk to the residence. The current emphasized the significance of intensive heavy metals monitoring in surface soils around the agro-machinery areas due to their potential health risks associated with children.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Abdullah Al Bakky
- Agricultural Wing, Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh.
| | - Md Sadik Mahmud Saikat
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Uttam Biswas Antu
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Ruma Akter
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Tusar Kanti Roy
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia.
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia.
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Center for Environment and Tourism Studies and Research, King Khalid University, 62529, Abha, Saudi Arabia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia.
| |
Collapse
|
2
|
Olajide-Kayode JO, Kolawole TO, Fajemila OT, Adeyemi MO, Ajayi OE. Evaluating the quality of sediments in streams draining contrasting land-use areas in Osogbo metropolis, southwestern Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:301. [PMID: 38990438 DOI: 10.1007/s10653-024-02080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
The attendant effects of urbanization on the environment and human health are evaluable by measuring the potentially harmful element (PHE) concentrations in environmental media such as stream sediments. To evaluate the effect of urbanization in Osogbo Metropolis, the quality of stream sediments from a densely-populated area with commercial/industrial activities was contrasted with sediments from a sparsely-populated area with minimal anthropogenic input.Forty samples were obtained: 29 from Okoko stream draining a Residential/Commercial Area (RCA, n = 14) and an Industrial Area (IA, n = 15), and 11 from Omu stream draining a sparsely-populated area (SPA). The samples were air-dried, sieved to < 75 micron fraction, and analysed for PHEs using inductively-coupled plasma atomic emission spectrometry (ICP-AES). Index of geoaccumulation (Igeo), pollution index (PI), ecological risk factor (Er) and index (ERI) were used for assessment. Inter-elemental relationships and source identification were done using Pearson's correlation matrix and principal component analysis (PCA).PHE concentrations in the stream sediments were RCA: Zn > Pb > Cu > Cr > Sr > Ni > Co, IA: Zn > Cr > Ni > Co > Pb > Cu > Sr and SPA: Zn > Co > Cr > Cu > Sr > Ni > Pb. Igeo calculations revealed moderate-heavy contamination of Cu, Pb and Zn in parts of RCA, moderate-heavy contamination of Zn in IA while SPA had moderate contamination of Co and Zn. PI values revealed that stream sediments of RCA are extremely polluted, while those of IA and SPA are moderately and slightly polluted, respectively.The pollution of the stream sediments in RCA and IA is adduced to anthropogenic activities like vehicular traffic, automobile repairs/painting, blacksmithing/welding and metal scraping. In SPA however, the contamination resulted from the application of herbicides/fertilizers for agricultural purposes.
Collapse
Affiliation(s)
| | - Tesleem O Kolawole
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria
| | | | | | - Oluwole E Ajayi
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria
| |
Collapse
|
3
|
Nath A, Paul B, Deka P. Chemical characterization of road dust during diwali festival in Guwahati city of Assam, Northeast India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:484. [PMID: 38684530 DOI: 10.1007/s10661-024-12628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
The present study focuses on the elemental analysis of road dust in Guwahati, the largest city of Assam and the largest metropolis of Northeast India during the Diwali festival. Road dust samples were collected on pre-Diwali (PD), the Day after Diwali (DaD), and one week after Diwali (WaD) from two sites (Lankeshwar; LKW and Patharquarry; PTQ). Three composite samples were collected from 3 points at each site. The elemental concentration was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of Ba and Sr increased by 1.6 and 1.7 times, respectively, after Diwali. Among other firework-related elements (FREs), Mg, Al, K, and Cu increased at LKW following Diwali (both DaD and WaD), whereas Mg, Al, and K increased in DaD dust at PTQ. The average concentration of Traffic Related Elements (TREs) at PTQ was significantly higher than at LKW (p < 0.05; 75.40 mg/kg vs 63.96 mg/kg). Cd had the highest enrichment (EF), followed by Ni and Zn. EF for Cd, Ni, and Zn ranged from high to extremely high enrichment. Ni and Cd exhibited moderate contamination (CF). The ecological risk (ER) values for Cd at LKW and PTQ were 54.32 and 56.71, respectively, indicating a moderate ER. Pearson's correlation was performed to study the relationship between elements, while PCA analysis was used to identify the main sources of these elements. Although the health hazard indices presently do not suggest any immediate danger, hazard quotient (HQ) values for ingestion, inhalation, and dermal exposure were higher for children than adults. In children, the contribution of HQing to HI (total risk) was the highest, accounting for more than 65% of all elements. There is no apparent lifetime cancer risk due to road dust exposure through inhalation.
Collapse
Affiliation(s)
- Anamika Nath
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India
| | - Baishali Paul
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India
| | - Pratibha Deka
- Department of Environmental Science, Tezpur University, Napaam-784028, Tezpur, Assam, India.
| |
Collapse
|
4
|
Duru SC, Echiegu EA, Anyadike CC, Alaneme GU, Okechukwu ME. Spatial variability of heavy metals concentrations in soil of auto-mechanic workshop clusters in Nsukka, Nigeria. Sci Rep 2024; 14:9681. [PMID: 38678097 PMCID: PMC11055925 DOI: 10.1038/s41598-024-60044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The indiscriminate disposal of spent engine oils and other hazardous waste at auto mechanic workshops clusters in Nsukka, Enugu State, Nigeria is an environmental concern. This study examines the concentration of heavy metals in the soil inside the workshop cluster and in the unpolluted soil outside the workshop cluster at approximately 100 m. Ten sampling points were randomly selected from within the cluster and another ten from outside the cluster. Using a hand-held Global Positioning System, the coordinates of the selected points were established and used to create a digital map. Soil samples at depths of 0-30 cm and 30-60 cm, were analyzed for Cu, Fe, Zn, Pb, As and Cd using Spectrophotometer. Moisture content determination and particle size analysis were also done on the samples. Spatial variability of heavy metals concentrations of the studied site was also mapped with ArcGIS 10.2.2 using interpolation methods. Results showed that the soil ranged from sandy loam to sandy clay loam. Cadmium and Zinc had the lowest and highest concentration, respectively, in the studied area. Comparing the concentrations of heavy metals in soils within and outside the auto mechanic cluster revealed notable differences across various depths (0-30 cm and 30-60 cm). The analysis results for soil samples within the cluster exhibited concentration levels (mg/kg) ranging from 0.716-0.751 (Cu), 2.981-3.327 (Fe), 23.464-30.113 (Zn), 1.115-1.21 (Pb), 2.6-2.912 (As), and 0.133-0.365 (Cd) demonstrating a variation pattern in the order of Zn > Fe > As > Pb > Cu > Cd. Conversely, for soil samples outside the cluster, concentration levels (mg/kg) ranged from 0.611-0.618 (Cu), 2.233-2.516 (Fe), 12.841-15.736 (Zn), 0.887-0.903 (Pb), 1.669-1.911 (As), and 0.091-0.091 (Cd). To assess the disparity in heavy metal concentration levels between samples collected within and outside the clusters, ANOVA test was performed. The test showed significant difference in heavy metal concentrations between samples within and outside the auto mechanic cluster (p < 0.05), implying auto mechanic activities significantly impact heavy metal levels within the cluster compared to outside areas. The assessment of soil pollution utilized indices including the Geo-accumulation Index (Igeo), Contamination factor (Cf), and anthropogenic metal concentration (QoC). Zinc, Cadmium, and Arsenic showed the highest contamination factors, indicating significant soil contamination likely due to anthropogenic activities. The concentrations of the metals analyzed were within WHO permissible limits while the metals concentrations were also observed to decrease as depth was increased. Using ArcGIS 10.2.2, spatial maps showing heavy metal distribution were developed, with the Kriging method proving superior. This study suggests that heavy metal levels in the soil at the area be monitored on a regular basis.
Collapse
Affiliation(s)
| | - Emmanuel Amagu Echiegu
- Agricultural and Bioresources Engineering Department, University of Nigeria, Nsukka, Nigeria
| | - Chinenye C Anyadike
- Agricultural and Bioresources Engineering Department, University of Nigeria, Nsukka, Nigeria
| | | | - Michael Emeka Okechukwu
- Agricultural and Bioresources Engineering Department, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
5
|
Onyena AP, Folorunso OM, Nwanganga N, Udom GJ, Ekhator OC, Frazzoli C, Ruggieri F, Bocca B, Orisakwe OE. Engaging One Health in Heavy Metal Pollution in Some Selected Nigerian Niger Delta Cities. A Systematic Review of Pervasiveness, Bioaccumulation and Subduing Environmental Health Challenges. Biol Trace Elem Res 2024; 202:1356-1389. [PMID: 37518840 DOI: 10.1007/s12011-023-03762-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
The Niger Delta environment is under serious threat due to heavy metal pollution. Many studies have been conducted on the heavy metal contamination in soils, water, seafood and plants in the Niger Delta ecosystem. However, there is a lack of clear understanding of the health consequences for people and strategies for attaining One Health, and a dispersion of information that is accessible. The study focused on investigating the contamination levels, distributions, risks, sources and impacts of heavy metals in selected regions of the Niger Delta. Prior studies revealed that the levels of certain heavy metals, including Cd, Pb, Cu, Cr, Mn, Fe and Ni, in water, sediment, fish and plants in most Niger Delta ecosystems were higher than the acceptable threshold attributed to various anthropogenic stressors. In the reviewed Niger Delta states, ecosystems in Rivers state showed the highest concentrations of heavy metals in most sampled sites. Groundwater quality was recorded at concentrations higher than 0.3 mg/L World Health Organization drinking water guideline. High concentrations of copper (147.915 mg/L) and zinc (10.878 mg/L) were found in Rivers State. The heavy metals concentrations were greater in bottom-dwelling organisms such as bivalves, gastropods and shrimp than in other fishery species. Heavy metal exposure in the region poses risks of communicable and non-communicable diseases. Diverse remediation methods are crucial to reduce contamination levels, but comprehensive strategies and international cooperation are essential to address the health hazards. Actively reducing heavy metals in the environment can achieve One Health objectives and mitigate disease and economic burdens.
Collapse
Affiliation(s)
- Amarachi P Onyena
- Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
| | - Opeyemi M Folorunso
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, 5323, Rivers State, Nigeria
| | - Nkem Nwanganga
- Department of Pharmacology, College of Medicine, University of Nigeria, Enugu Campus, Nsukka, Enugu State, Nigeria
| | - Godswill J Udom
- Department of Pharmacology and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | | | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Ageing, Istituto Superiore Di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, 5323, Rivers State, Nigeria.
- Provictorie Research Organisation, Rivers State, Port Harcourt, Nigeria.
| |
Collapse
|
6
|
Saha A, Das BK, Sarkar DJ, Samanta S, Vijaykumar ME, Khan MF, Kayal T, Jana C, Kumar V, Gogoi P, Chowdhury AR. Trace metals and pesticides in water-sediment and associated pollution load indicators of Netravathi-Gurupur estuary, India: Implications on coastal pollution. MARINE POLLUTION BULLETIN 2024; 199:115950. [PMID: 38183833 DOI: 10.1016/j.marpolbul.2023.115950] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Various environmental indicators were used to evaluate the water and sediment quality of the Netravathi-Gurupur estuary, India, for trace metals and pesticide pollution. The descended order of studied metal concentrations (μg/L) in the water was Fe (592.71) > Mn (98.35) > Zn (54.69) > Cu (6.64) > Cd (3.24) > Pb (2.38) > Cr (0.82) and in sediment (mg/kg) was Fe (11,396.53) > Mn (100.61) > Cr (75.41) > Zn (20.04) > Cu (12.77) > Pb (3.46) > Cd (0.02). However, pesticide residues were not detected in this estuarine environment. The various metal indexes categorised the water as uncontaminated, whereas contamination factor, enrichment factor, geo-accumulation index, degree of contamination and pollution load index indicated low to moderate sediment contamination. Multivariate statistics showed that the dominance of natural sources of trace metals with little anthropogenic impact. Improvement in water/sediment quality during the study period might be due to COVID-19 imposed lockdown.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India.
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - D J Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - S Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - M Feroz Khan
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Chayna Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Pranab Gogoi
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | | |
Collapse
|
7
|
Liu J, Zheng Q, Pei S, Li J, Ma L, Zhang L, Niu J, Tian T. Ecological and health risk assessment of heavy metals in agricultural soils from northern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:99. [PMID: 38157088 DOI: 10.1007/s10661-023-12255-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Soil pollution by heavy metals can cause continuing damage to ecosystems and the human body. In this study, we collected nine fresh topsoil samples and 18 maize samples (including nine leaf samples and nine corn samples) from agricultural soils in the Baiyin mining areas. The results showed that the order of heavy metal concentrations (mg/kg) in agricultural soils was as follows: Zn (377.40) > Pb (125.06) > Cu (75.06) > Ni (28.29) > Cd (5.46) > Hg (0.37). Cd, Cu, Zn, and Pb exceeded the Chinese risk limit for agricultural soil pollution. The average the pollution load index (4.39) was greater than 3, indicating a heavy contamination level. The element that contributed the most to contamination and high ecological risk in soil was Cd. Principal component analysis (PCA) and Pearson's correlation analysis indicated that the sources of Ni, Cd, Cu, and Zn in the soil were primarily mixed, involving both industrial and agricultural activities, whereas the sources of Hg and Pb included both industrial and transportation activities. Adults and children are not likely to experience non-carcinogenic impacts from the soil in this region. Nonetheless, it was important to be aware of the elevated cancer risk presented by Cd, Pb, and especially Ni. The exceedance rates of Cd and Pb in corn were 66.67% and 33.3%, respectively. The results of this research provide data to improve soil protection, human health monitoring, and crop management in the Baiyin district.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| |
Collapse
|
8
|
Omang BO, Omeka ME, Asinya EA, Oko PE, Aluma VC. Application of GIS and feedforward back-propagated ANN models for predicting the ecological and health risk of potentially toxic elements in soils in Northwestern Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8599-8631. [PMID: 37665528 DOI: 10.1007/s10653-023-01737-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Potentially toxic elements (PTEs) occur naturally in most geologic materials. However, recent anthropogenic disturbances such as ore mining have contributed significantly to their enrichment in soils. Their occurrence in soil may portend a myriad of related risks to the environment and biota. Most traditional soil quality evaluation methods involve comparing the background values of the elements to the established guideline values, which is often time-consuming and fraught with computational errors. As a result, to conduct a comprehensive and unbiased evaluation of soil quality and its effects on the ecosystem and human health, this research combined geochemical, numerical, and GIS data for a composite health risk zonation of the entire study area. Furthermore, the multilayer perceptron artificial neural network (MLP-NN) was used to forecast the most important toxic components influencing soil quality. Geochemical, statistical, and quantitative soil pollution evaluation (pollution index and ecological risk index) showed that apart from mining, the spread and association of trace elements and oxides occur as a consequence of surface environmental conditions (e.g., leaching, weathering, and organo-metallic complexation). The hazard quotients (HQs) and hazard index (HI) of all PTEs were greater than one. This indicates that residents (particularly children) are more susceptible to risks from toxic element ingestion than dermal exposure and inhalation. Ingestion of As and Cr resulted in higher cancer risks and lifetime cancer risk levels (> 1.0E 04), with risk levels increasing toward the northeastern, western, and southeastern directions of the study area. The low modeling errors observed from the sum of square errors, relative errors, and coefficient of determination confirmed the efficiency of the MLP-NN in pollution load prediction. Based on the sensitivity analysis, Hg, Sr, Zn, Ba, As, and Zr showed the greatest influence on soil quality. Focus on remediation should therefore be placed on the removal of these elements from the soil.
Collapse
Affiliation(s)
- Benjamin Odey Omang
- Department of Geology, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria.
| | - Enah Asinya Asinya
- Department of Geology, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Peter Ereh Oko
- Department of Environmental Resources Management, University of Calabar, Calabar, Cross River State, Nigeria
| | | |
Collapse
|
9
|
Kolawole TO, Oyelami CA, Olajide-Kayode JO, Jimoh MT, Fomba KW, Anifowose AJ, Akinde SB. Contamination and risk surveillance of potentially toxic elements in different land-use urban soils of Osogbo, Southwestern Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4603-4629. [PMID: 36881244 DOI: 10.1007/s10653-023-01518-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The concentrations of potentially toxic elements (PTEs) and their contamination indices were determined in urban soil from five different land-use zones, namely municipal solid waste landfill (MWL), industrial area (INA), heavy traffic area (TRA), residential area with commercial activities (RCA), and farmland (FAL) in Osogbo Metropolis. Ecological and human health risk assessments were also evaluated. Based on the average concentrations, the highest values of As, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were found at INA, while the maximum concentrations of Ba, Cd, and Co were observed at MWL. The average enrichment factor (EF) values of Cd, Cu, Pb, and Zn showed very high to extremely high enrichment in the soils of INA, MWL, TRA, and RCA, while the EF values of Ba, Co, Cr, Fe, Ni, and V were significantly to moderately enriched in the aforementioned land-use zones. This trend was consistent with the average contamination factor (Cf) values of Cd, Cu, Pb, and Zn, which indicated considerable to very high contamination at INA, MWL, TRA, and RCA. However, Cf values of Ba, Co, Cr, Fe, Ni, and V had moderate contamination variously at the different land-use zones. Furthermore, the potential ecological risk factor (Eri) values for all the PTEs were < 40, which indicated low Eri, except for Cd and to some extent Pb. The Eri value of Cd was high to very high at MWL, INA, TRA, and RCA, and low at FAL, while Eri of Pb was only moderate at INA. Assessment of health quotient (HQ) of non-carcinogenic health risks was within acceptable limit (< 1) for most of the PTEs in the different zones for adults and children, except the maximum HQ value of Pb at INA (HQ = 1.0), which was beyond the acceptable limit for children. The carcinogenic risk was within the acceptable limit (1.0 × 10-6) in all the zones, except INA. This may pose health challenges to children in the vicinity of the pollution sources. Continuous monitoring of PTEs to reduce exposure to PTE should be considered.
Collapse
Affiliation(s)
- Tesleem O Kolawole
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria.
| | | | | | - Mustapha T Jimoh
- Department of Earth Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Khanneh W Fomba
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Adebanjo J Anifowose
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Sunday B Akinde
- Department of Microbiology, Osun State University, Osogbo, Nigeria
| |
Collapse
|
10
|
Mining Candidate Genes Related to Heavy Metals in Mature Melon ( Cucumis melo L.) Peel and Pulp Using WGCNA. Genes (Basel) 2022; 13:genes13101767. [PMID: 36292652 PMCID: PMC9602089 DOI: 10.3390/genes13101767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
The content of metal ions in fruits is inseparable from plant intake of trace elements and health effects in the human body. To understand metal ion content in the fruit and pericarp of melon (Cucumis melo L.) and the candidate genes responsible for controlling this process, we analyzed the metal ion content in distinct parts of melon fruit and pericarp and performed RNA-seq. The results showed that the content of metal ions in melon fruit tissue was significantly higher than that in the pericarp. Based on transcriptome expression profiling, we found that the fruit and pericarp contained elevated levels of DEGs. GO functional annotations included cell surface receptor signaling, signal transduction, organic substance metabolism, carbohydrate derivative binding, and hormone-mediated signaling pathways. KEGG pathways included pectate lyase, pentose and glucuronate interconversions, H+-transporting ATPase, oxidative phosphorylation, plant hormone signal transduction, and MAPK signaling pathways. We also analyzed the expression patterns of genes and transcription factors involved in hormone biosynthesis and signal transduction. Using weighted gene co-expression network analysis (WGCNA), a co-expression network was constructed to identify a specific module that was significantly correlated with the content of metal ions in melon, after which the gene expression in the module was measured. Connectivity and qRT–PCR identified five candidate melon genes, LOC103501427, LOC103501539, LOC103503694, LOC103504124, and LOC107990281, associated with metal ion content. This study provides a theoretical basis for further understanding the molecular mechanism of heavy metal ion content in melon fruit and peel and provides new genetic resources for the study of heavy metal ion content in plant tissues.
Collapse
|