1
|
Zou X, Zhang J, Wang Y, Zhou D, Deng G, Liu Z. IGF-1 rs6218 polymorphisms modulate the susceptibility to age-related cataract. PeerJ 2024; 12:e17220. [PMID: 38618568 PMCID: PMC11011587 DOI: 10.7717/peerj.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Background Single nucleotide polymorphisms (SNPs), as the most abundant form of DNA variation in the human genome, contribute to age-related cataracts (ARC) development. Apoptosis of lens epithelial cells (LECs) is closely related to ARC formation. Insulin-like growth factor 1 (IGF1) contributes to cell apoptosis regulation. Moreover, IGF1 was indicated to exhibit a close association with cataract formation. Afterward, an investigation was conducted to examine the correlation between polymorphisms in IGF1 and the susceptibility to ARC. Methods The present investigation was a case-control study. Venous blood draws were collected from the participants for DNA genotyping. Lens capsule samples were collected to detect mRNA and apoptosis. TaqMan RT-PCR was used to detect IGF1 polymorphism genotypes and qRT PCR was used to detect IGF1 mRNA levels in LECs. LEC apoptosis was evaluated through flow cytometry. The chi-square test was used to compare differences between ARCs and controls of each SNP. Results We found that the G allele frequency in the IGF1-rs6218 was higher in the ARCs than in the controls. Furthermore, it was observed that the rs6218 GG genotype exhibited a positive correlation to elevated levels of IGF1 mRNA in LECs. The IGF1 mRNA in the LECs and the apoptosis of LECs in nuclear type of ARCs (ARNC) was higher than the controls. Conclusion The susceptibility to ARC was related to IGF1-rs6218 polymorphism, and this polymorphism is associated with IGF1 expression at the mRNA level. Moreover, apoptosis in LECs of ARNCs was found to be increased.
Collapse
Affiliation(s)
- Xi Zou
- Changzhou Medical Center, Changzhou, China
- The Third People’s Hospital of Changzhou, Changzhou, China
| | - Jun Zhang
- The Third People’s Hospital of Changzhou, Changzhou, China
| | - Yong Wang
- Nantong First People’s Hospital, Nantong, China
| | - Dong Zhou
- The Third People’s Hospital of Changzhou, Changzhou, China
| | - Guohua Deng
- The Third People’s Hospital of Changzhou, Changzhou, China
| | - Zhinan Liu
- The Third People’s Hospital of Changzhou, Changzhou, China
| |
Collapse
|
2
|
Allen NE, Lacey B, Lawlor DA, Pell JP, Gallacher J, Smeeth L, Elliott P, Matthews PM, Lyons RA, Whetton AD, Lucassen A, Hurles ME, Chapman M, Roddam AW, Fitzpatrick NK, Hansell AL, Hardy R, Marioni RE, O’Donnell VB, Williams J, Lindgren CM, Effingham M, Sellors J, Danesh J, Collins R. Prospective study design and data analysis in UK Biobank. Sci Transl Med 2024; 16:eadf4428. [PMID: 38198570 PMCID: PMC11127744 DOI: 10.1126/scitranslmed.adf4428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Population-based prospective studies, such as UK Biobank, are valuable for generating and testing hypotheses about the potential causes of human disease. We describe how UK Biobank's study design, data access policies, and approaches to statistical analysis can help to minimize error and improve the interpretability of research findings, with implications for other population-based prospective studies being established worldwide.
Collapse
Affiliation(s)
- Naomi E Allen
- UK Biobank Ltd, Stockport, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ben Lacey
- UK Biobank Ltd, Stockport, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Deborah A Lawlor
- Population Health Science, Bristol Medical School University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Jill P Pell
- School of Health and Wellbeing, University of Glasgow, Scotland
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Oxford, UK
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Liam Smeeth
- London School of Hygiene and Tropical Medicine, London, UK
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Chemical Radiation Threats and Hazards, Imperial College London, UK
| | - Paul M Matthews
- UK Dementia Research Centre Institute and Department of Brain Sciences, Imperial College London, London, UK
| | - Ronan A Lyons
- Population Data Science, Swansea University Medical School, Swansea, Wales
| | - Anthony D Whetton
- Veterinary Health Innovation Engine, University of Surrey, Guildford, UK
| | - Anneke Lucassen
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Faculty of Medicine, Southampton University, Southampton, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | | | - Anna L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Rebecca Hardy
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, Scotland
| | | | - Julie Williams
- UK Dementia Research Institute, Cardiff University, Cardiff, Wales
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | | | | | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Rory Collins
- UK Biobank Ltd, Stockport, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Liao J, Xiao F, Yang L, Wei Y, Song C, Li J, Yu S, Lu Y, Zhang J, Dai L, Liang W, Li T, Xiong Z, Wu Y, Jardine MJ, Carrero JJ, Shan Y, Huang X. Cystatin C-based estimated glomerular filtration rate and risk of stroke in the general population: a prospective cohort study. Clin Kidney J 2023; 16:2059-2071. [PMID: 37915909 PMCID: PMC10616444 DOI: 10.1093/ckj/sfad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 11/03/2023] Open
Abstract
Background Previous results on the association between the estimated glomerular filtration rate (eGFR) and stroke are mixed. Most studies derived the eGFR from serum creatinine, which is affected by non-kidney determinants and thus has possibly biased the association with stroke risk. Methods In this cohort study, we included 429 566 UK Biobank participants (94.5% white, 54% women, age 56 ± 8 years) free of stroke at enrollment. The eGFRcys and eGFRcr were calculated with serum cystatin C and creatinine, respectively. Outcomes of interest were risk of total stroke and subtypes. We investigated the linear and nonlinear associations using Cox proportional hazards models and restricted cubic splines, corrected for regression dilution bias. Results During an average follow-up of 10.11 years, 4427 incident strokes occurred, among which 3447 were ischemic and 1163 were hemorrhagic. After adjustment for confounders, the regression dilution-corrected hazard ratios (95% confidence intervals) for every 10 mL/min/1.73 m2 decrement in eGFRcys were 1.10 (1.05-1.14) for total stroke and 1.11 (1.08-1.15) for ischemic stroke. A similar pattern was observed with eGFRcr, although the association was weaker. When either type of eGFR was below 75 mL/min/1.73 m2, the risks of total and ischemic stroke increased exponentially as eGFR decreased. A U-shaped relationship was witnessed if eGFRcr was used instead. There was a null association between eGFR and hemorrhagic stroke. Conclusions The risks of total stroke and ischemic stroke increased exponentially when the eGFRcys fell below 75 mL/min/1.73 m2.
Collapse
Affiliation(s)
- Jinlan Liao
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Fei Xiao
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Liuqiao Yang
- BGI-Shenzhen, Shenzhen, Guangdong Province, China
| | - Yanling Wei
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Congying Song
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Jing Li
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Sike Yu
- BGI-Shenzhen, Shenzhen, Guangdong Province, China
| | - Yueqi Lu
- BGI-Shenzhen, Shenzhen, Guangdong Province, China
| | - Jingwen Zhang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Liang Dai
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Wei Liang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Tao Li
- BGI-Shenzhen, Shenzhen, Guangdong Province, China
| | - Zuying Xiong
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Peking University, Beijing, China
| | - Meg J Jardine
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
- Department of Medicine, Stanford Centre for Clinical Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Division of Nephrology, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm 182 88, Sweden
| | - Ying Shan
- BGI-Shenzhen, Shenzhen, Guangdong Province, China
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| | - Xiaoyan Huang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Peng R, Lin H, Zhu H, Zhang Y, Bao T, Li W, Deng J. Involvement of IGF1 in endoplasmic reticulum stress contributes to cataract formation through regulating Nrf2/NF-κB signaling. Funct Integr Genomics 2023; 23:220. [PMID: 37394478 DOI: 10.1007/s10142-023-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Endoplasmic reticulum (ER) stress is reportedly involved in the development of ophthalmic diseases. This study aimed to investigate the role and potential mechanism of insulin-like growth factor 1 (IGF1) in ER stress. A mouse cataract model was constructed by subcutaneous injection of sodium selenite, and sh-IGF1 was used to evaluate the effect of silencing IGF1 on cataract progression. Slit-lamp and histological examination of the lens were performed to examine lens damage. The regulatory effects of IGF1 on inflammatory responses, oxidative stress, and ER stress were evaluated using ELISA, reverse transcription-quantitative PCR (RT-qPCR), and immunoblotting analysis. Tunicamycin was used to induce ER stress in the lens of epithelial cells. The NF-E2 related factor-2 (Nrf2) inhibitor ML385 and nuclear factor-κB (NF-κB) agonist diprovocim were used to confirm whether IGF1 regulates inflammation and ER stress through Nrf2/NF-κB signaling. Silencing IGF1 alleviated lens damage and reduced lens turbidity in the cataract mice. Silencing IGF1 inhibited inflammatory response, oxidative stress and ER stress response. Meanwhile, IGF1 was highly expressed in sodium selenite-treated lens epithelial cells. The ER stress agonist tunicamycin suppressed cell viability as well as induced ER stress, oxidative stress and inflammation. Silencing IGF1 increased cell viability, EdU-positive rate and migration. Also, silencing of IGF1 reduced inflammation and ER stress via regulating Nrf2/NF-κB pathway. This study reveals silencing IGF1 attenuated cataract through regulating Nrf2/NF-κB signaling, which shares novel insights into the underlying mechanism of cataract and provides potential therapeutic target for cataract.
Collapse
Affiliation(s)
- Ruiping Peng
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Hongmei Lin
- Health Management Center, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Haocheng Zhu
- School of Medicine, Jinan University, No. 601, West Whampoa Avenue, Guangzhou City, 510632, Guangdong Province, China
| | - Yi Zhang
- Department of Ophthalmology, Shenzhen University General Hospital, No. 1098, Xueyuan Avenue, Nanshan District, Shenzhen City, 518071, Guangdong Province, China
| | - Tiancheng Bao
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Weili Li
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Juan Deng
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China.
| |
Collapse
|
5
|
Tamai H, Yamanaka M, Taniguchi W, Nishio N, Fukui D, Nakatsuka T, Yamada H. Transient receptor potential ankyrin 1 in the knee is involved in osteoarthritis pain. Biochem Biophys Rep 2023; 34:101470. [PMID: 37293534 PMCID: PMC10244472 DOI: 10.1016/j.bbrep.2023.101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Transient receptor potential families play important roles in the pathology of osteoarthritis (OA) of the knee. While transient receptor potential ankyrin 1 (TRPA1) is also an essential component of the pathogenesis of various arthritic conditions, its association with pain is controversial. Thus, we researched whether TRPA1 is involved in knee OA pain by in vivo patch-clamp recordings and evaluated the behavioral responses using CatWalk gait analysis and pressure application measurement (PAM). Injection of the Trpa1 agonist, allyl isothiocyanate (AITC), into the knee joint significantly increased spontaneous excitatory synaptic current (sEPSC) frequency in the substantia gelatinosa of rats with knee OA, while injection of the Trpa1 antagonist, HC-030031, significantly decreased the sEPSC. Meanwhile, AITC did not affect the sEPSC in sham rats. In the CatWalk and PAM behavioral tests, AITC significantly decreased pain thresholds, but no difference between HC-030031 and saline injections was observed. Our results indicate that Trpa1 mediates knee OA-induced pain. We demonstrated that Trpa1 is activated in the knee joints of rats with OA, and Trpa1 activity enhanced the pain caused by knee OA.
Collapse
Affiliation(s)
- Hidenobu Tamai
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Manabu Yamanaka
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Wataru Taniguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Naoko Nishio
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Daisuke Fukui
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, 2-11-1 Wakaba, Kumatorityou, Osaka, 590-0433, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| |
Collapse
|
6
|
Watts EL, Saint-Maurice PF, Doherty A, Fensom GK, Freeman JR, Gorzelitz JS, Jin D, McClain KM, Papier K, Patel S, Shiroma EJ, Moore SC, Matthews CE. Association of Accelerometer-Measured Physical Activity Level With Risks of Hospitalization for 25 Common Health Conditions in UK Adults. JAMA Netw Open 2023; 6:e2256186. [PMID: 36795414 PMCID: PMC9936337 DOI: 10.1001/jamanetworkopen.2022.56186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/29/2022] [Indexed: 02/17/2023] Open
Abstract
Importance Higher physical activity levels are associated with lower risks of cancer, cardiovascular disease, and diabetes, but associations with many common and less severe health conditions are not known. These conditions impose large health care burdens and reduce quality of life. Objectives To investigate the association between accelerometer-measured physical activity and the subsequent risk of hospitalization for 25 common reasons for hospitalization and to estimate the proportion of these hospitalizations that might have been prevented if participants had higher levels of physical activity. Design, Setting, and Participants This prospective cohort study used data from a subset of 81 717 UK Biobank participants aged 42 to 78 years. Participants wore an accelerometer for 1 week (between June 1, 2013, and December 23, 2015) and were followed up over a median (IQR) of 6.8 (6.2-7.3) years; follow-up for the current study ended in 2021 (exact date varied by location). Exposures Mean total and intensity-specific accelerometer-measured physical activity. Main Outcomes and Measures Hospitalization for the most common health conditions. Cox proportional hazards regression analysis was used to estimate hazard ratios (HRs) and 95% CIs for mean accelerometer-measured physical activity (per 1-SD increment) and risks of hospitalization for 25 conditions. Population-attributable risks were used to estimate the proportion of hospitalizations for each condition that might be prevented if participants increased their moderate to vigorous physical activity (MVPA) by 20 minutes per day. Results Among 81 717 participants, the mean (SD) age at accelerometer assessment was 61.5 (7.9) years; 56.4% were female, and 97.0% self-identified as White. Higher levels of accelerometer-measured physical activity were associated with lower risks of hospitalization for 9 conditions: gallbladder disease (HR per 1 SD, 0.74; 95% CI, 0.69-0.79), urinary tract infections (HR per 1 SD, 0.76; 95% CI, 0.69-0.84), diabetes (HR per 1 SD, 0.79; 95% CI, 0.74-0.84), venous thromboembolism (HR per 1 SD, 0.82; 95% CI, 0.75-0.90), pneumonia (HR per 1 SD, 0.83; 95% CI, 0.77-0.89), ischemic stroke (HR per 1 SD, 0.85; 95% CI, 0.76-0.95), iron deficiency anemia (HR per 1 SD, 0.91; 95% CI, 0.84-0.98), diverticular disease (HR per 1 SD, 0.94; 95% CI, 0.90-0.99), and colon polyps (HR per 1 SD, 0.96; 95% CI, 0.94-0.99). Positive associations were observed between overall physical activity and carpal tunnel syndrome (HR per 1 SD, 1.28; 95% CI, 1.18-1.40), osteoarthritis (HR per 1 SD, 1.15; 95% CI, 1.10-1.19), and inguinal hernia (HR per 1 SD, 1.13; 95% CI, 1.07-1.19), which were primarily induced by light physical activity. Increasing MVPA by 20 minutes per day was associated with reductions in hospitalization ranging from 3.8% (95% CI, 1.8%-5.7%) for colon polyps to 23.0% (95% CI, 17.1%-28.9%) for diabetes. Conclusions and Relevance In this cohort study of UK Biobank participants, those with higher physical activity levels had lower risks of hospitalization across a broad range of health conditions. These findings suggest that aiming to increase MVPA by 20 minutes per day may be a useful nonpharmaceutical intervention to reduce health care burdens and improve quality of life.
Collapse
Affiliation(s)
- Eleanor L. Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Pedro F. Saint-Maurice
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Aiden Doherty
- Big Data Institute, Nuffield Department of Population Health, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Georgina K. Fensom
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Oxford, United Kingdom
| | - Joshua R. Freeman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | | | - David Jin
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Kathleen M. McClain
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, Oxford, United Kingdom
| | - Shreya Patel
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Eric J. Shiroma
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, Maryland
| | - Steven C. Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Charles E. Matthews
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
7
|
Patel B, Kleeman SO, Neavin D, Powell J, Baskozos G, Ng M, Ahmed WUR, Bennett DL, Schmid AB, Furniss D, Wiberg A. Shared genetic susceptibility between trigger finger and carpal tunnel syndrome: a genome-wide association study. THE LANCET. RHEUMATOLOGY 2022; 4:e556-e565. [PMID: 36043126 PMCID: PMC7613465 DOI: 10.1016/s2665-9913(22)00180-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Trigger finger and carpal tunnel syndrome are the two most common non-traumatic connective tissue disorders of the hand. Both of these conditions frequently co-occur, often in patients with rheumatoid arthritis. However, this phenotypic association is poorly understood. Hypothesising that the co-occurrence of trigger finger and carpal tunnel syndrome might be explained by shared germline predisposition, we aimed to identify a specific genetic locus associated with both diseases. Methods In this genome-wide association study (GWAS), we identified 2908 patients with trigger finger and 436579 controls from the UK Biobank prospective cohort. We conducted a case-control GWAS for trigger finger, followed by co-localisation analyses with carpal tunnel syndrome summary statistics. To identify putative causal variants and establish their biological relevance, we did fine-mapping analyses and expression quantitative trait loci (eQTL) analyses, using fibroblasts from healthy donors (n=79) and tenosynovium samples from patients with carpal tunnel syndrome (n=77). We conducted a Cox regression for time to trigger finger and carpal tunnel syndrome diagnosis against plasma IGF-1 concentrations in the UK Biobank cohort. Findings Phenome-wide analyses confirmed a marked association between carpal tunnel syndrome and trigger finger in the participants from UK Biobank (odds ratio [OR] 11·97, 95% CI 11·1-13·0; p<1 × 10-300). GWAS for trigger finger identified five independent loci, including one locus, DIRC3, that was co-localised with carpal tunnel syndrome and could be fine-mapped to rs62175241 (0·76, 0·68-0·84; p=5·03 × 10-13). eQTL analyses found a fibroblast-specific association between the protective T allele of rs62175241 and increased DIRC3 and IGFBP5 expression. Increased plasma IGF-1 concentrations were associated with both carpal tunnel syndrome and trigger finger in participants from UK Biobank (hazard ratio >1·04, p<0·02). Interpretation In this GWAS, the DIRC3 locus on chromosome 2 was significantly associated with both carpal tunnel syndrome and trigger finger, possibly explaining their co-occurrence. The disease-protective allele of rs62175241 was associated with increased expression of long non-coding RNA DIRC3 and its transcriptional target, IGBP5, an antagonist of IGF-1 signalling. These findings suggest a model in which IGF-1 is a driver of both carpal tunnel syndrome and trigger finger, and in which the DIRC3-IGFBP5 axis directly antagonises fibroblastic IGF-1 signalling. Funding Wellcome Trust, National Institute for Health Research, Medical Research Council.
Collapse
Affiliation(s)
- Benjamin Patel
- Department of Plastic and Reconstructive Surgery, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | | | - Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joseph Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; UNSW Cellular Genomics Futures Institute, University of New South Wales, NSW, Australia
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Waheed-Ul-Rahman Ahmed
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|