1
|
Yang L, Li J, Liu B, Xu H, Guo X, Wang J, Zhang Y. Distribution and relationship of heavy metals, microbial communities and antibiotic resistance genes in the riparian soils of Daye Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:151. [PMID: 40183857 DOI: 10.1007/s10653-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
Heavy metals pose ecological and resistome risks to aquatic systems. To comprehensively assess the health status of aquatic ecosystems, it is necessary to quantify the ecological risks of heavy metals in riparian soils and their associations with microbial communities and antibiotic resistance genes (ARGs), yet related evidence was scarce. This study evaluated the potential ecological risk of heavy metal-contaminated riparian soils of Daye Lake, revealed the distribution of bacterial communities and ARGs by high-throughput sequencing techniques, and explored the association between heavy metals and bacterial communities and ARGs. The results showed that As, Cd, Cu, Pb, and Se were the primary polluting metals in the riparian soils of Daye Lake. Microbial community analysis presented that Proteobacteria (31.5%), Actinobacteria (30.3%), and Acidobacteria (14.1%) appeared to be the top three prevalent phylums, and seven pathogenic genera were identified based on VFDB. Correlation analysis showed that 17 bacterial communities among the top 50 bacterial genera had significant negative associations with heavy metals (r < -0.5; P < 0.05), and 10 bacterial communities had significant positive associations with heavy metals (r > 0.5; P < 0.05), indicating that heavy metals could exert co-selection forces on the microbial community. ARGs analysis presented that vancomycin, multidrug, and aminoglycoside resistance genes were the dominant ARGs. The co-occurrence of ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) (r > 0.8; P < 0.05) suggested high transmission risk of ARGs in environments. The significant correlations of heavy metals and ARGs (P < 0.05), co-occurrence of the resistance genes (MRGs) and ARGs (r > 0.8; P < 0.05), and significant associations between the geochemical enrichment of heavy metals and ARGs (P < 0.05) consistently indicated important impacts of heavy metals on environmental resistome risks. This research firstly revealed the associations between heavy metals and microbial communities and ARGs in riparian soils, which offers valuable insights into risk prevention and pollution control of heavy metals in the environment.
Collapse
Affiliation(s)
- Liting Yang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Jing Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Bingyao Liu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Han Xu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Xuanzi Guo
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Jing Wang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Yao Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
2
|
Tian J, Du Y, Yu C, Liu W, Zou R, Zhao Y, Zhang T, Jiang Y, Tian Z. The influences of heavy metals on soil microbial C, N, P cycling and heavy metal resistance under different fertilization regimes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125915. [PMID: 39993708 DOI: 10.1016/j.envpol.2025.125915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Heavy metal pollution changes microbial heavy metal resistance and ecological functions of carbon (C), nitrogen (N), phosphorus (P), sulfur (S) cycling, although the connections between these changes have been insufficiently explored. The study investigated the effects of varying levels of heavy metal pollution and nutrient on microbial heavy metal resistance and C, N, P, S cycling in soils. The results indicated that heavy metal pollution significantly enhanced microbial metabolic potentials, such as denitrification, Dissimilatory nitrate reduction (DNRA), P uptake and transport, as well as resistance to Cu, Cd, Pb, and As. Heavy metals and pH were identified as major factors affecting these microbial functions. The diversity and evenness of host microorganisms carrying functional genes and heavy metal resistance genes (MRGs) were significantly affected by heavy metal pollution, but this effect was alleviated with the nutrient increased. In low-nutrient soils, a strong correlation between nitrogen degradation and Zn resistance was observed due to heavy metal pollution. As nutrients increased, the close correlations between hemicellulose, P uptake and transport, nitrogen degradation and Zn resistance were also observed. Bradyrhizobium, Nitrospira, Steroidobacter, and Luteitalea might play important roles in regulating C, N, P cycling and heavy metal resistance. This study revealed the adjustment mechanisms of microbial heavy metals resistance and ecological functions under heavy metal pollution and identified the primary host microorganisms.
Collapse
Affiliation(s)
- Jingyu Tian
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| | - Wenqing Liu
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Ruihong Zou
- Agricultural Technology Promotion Center of Longkou City, Longkou, 265700, China
| | - Yunfeng Zhao
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Tao Zhang
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Yucong Jiang
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Zhijun Tian
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| |
Collapse
|
3
|
Guo B, Wei Y, Liu X, Qian T, Guo J, Yang J, Chen T. Water-soluble carboxymethyl chitosan and rhamnolipids promote the remediation of Cd-contaminated soil by mediating the growth of Hylotelephium spectabile and regulating the rhizospheric ecological environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137040. [PMID: 39764969 DOI: 10.1016/j.jhazmat.2024.137040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 03/12/2025]
Abstract
The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H. spectabile by increasing chlorophyll content and the activity of antioxidant enzymes as well as promoted the conversion of water-extractable Cd to HAc-extractable Cd in leaves. WSCC and RLs promoted the secretion of malic acid, acetic acid, and succinic acid by the roots; decreased soil pH; increased the number of functional groups, such as hydroxyl, amino, and carboxyl groups, in the soil; and changed the diversity and structure of bacterial communities in the soil, thereby improving the bioavailability of Cd in the soil and creating a good ecological environment of the rhizosphere. The combined application of WSCC and RLs had a better auxiliary effect than single application of either, especially under CR2 treatment (1.5 g·kg-1 WSCC + 0.2 g·kg-1 RLs), where the accumulation of Cd in plants significantly increased by 159.86 % compared with the control. These findings indicated that WSCC and RLs enhanced the remediation efficiency of H. spectabile by regulating both plant growth and the ecological environment of the rhizosphere.
Collapse
Affiliation(s)
- Bingxin Guo
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Yuexing Wei
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Xiaona Liu
- College of Civil Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
| | - Tianwei Qian
- College of Civil Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
| | - Junmei Guo
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Liu ZS, Wang KH, Wang XK, Cai M, Yang ML, Yang WK, Li DF, Liu SJ. Curvibacter soli sp. nov., Extensimonas soli sp. nov., Pseudarthrobacter naphthalenicus sp. nov. and Terripilifer ovatus gen. nov., sp. nov., four new species isolated from polluted soil. Int J Syst Evol Microbiol 2025; 75:006698. [PMID: 40048583 PMCID: PMC11936349 DOI: 10.1099/ijsem.0.006698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
A taxonomic study was conducted on four bacterial strains isolated from the soil of a coking plant. Phylogenetic analysis showed that the four strains belonged to three families: Comamonadaceae, Micrococcaceae and Roseiarcaceae. Identification of the 16S rRNA gene exhibited that their sequence similarities were between 94.96 and 98.98% when compared to known and validly nominated species. Their genomes ranged from 3.4 to 7.2 Mb, with DNA G+C molar contents varying from 62.3 to 67.2%. The average nucleotide identities ranged from 71.4 to 92.3%, and digital DNA-DNA hybridization values were 19.7-47.0% when comparing them with closely related type species, supporting the classification of these four strains. Functional analysis demonstrated that strain H3Y2-7T was robustly resistant to chromate (VI) and arsenite (III) and was able to grow on aromatic compounds including naphthalene as carbon sources even in the presence of chromate (VI). These features reflect its ability to treat combined pollutants and adapt to a polluted environment. Based on the analysis of polyphasic taxonomy, we propose the four bacterial strains representing novel species, namely Curvibacter soli sp. nov. (type strain H39-3-26T=JCM 36178T=CGMCC 1.61344T), Extensimonas soli sp. nov. (type strain H3M7-6T=JCM 36176T=CGMCC 1.61336T), Pseudarthrobacter naphthalenicus sp. nov. (type strain H3Y2-7T=JCM 36482T=CGMCC 1.61323T) and Terripilifer ovatus gen. nov., sp. nov. (type strain H3SJ34-1T=JCM 36465T=CGMCC 1.61333T).
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Kang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Man Cai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Mei-Ling Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Ke Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
5
|
Jia W, Yu Z, Chen J, Zhang J, Zhu J, Yang W, Yang R, Wu P, Wang S. Synergistic effect between biochar and nitrate fertilizer facilitated arsenic immobilization in an anaerobic contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177007. [PMID: 39427894 DOI: 10.1016/j.scitotenv.2024.177007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Nitrate nitrogen fertilizer was usually used to mitigate arsenic (As) release and mobilization in the anaerobic contaminated paddy soil. However, the effect of the interplay between nitrate fertilizer and biochar on As availability as well as the involved mechanism were poorly understood. Herein, the effects and mechanisms of biochar, nitrate fertilizer, and biochar-based nitrate fertilizer on the availability of As in the contaminated paddy soil were investigated via a microcosm incubation experiment. Results indicated that the application of biochar-based nitrate fertilizer significantly lessened the available As concentration in the contaminated paddy soil from 3.01 ± 0.03 (control group) to 2.24 ± 0.08 mg kg-1, which presented an immobilization efficiency of 26.6 % better than those of individual biochar (13.5 %) and nitrate fertilizer (17.6 %), exhibiting a synergistic effect. Moreover, the biochar-based nitrate fertilizer also facilitated the transformation of more toxic arsenite in the contaminated soil to less toxic arsenate. Further, biochar-based nitrate fertilizer increased soil redox potential (Eh), dissolved organic carbon, organic matter, and nitrate yet decreased soil pH and ammonium, which changed the microbial community in the soil, enhancing the relative abundance of Bacillus, Arthrobacter, and Paenibacillus. These functional microorganisms drove the coupled transformation between nitrate denitrification and Fe(II) or As(III) oxidation, favoring As immobilization in the anaerobic paddy soil. Additionally, the co-application of biochar offset the negative effect of single nitrate fertilizer on microbial community diversity. Overall, biochar-based nitrate fertilizer could be a promising candidate for the effective immobilization of As in the anaerobic paddy soil. The current research can provide a valuable reference to the remediation of As-contaminated paddy soil and the production of safe rice.
Collapse
Affiliation(s)
- Wenli Jia
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhi Yu
- Guizhou Research and Designing Institute of Environmental Sciences, Guiyang 550081, China
| | - Junfeng Chen
- Geological Brigade 105, Bureau of Geology and Mineral Exploration and Development of Guizhou Province, Guiyang 550018, China
| | - Jian Zhang
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Jian Zhu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
6
|
Zhang F, Fu H, Zhang D, Lou H, Sun X, Sun P, Wang X, Bao M. Co-pollution risk of petroleum hydrocarbons and heavy metals in typically polluted estuarine wetlands: Insights from the Xiaoqing River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174694. [PMID: 38997022 DOI: 10.1016/j.scitotenv.2024.174694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Excessive accumulation of total petroleum hydrocarbons (TPH) and heavy metals (HMs) in sediments poses a significant threat to the estuarine ecosystem. In this study, the spatial and temporal distribution, ecological risks, sources, and their impacts on the microbial communities of TPH and nine HMs in the estuarine sediments of the Xiaoqing River were determined. Results showed that the spatial distribution of TPH and HMs were similar but opposite in temporal. Ni, Cr, Pb, and Co concentrations were similar to the reference values (RVs). However, the other five HMs (Cu, Zn, Cd, As, and Hg) and TPH concentrations were 2.00-763.44 times higher than RVs; hence, this deserves attention, particularly for Hg. Owing to the water content of the sediments, Hg was mainly concentrated on the surface during the wet season and on the bottom during the dry season. Moreover, because of weak hydrodynamics and upstream pollutant sinks, TPH-HMs in the river were higher than those in the estuary. TPH and HM concentrations were negatively correlated with microbial diversity. Structural equation modeling showed that HMs (path coefficient = -0.50, p < 0.001) had a negative direct effect on microbial community structure and a positive indirect effect on TPH. The microbial community (path coefficient = 0.31, 0.01 < p < 0.05) was significantly correlated with TPH. In summary, this study explores both the chemical analysis of pollutants and their interaction with microbial communities, providing a better understanding of the co-pollution of TPH and HMs in estuarine sediments.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
7
|
Botle A, Salgaonkar S, Tiwari R, Barabde G. Unveiling heavy metal pollution dynamics in sediments of river Ulhas, Maharashtra, India: a comprehensive analysis of anthropogenic influence, pollution indices, and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:419. [PMID: 39249566 DOI: 10.1007/s10653-024-02208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Metals and metalloids tainting sediments is an eminent issue, predominantly in megacities like Mumbai and Navi Mumbai, requiring an exhaustive examination to identify metal levels in river bodies that serve various populations. Thus, utilising pollution indices, multivariate analysis, and health risk assessment studies, we propose a novel investigation to examine the metal content in the Ulhas River sediments, a prominent agricultural and drinking water supply (320 million-litre per day) near Mumbai in Maharashtra, India. The eleven metals and metalloids (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were examined monthly from 10 stations totaling 120 sediment specimens from October 2022 to September 2023. Investigations revealed that average values of Cr, Cu, Hg, and Ni exceeded Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council values, while all metals exceeded World surface rock average limits except As. Various pollution indices showed that upstream sites had none to low level contamination, whereas downstream locations had moderate to considerable contamination, suggesting anthropogenic influences. Furthermore, multivariate analysis including correlation, cluster, and principal component analysis identified that sediment pollution was mostly caused by anthropogenic activities. Lastly, health risk assessment indicated Fe was non-carcinogenic to children, whereas Cr and Ni were carcinogenic to children and adults, with children being more susceptible. Thus, from the findings of the study it is clear that, despite low to moderate pollution levels, metals may have significant repercussions, thus requiring long-term planning, frequent monitoring, and metal abatement strategies to mitigate river contamination.
Collapse
Affiliation(s)
- Akshay Botle
- Department of Environmental Science, The Institute of Science, Dr. Homi Bhabha State University, 15, Madame Cama Rd, Mantralaya, Fort, Mumbai, Maharashtra, 400032, India
| | - Sayli Salgaonkar
- Department of Environmental Science, The Institute of Science, Dr. Homi Bhabha State University, 15, Madame Cama Rd, Mantralaya, Fort, Mumbai, Maharashtra, 400032, India
| | - Rahul Tiwari
- Department of Chemistry, Institute of Basic Science, Dr. B R Ambedkar University, Agra, 282002, India
| | - Gayatri Barabde
- Department of Environmental Science, The Institute of Science, Dr. Homi Bhabha State University, 15, Madame Cama Rd, Mantralaya, Fort, Mumbai, Maharashtra, 400032, India.
- Department of Analytical Chemistry, The Institute of Science, Dr. Homi Bhabha State University, 15, Madame Cama Rd, Mantralaya, Fort, Mumbai, Maharashtra, 400032, India.
| |
Collapse
|
8
|
Zeb M, Khan K, Younas M, Farooqi A, Cao X, Kavil YN, Alelyani SS, Alkasbi MM, Al-Sehemi AG. A review of heavy metals pollution in riverine sediment from various Asian and European countries: Distribution, sources, and environmental risk. MARINE POLLUTION BULLETIN 2024; 206:116775. [PMID: 39121593 DOI: 10.1016/j.marpolbul.2024.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Riverine sediments are important reservoirs of heavy metals, representing both historical and contemporary anthropogenic activity within the watershed. This review has been conducted to examine the distribution of heavy metals in the surface sediment of 52 riverine systems from various Asian and European countries, as well as to determine their sources and environmental risks. The results revealed significant variability in heavy metal contamination in the world's riverine systems, with certain hotspots exhibiting concentrations that exceeded the permissible limits set by environmental quality standards. Among the studied countries, India has the highest levels of chromium (Cr), cobalt (Co), manganese (Mn), nickel (Ni), zinc (Zn), cadmium (Cd), copper (Cu), and lead (Pb) contamination in its riverine systems, followed by Iran > Turkey > Spain > Vietnam > Pakistan > Malaysia > Taiwan > China > Nigeria > Bangladesh > Japan. Heavy metal pollution in the world's riverine systems was quantified using pollution evaluation indices. The Contamination Factor (CF) revealed moderate contamination (1 ≤ CF < 3) throughout the geological units, with the exception of Pb, Cd, and Cu. The Contamination Degree (CD) classifies the contamination level into different categories: Low degree of contamination (CD < 6), moderate degree of contamination (6 ≤ CD < 12), considerable degree of contamination (12 ≤ CD < 24), and a very high degree of contamination (CD ≥ 24), while the Pollution Load Index (PLI) estimate the total amount of heavy metal pollution in riverine sediments, with Turkey having the highest PLI value of 6.512, followed by Spain, Vietnam, Taiwan, Pakistan, Bangladesh, China, India, Japan, Malaysia, Iran, and Nigeria. In applied multivariate statistics, correlation analysis determined the fate and distribution of heavy metals in riverine systems, while Principal Component Analysis (PCA) elucidated the potential sources, including industrial, agrochemical, mining, and domestic wastewater discharges, lubricant leakages, multiple geogenic inputs, erosion of mafic and ultramafic rocks, and minimal atmospheric deposition. As per Potential Ecological Risk Index (PERI) perspectives, Vietnam, Spain, and Turkey have the highest ecological risk, followed by Nigeria > Pakistan > Bangladesh > China > Taiwan > Japan and Iron, while the potential risks of ∑non-carcinogenic Pb, Cr, Ni, Cu, Cd, Co, Zn, and Mn for exposed human children and adults through ingestion and dermal contact were significantly influenced between acceptable to high risk, necessitating special attention from pollution control agencies.
Collapse
Affiliation(s)
- Maria Zeb
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Abida Farooqi
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing, 100081, China
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Renewable Environment Company for Environmental Consulting (REC), Jeddah, 21589, Saudi Arabia
| | - Saeed Saad Alelyani
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Renewable Environment Company for Environmental Consulting (REC), Jeddah, 21589, Saudi Arabia
| | - Mohammed M Alkasbi
- Department of Chemical and Waste Management, Environment Authority, P.O. Box 323, Muscat, P.C.:100, Sultanate of Oman
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
9
|
Xiao J, Wang D, Sinchan B, Mushinski R, Jin D, Deng Y. Response patterns of the microbiome during hexavalent chromium remediation by Tagetes erecta L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173413. [PMID: 38788956 DOI: 10.1016/j.scitotenv.2024.173413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Chromium pollution, particularly hexavalent chromium [Cr(VI)], may threaten the environment and human health. This study investigated the potential of Tagetes erecta L. (Aztec marigold) for phytoremediation of soil contaminated with Cr(VI), and focused on the effects of varying concentrations of Cr(VI) on both the physicochemical properties of soil and microbiome of Tagetes erecta L. We observed that Tagetes erecta L. showed tolerance to Cr(VI) stress and maintained normal growth under these conditions, as indicated by bioconcentration factors of 0.33-0.53 in shoots and 0.39-0.70 in roots. Meanwhile, the structure and diversity of bacterial communities were significantly affected by Cr(VI) pollution. Specifically, Cr(VI) had a more significant effect on the microbial community structure in the endophytic of Tagetes erecta L. than in the rhizosphere (p < 0.05). The genera Devosia and Methylobacillus were positively correlated with Cr(VI) concentrations. Biomarkers such as Bacilli and Pseudonocardia were identified under the different Cr(VI)-contaminated treatments using LEfSe. In addition, the interaction and stability of the endophytic microbiome were enhanced under Cr(VI) stress. This study explored the interactions between heavy metals, microorganisms, and plants, providing valuable insights for developing in situ bioremediation of Cr(VI)-contaminated soils.
Collapse
Affiliation(s)
- Juanjuan Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deying Wang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Banerjee Sinchan
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ryan Mushinski
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Li D, Ding Y, Zhang Y, Zhang X, Feng L, Zhang Y. Heavy metals in a typical industrial area-groundwater system: Spatial distribution, microbial response and ecological risk. CHEMOSPHERE 2024; 360:142339. [PMID: 38754488 DOI: 10.1016/j.chemosphere.2024.142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The environmental burden due to industrial activities has been quite observable in the last few years, with heavy metals (HMs) like lead, cadmium, and arsenic inducing serious perturbations to the microbial ecosystem of groundwater. Studies carried out in North China, a region known for interconnection of industrial and groundwater systems, sought to explore the natural mechanisms of adaptation of microbes to groundwater contamination. The results showed that heavy metals permeate from surface increased the diversity and abundance of microbial communities in groundwater, producing an average decrease of 40.84% and 34.62% in the relative abundance of Bacteroidetes and Proteobacteria in groundwater, respectively. Meanwhile, the key environmental factors driving the evolution of microbial communities shift from groundwater nutrients to heavy metals, which explained 50.80% of the change in the microbial community composition. Microbial indicators are more sensitive to HMs pollution and could accurately identify industrial area where HMs permeation occurred and other extraneous pollutants. The phylum Bacteroidetes could act as appropriate indicators for the identification. Significant genera that were identified, being Mesorhizobium, Clostridium, Bacillus and Mucilaginibacter, were found to play important roles in the microbial network in terms of the potential to assist in groundwater clean-up. Notably, pollution from heavy metals has diminished the effectiveness and resilience of microbial communities in groundwater, thereby heightening the susceptibility of these normally stable microbial ecosystems. These findings offer new perspectives on how to monitor and detect groundwater pollution, and provide scientific guidance for developing suitable remediation methods for groundwater contaminated with heavy metals. Future research is essential explore the application of metal-tolerant or resistant bacteria in bioremediation strategies to rehabilitate groundwater systems contaminated by HMs.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yang Ding
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Liuyuan Feng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Peng L, Zou L, Li Q. Impact of Vanadium-Titanium-Magnetite Mining Activities on Endophytic Bacterial Communities and Functions in the Root Systems of Local Plants. Genes (Basel) 2024; 15:526. [PMID: 38790155 PMCID: PMC11121153 DOI: 10.3390/genes15050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium-titanium-magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed in the populations of Nocardioides, concurrently with substantial increments in the populations of Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental stress. In addition, β diversity analysis revealed divergence in the endophytic bacterial communities within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt to the environmental stress caused by mining activity. Functional enrichment analysis revealed that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that this plant can adapt well to environmental stress. This study represents the primary investigation into the influence of VTM mining activities on endophytic bacterial communities and the functions of nearby plant roots, providing further insight into the impact of VTM mining activities on the ecological environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
12
|
Shang X, Wu S, Liu Y, Zhang K, Guo M, Zhou Y, Zhu J, Li X, Miao R. Rice husk and its derived biochar assist phytoremediation of heavy metals and PAHs co-contaminated soils but differently affect bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133684. [PMID: 38310844 DOI: 10.1016/j.jhazmat.2024.133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
In order to evaluate the feasibility of rice husk and rice husk biochar on assisting phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) co-contaminated soils, a 150-day pot experiment planted with alfalfa was designed. Rice husk and its derived biochar were applied to remediate a PAHs, Zn, and Cr co-contaminated soil. The effects of rice husk and biochar on the removal and bioavailability of PAHs and HMs, PAH-ring hydroxylating dioxygenase gene abundance and bacterial community structure in rhizosphere soils were investigated. Results suggested that rice husk biochar had better performance on the removal of PAHs and immobilization of HMs than those of rice husk in co-contaminated rhizosphere soil. The abundance of PAH-degraders, which increased with the culture time, was positively correlated with PAHs removal. Rice husk biochar decreased the richness and diversity of bacterial community, enhanced the growth of Steroidobacter, Bacillus, and Sphingomonas in rhizosphere soils. However, Steroidobacter, Dongia and Acidibacter were stimulated in rice husk amended soils. According to the correlation analysis, Steroidobacter and Mycobacterium may play an important role in PAHs removal and HMs absorption. The combination of rice husk biochar and alfalfa would be a promising method to remediate PAHs and HMs co-contaminated soil.
Collapse
Affiliation(s)
- Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Sirui Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yuli Liu
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuhui Li
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004 China.
| | - Renhui Miao
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Cui J, Zhou F, Li J, Shen Z, Zhou J, Yang J, Jia Z, Zhang Z, Du F, Yao D. Amendment-driven soil health restoration through soil pH and microbial robustness in a Cd/Cu-combined acidic soil: A ten-year in-situ field experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133109. [PMID: 38071771 DOI: 10.1016/j.jhazmat.2023.133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Abstract
Soil health arguably depends on biodiversity and has received wide attention in heavy-metal (HM) contaminated farmland remediation in recent years. However, long-term effects and mechanisms of soil amendment remain poorly understood with respect to soil microbal community. In this in-situ field study, four soil amendments (attapulgite-At, apatite-Ap, montmorillonite-M, lime-L) at three rates were applied once only for ten years in a cadmium (Cd)-copper (Cu) contaminated paddy soil deprecated for over five years. Results showed that after ten years and in compared with CK (no amendment), total Cd concentration and its risk in plot soils were not altered by amendments (p > 0.05), but total Cu concentration and its risk were significantly increased by both Ap and L, especially the former, rather than At and M (p < 0.05), through increased soil pH and enhanced bacterial alpha diversity as well as plant community. Soil microbial communities were more affected by amendment type (30%) than dosage (11%), microbial network characteristics were dominated by rare taxa, and soil multifunctionality was improved in Ap- and L-amended soils. A structural equation model (SEM) indicated that 57.3% of soil multifunctionality variances were accounted for by soil pH (+0.696) and microbial network robustness (-0.301). Moreover, microbial robustness could be potentially used as an indicator of soil multifunctionality, and Ap could be optimized to improve soil health in combined with biomass removal. These findings would advance the understanding of soil microbial roles, especially its network robustness, on soil multifunctionality for the remediation of metal contaminated soils and metal control management strategies in acidic soils. ENVIRONMENTAL IMPLICATION: Farmland soil contamination by heavy metals (HMs) has been becoming a serious global environmental challenge. However, most studies have been conducted over the short term, leading to a gap in the long-term remediation efficiency and ecological benefits of soil amendments. For the successful deployment of immobilization technologies, it is critical to understand the long-term stability of the immobilized HMs and soil health. Our study, to the best of our knowlege, is the first to state the long-term effects and mechanisms of soil amendments on soil health and optimize an effective and eco-friendly amendment for long-term Cd/Cu immobilization.
Collapse
Affiliation(s)
- Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fengwu Zhou
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ziyao Shen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - John Yang
- Department of Agriculture and Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
14
|
Shi S, Wang F, Hu Y, Zhou J, Zhang H, He C. Effects of running time on biological activated carbon filters: water purification performance and microbial community evolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21509-21523. [PMID: 38393555 DOI: 10.1007/s11356-024-32421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Ozone-biologically activated carbon (BAC) filtration is an advanced treatment process that can be applied to remove recalcitrant organic micro-pollutants in drinking water treatment plants (DWTPs). In this study, we continuously monitored a new and an old BAC filter in a DWTP for 1 year to compare their water purification performance and microbial community evolution. The results revealed that, compared with the new filter, the use of the old BAC filter facilitated a slightly lower rate of dissolved organic carbon (DOC) removal. In the case of the new BAC filter, we recorded general increases in the biomass and microbial diversity of the biofilm with a prolongation of operating time, with the biomass stabilizing after 7 months. For both new and old BAC filters, Proteobacteria and Acidobacteria were the dominant bacterial phyla. At the genus level, the microbial community gradually shifted over the course of operation from a predominance of Herminiimonas and Hydrogenophaga to one predominated by Bradyrhizbium, Bryobacter, Hyphomicrobium, and Pedomicrobium, with Bradyrhizobium being established as the most abundant genus in the old BAC filter. Regarding spatial distribution, we detected reductions in the biomass and number of operational taxonomic units with increasing biofilm depth, whereas there was a corresponding increase in microbial diversity. However, compared with the effects of time, the influence of depth on the composition of the biofilm microbial community was considerably smaller. Furthermore, co-occurrence network analysis revealed that the microbial community network of the new filter after 11 months of operation was the most tightly connected, although its modular coefficient was the lowest of those assessed. We speculate that the positive and negative interactions within the network may be attributable to symbiotic or competitive relationships among species. Moreover, there may have been a significant negative interaction between SWB02 and Acidovorax, plausibly associated with a competition for substrates.
Collapse
Affiliation(s)
- Shuangjia Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yulin Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Haiting Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
15
|
Yang C, Zhang H, Feng Y, Hu Y, Chen S, Guo S, Zeng Z. Effect of microbial communities on nitrogen and phosphorus metabolism in rivers with different heavy metal pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87398-87411. [PMID: 37421527 DOI: 10.1007/s11356-023-28688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Small urban and rural rivers usually face heavy metal pollution as a result of urbanization and industrial and agricultural activities. To elucidate the metabolic capacity of microbial communities on nitrogen and phosphorus cycle in river sediments under different heavy metal pollution backgrounds, this study collected samples in situ from two typical rivers, Tiquan River and Mianyuan River, with different heavy metal pollution levels. The microbial community structure and metabolic capacity of nitrogen and phosphorus cycles of sediment microorganisms were analyzed by high-throughput sequencing. The results showed that the major heavy metals in the sediments of the Tiquan River were Zn, Cu, Pb, and Cd with the contents of 103.80, 30.65, 25.95, and 0.44 mg/kg, respectively, while the major heavy metals in the sediments of the Mianyuan River were Cd and Cu with the contents of 0.60 and 27.81 mg/kg, respectively. The dominant bacteria Steroidobacter, Marmoricola, and Bacillus in the sediments of the Tiquan River had positive correlations with Cu, Zn, and Pb while are negatively correlated with Cd. Cd had a positive correlation with Rubrivivax, and Cu had a positive correlation with Gaiella in the sediments of the Mianyuan River. The dominant bacteria in the sediments of the Tiquan River showed strong phosphorus metabolic ability, and the dominant bacteria in the sediments of the Mianyuan River showed strong nitrogen metabolic ability, corresponding to the lower total phosphorus content in the Tiquan River and the higher total nitrogen content in the Mianyuan River. The results of this study showed that resistant bacteria became dominant bacteria due to the stress of heavy metals, and these bacteria showed strong nitrogen and phosphorus metabolic ability. It can provide theoretical support for the pollution prevention and control of small urban and rural rivers and have positive significance for maintaining the healthy development of rivers.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shanshan Guo
- China 19th Metallurgical Corporation, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|