1
|
Liu J, Yang W, Zhou H, Zia-Ur-Rehman M, Salam M, Ouyang L, Chen Y, Yang L, Wu P. Exploring the mechanisms of organic fertilizers on Cd bioavailability in rice fields: Environmental behavior and effect factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117094. [PMID: 39317071 DOI: 10.1016/j.ecoenv.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The problem of paddy Cadmium (Cd) contamination is currently the focus of global research. Earlier researches have confirmed that utilization of organic fertilizers regulates Cd chemical fraction distribution by increases organic bound Cd. However, environmental behaviours of organic fertilizers in paddy are still lack exploration. Here, we critical reviewed previous publications and proposed a novel research concept to help us better understand it. Three potential impact pathways of utilization of organic fertilizers on the bioavailability of Cd are presented: (i) use of organic fertilizers changes soil physicochemical properties, which directly affects Cd bioavailability by changing chemical form of Cd(II); (ii) use of organic fertilizers increases soil nutrient content, which indirectly regulates Cd supply and bioaccumulation through ion adsorption and competition for ion-transport channels between nutrients and Cd; and (iii) use of organic fertilizers increases activity of microorganisms and efflux of rice root exudates, which indirectly affects Cd bioavailability of through complexation and sequestration of these organic materials with Cd. Meanwhile, dissolved organic matter (DOM) in the rhizosphere of rice is believed to be the key to revealing the effects of organic fertilizers on Cd. DOM is capable of adsorption and complexation-chelation reactions with Cd and the fractionation of Cd(II) is regulated by DOM. Molecular mass, chemical composition, major functional groups and reaction sequence of DOM determine the formation and solubilization of DOM-Cd complexes.
Collapse
Affiliation(s)
- Jingbin Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Wentao Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | | | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Yonglin Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Liyu Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| |
Collapse
|
2
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|