1
|
Scholthof HB, Scholthof KBG. Plant virology: an RNA treasure trove. TRENDS IN PLANT SCIENCE 2023; 28:1277-1289. [PMID: 37495453 DOI: 10.1016/j.tplants.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Key principles pertaining to RNA biology not infrequently have their origins in plant virology. Examples have arisen from studies on viral RNA-intrinsic properties and the infection process from gene expression, replication, movement, and defense evasion to biotechnological applications. Since RNA is at the core of the central dogma in molecular biology, how plant virology assisted in the reinforcement or adaptations of this concept, while at other instances shook up elements of the doctrine, is discussed. Moreover, despite the negative effects of viral diseases in agriculture worldwide, plant viruses can be considered a scientific treasure trove. Today they remain tools of discovery for biotechnology, studying evolution, cell biology, and host-microbe interactions.
Collapse
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA
| |
Collapse
|
2
|
Nguyen TTT, Bae EK, Tran TNA, Lee H, Ko JH. Exploring the Seasonal Dynamics and Molecular Mechanism of Wood Formation in Gymnosperm Trees. Int J Mol Sci 2023; 24:ijms24108624. [PMID: 37239969 DOI: 10.3390/ijms24108624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Forests, comprising 31% of the Earth's surface, play pivotal roles in regulating the carbon, water, and energy cycles. Despite being far less diverse than angiosperms, gymnosperms account for over 50% of the global woody biomass production. To sustain growth and development, gymnosperms have evolved the capacity to sense and respond to cyclical environmental signals, such as changes in photoperiod and seasonal temperature, which initiate growth (spring and summer) and dormancy (fall and winter). Cambium, the lateral meristem responsible for wood formation, is reactivated through a complex interplay among hormonal, genetic, and epigenetic factors. Temperature signals perceived in early spring induce the synthesis of several phytohormones, including auxins, cytokinins, and gibberellins, which in turn reactivate cambium cells. Additionally, microRNA-mediated genetic and epigenetic pathways modulate cambial function. As a result, the cambium becomes active during the summer, resulting in active secondary xylem (i.e., wood) production, and starts to become inactive in autumn. This review summarizes and discusses recent findings regarding the climatic, hormonal, genetic, and epigenetic regulation of wood formation in gymnosperm trees (i.e., conifers) in response to seasonal changes.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Kyung Bae
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Mapuranga J, Chang J, Zhang L, Zhang N, Yang W. Fungal Secondary Metabolites and Small RNAs Enhance Pathogenicity during Plant-Fungal Pathogen Interactions. J Fungi (Basel) 2022; 9:4. [PMID: 36675825 PMCID: PMC9862911 DOI: 10.3390/jof9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal plant pathogens use proteinaceous effectors as well as newly identified secondary metabolites (SMs) and small non-coding RNA (sRNA) effectors to manipulate the host plant's defense system via diverse plant cell compartments, distinct organelles, and many host genes. However, most molecular studies of plant-fungal interactions have focused on secreted effector proteins without exploring the possibly equivalent functions performed by fungal (SMs) and sRNAs, which are collectively known as "non-proteinaceous effectors". Fungal SMs have been shown to be generated throughout the plant colonization process, particularly in the early biotrophic stages of infection. The fungal repertoire of non-proteinaceous effectors has been broadened by the discovery of fungal sRNAs that specifically target plant genes involved in resistance and defense responses. Many RNAs, particularly sRNAs involved in gene silencing, have been shown to transmit bidirectionally between fungal pathogens and their hosts. However, there are no clear functional approaches to study the role of these SM and sRNA effectors. Undoubtedly, fungal SM and sRNA effectors are now a treasured land to seek. Therefore, understanding the role of fungal SM and sRNA effectors may provide insights into the infection process and identification of the interacting host genes that are targeted by these effectors. This review discusses the role of fungal SMs and sRNAs during plant-fungal interactions. It will also focus on the translocation of sRNA effectors across kingdoms, the application of cross-kingdom RNA interference in managing plant diseases and the tools that can be used to predict and study these non-proteinaceous effectors.
Collapse
Affiliation(s)
| | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
4
|
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23:645-662. [PMID: 35710830 DOI: 10.1038/s41580-022-00496-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.
Collapse
Affiliation(s)
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode. Sci Rep 2022; 12:5160. [PMID: 35338210 PMCID: PMC8956650 DOI: 10.1038/s41598-022-09163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD), caused by the parasitic nematode Bursaphelenchus xylophilus, or pinewood nematode (PWN), is a serious threat to pine forests in Europe. Pinus pinaster is highly susceptible to the disease and it is currently the most affected European pine species. In this work, we investigated the role of small RNAs (sRNAs) in regulating P. pinaster–PWN interaction in an early stage of infection. After performing an artificial PWN inoculation assay, we have identified 105 plant microRNAs (miRNAs) responsive to PWN. Based on their predicted targets, part of these miRNAs was associated with roles in jasmonate-response pathway, ROS detoxification, and terpenoid biosynthesis. Furthermore, by comparing resistant and susceptible plants, eight miRNAs with putative functions in plant defence and resistance to PWN have been identified. Finally, we explored the possibility of bidirectional trans-kingdom RNA silencing, identifying several P. pinaster genes putatively targeted by PWN miRNAs, which was supported by degradome analysis. Targets for P. pinaster miRNAs were also predicted in PWN, suggesting a role for trans-kingdom miRNA transfer and gene silencing both in PWN parasitism as in P. pinaster resistance to PWD. Our results provide new insights into previously unexplored roles of sRNA post-transcriptional regulation in P. pinaster response and resistance to PWN.
Collapse
|
6
|
Jibrin MO, Liu Q, Guingab-Cagmat J, Jones JB, Garrett TJ, Zhang S. Metabolomics Insights into Chemical Convergence in Xanthomonas perforans and Metabolic Changes Following Treatment with the Small Molecule Carvacrol. Metabolites 2021; 11:879. [PMID: 34940636 PMCID: PMC8706651 DOI: 10.3390/metabo11120879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Microbes are natural chemical factories and their metabolome comprise diverse arrays of chemicals. The genus Xanthomonas comprises some of the most important plant pathogens causing devastating yield losses globally and previous studies suggested that species in the genus are untapped chemical minefields. In this study, we applied an untargeted metabolomics approach to study the metabolome of a globally spread important xanthomonad, X. perforans. The pathogen is difficult to manage, but recent studies suggest that the small molecule carvacrol was efficient in disease control. Bacterial strains were treated with carvacrol, and samples were taken at time intervals (1 and 6 h). An untreated control was also included. There were five replicates for each sample and samples were prepared for metabolomics profiling using the standard procedure. Metabolomics profiling was carried out using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) and an autosampler. Annotation of significant metabolites using the Metabolomics Standards Initiative level 2 identified an array of novel metabolites that were previously not reported in Xanthomonas perforans. These metabolites include methoxybrassinin and cyclobrassinone, which are known metabolites of brassicas; sarmentosin, a metabolite of the Passiflora-heliconiine butterfly system; and monatin, a naturally occurring sweetener found in Sclerochiton ilicifolius. To our knowledge, this is the first report of these metabolites in a microbial system. Other significant metabolites previously identified in non-Xanthomonas systems but reported in this study include maculosin; piperidine; β-carboline alkaloids, such as harman and derivatives; and several important medically relevant metabolites, such as valsartan, metharbital, pirbuterol, and ozagrel. This finding is consistent with convergent evolution found in reported biological systems. Analyses of the effect of carvacrol in time-series and associated pathways suggest that carvacrol has a global effect on the metabolome of X. perforans, showing marked changes in metabolites that are critical in energy biosynthesis and degradation pathways, amino acid pathways, nucleic acid pathways, as well as the newly identified metabolites whose pathways are unknown. This study provides the first insight into the X. perforans metabolome and additionally lays a metabolomics-guided foundation for characterization of novel metabolites and pathways in xanthomonad systems.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Department of Crop Protection, Ahmadu Bello University, Zaria 810103, Nigeria
| | - Qingchun Liu
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Shouan Zhang
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
7
|
Galindo-González L, Hwang SF, Strelkov SE. Candidate Effectors of Plasmodiophora brassicae Pathotype 5X During Infection of Two Brassica napus Genotypes. Front Microbiol 2021; 12:742268. [PMID: 34803960 PMCID: PMC8595600 DOI: 10.3389/fmicb.2021.742268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the most important diseases of canola (Brassica napus) in Canada. Disease management relies heavily on planting clubroot resistant (CR) cultivars, but in recent years, new resistance-breaking pathotypes of P. brassicae have emerged. Current efforts against the disease are concentrated in developing host resistance using traditional genetic breeding, omics and molecular biology. However, because of its obligate biotrophic nature, limited resources have been dedicated to investigating molecular mechanisms of pathogenic infection. We previously performed a transcriptomic study with the cultivar resistance-breaking pathotype 5X on two B. napus hosts presenting contrasting resistance/susceptibility, where we evaluated the mechanisms of host response. Since cultivar-pathotype interactions are very specific, and pathotype 5X is one of the most relevant resistance-breaking pathotypes in Canada, in this study, we analyze the expression of genes encoding putative secreted proteins from this pathotype, predicted using a bioinformatics pipeline, protein modeling and orthologous comparisons with effectors from other pathosystems. While host responses were found to differ markedly in our previous study, many common effectors are found in the pathogen while infecting both hosts, and the gene response among biological pathogen replicates seems more consistent in the effectors associated with the susceptible interaction, especially at 21 days after inoculation. The predicted effectors indicate the predominance of proteins with interacting domains (e.g., ankyrin), and genes bearing kinase and NUDIX domains, but also proteins with protective action against reactive oxygen species from the host. Many of these genes confirm previous predictions from other clubroot studies. A benzoic acid/SA methyltransferase (BSMT), which methylates SA to render it inactive, showed high levels of expression in the interactions with both hosts. Interestingly, our data indicate that E3 ubiquitin proteasome elements are also potentially involved in pathogenesis. Finally, a gene with similarity to indole-3-acetaldehyde dehydrogenase is a promising candidate effector because of its involvement in indole acetic acid synthesis, since auxin is one of the major players in clubroot development.
Collapse
Affiliation(s)
| | | | - Stephen E. Strelkov
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Resistance to Aflatoxin Accumulation in Maize Mediated by Host-Induced Silencing of the Aspergillus flavus Alkaline Protease ( alk) Gene. J Fungi (Basel) 2021; 7:jof7110904. [PMID: 34829193 PMCID: PMC8622731 DOI: 10.3390/jof7110904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/29/2022] Open
Abstract
Aspergillus flavus is a fungal pathogen that infects maize and produces aflatoxins. Host-Induced Gene Silencing (HIGS) has been shown to reduce host infection by various fungal pathogens. Here, the A. flavus alkaline protease (alk) gene was targeted for silencing through HIGS. An RNAi vector carrying a portion of the alk gene was incorporated into the B104 maize genome. Four out of eight transformation events containing the alk gene, Alk-3, Alk-4, Alk-7 and Alk-9, were self-pollinated to T4/T6 generations. At T3, the Alk-transgenic lines showed up to 87% reduction in aflatoxin accumulation under laboratory conditions. T4 transgenic Alk-3 and Alk-7 lines, and T5 and T6 Alk-4 and Alk-9 showed an average of 84% reduction in aflatoxin accumulation compared to their null controls under field inoculations (p < 0.05). F1 hybrids of three elite maize inbred lines and the transgenic lines also showed significant improvement in aflatoxin resistance (p < 0.006 to p < 0.045). Reduced A. flavus growth and levels of fungal ß-tubulin DNA were observed in transgenic kernels during in vitro inoculation. Alk-4 transgenic leaf and immature kernel tissues also contained about 1000-fold higher levels of alk-specific small RNAs compared to null controls, indicating that the enhanced aflatoxin resistance in the transgenic maize kernels is due to suppression of A. flavus infection through HIGS of alk gene.
Collapse
|
9
|
Caruana JC, Dhar N, Raina R. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8. PLANT DIRECT 2020; 4:e00270. [PMID: 33005858 PMCID: PMC7510475 DOI: 10.1002/pld3.270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 05/13/2023]
Abstract
microRNAs are powerful regulators of growth, development, and stress responses in plants. The Arabidopsis thaliana microRNA miR167 was previously found to regulate diverse processes including flower development, root development, and response to osmotic stress by controlling the patterns of expression of its target genes AUXIN RESPONSE FACTOR 6 (ARF6), ARF8, and IAA-Ala RESISTANT 3. Here, we report that miR167 also modulates defense against pathogens through ARF6 and ARF8. miR167 is differentially expressed in response to the bacterial pathogen Pseudomonas syringae, and overexpression of miR167 confers very high levels of resistance. This resistance appears to be due to suppression of auxin responses and is partially dependent upon salicylic acid signaling, and also depends upon altered stomatal behavior in these plants. Closure of stomata upon the detection of P. syringae is an important aspect of the basal defense response, as it prevents bacterial cells from entering the leaf interior and causing infection. Plants overexpressing miR167 constitutively maintain small stomatal apertures, resulting in very high resistance when the pathogen is inoculated onto the leaf surface. Additionally, the systemic acquired resistance (SAR) response is severely compromised in plants overexpressing miR167, in agreement with previous work showing that the activation of SAR requires intact auxin signaling responses. This work highlights a new role for miR167, and also emphasizes the importance of hormonal balance in short- and long-term defense and of stomata as an initial barrier to pathogen entry.
Collapse
Affiliation(s)
- Julie C. Caruana
- Department of BiologySyracuse UniversitySyracuseNYUSA
- Naval Research LaboratoryWashingtonDCUSA
| | - Nikhilesh Dhar
- Department of BiologySyracuse UniversitySyracuseNYUSA
- Department of Plant PathologyUniversity of CaliforniaDavis, SalinasCAUSA
| | - Ramesh Raina
- Department of BiologySyracuse UniversitySyracuseNYUSA
| |
Collapse
|
10
|
Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:948-964. [PMID: 31923320 DOI: 10.1111/tpj.14677] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
Plant small RNAs (sRNAs) play significant roles in regulating various developmental processes and hormone signalling pathways involved in plant responses to a wide range of biotic and abiotic stresses. However, the functions of sRNAs in response to rice sheath blight remain unclear. We screened rice (Oryza sativa) sRNA expression patterns against Rhizoctonia solani and found that Tourist-miniature inverted-repeat transposable element (MITE)-derived small interfering RNA (siRNA) (here referred to as siR109944) expression was clearly suppressed upon R. solani infection. One potential target of siR109944 is the F-Box domain and LRR-containing protein 55 (FBL55), which encode the transport inhibitor response 1 (TIR1)-like protein. We found that rice had significantly enhanced susceptibility when siR109944 was overexpressed, while FBL55 OE plants showed resistance to R. solani challenge. Additionally, multiple agronomic traits of rice, including root length and flag leaf inclination, were affected by siR109944 expression. Auxin metabolism-related and signalling pathway-related genes were differentially expressed in the siR109944 OE and FBL55 OE plants. Importantly, pre-treatment with auxin enhanced sheath blight resistance by affecting endogenous auxin homeostasis in rice. Furthermore, transgenic Arabidopsis overexpressing siR109944 exhibited early flowering, increased tiller numbers, and increased susceptibility to R. solani. Our results demonstrate that siR109944 has a conserved function in interfering with plant immunity, growth, and development by affecting auxin homeostasis in planta. Thus, siR109944 provides a genetic target for plant breeding in the future. Furthermore, exogenous application of indole-3-acetic acid (IAA) or auxin analogues might effectively protect field crops against diseases.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Liyu Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Cong Sheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
11
|
Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu CH, Panstruga R. Rapid evolution in plant-microbe interactions - a molecular genomics perspective. THE NEW PHYTOLOGIST 2020; 225:1134-1142. [PMID: 31134629 DOI: 10.1111/nph.15966] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Rapid (co-)evolution at multiple timescales is a hallmark of plant-microbe interactions. The mechanistic basis for the rapid evolution largely rests on the features of the genomes of the interacting partners involved. Here, we review recent insights into genomic characteristics and mechanisms that enable rapid evolution of both plants and phytopathogens. These comprise fresh insights in allelic series of matching pairs of resistance and avirulence genes, the generation of novel pathogen effectors, the recently recognised small RNA warfare, and genomic aspects of secondary metabolite biosynthesis. In addition, we discuss the putative contributions of permissive host environments, transcriptional plasticity and the role of ploidy on the interactions. We conclude that the means underlying the rapid evolution of plant-microbe interactions are multifaceted and depend on the particular nature of each interaction.
Collapse
Affiliation(s)
| | - Antonio Di Pietro
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| | - Martijn Rep
- Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Jan Schirawski
- Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| |
Collapse
|
12
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
13
|
Jay S, Comar A, Benicio R, Beauvois J, Dutartre D, Daubige G, Li W, Labrosse J, Thomas S, Henry N, Weiss M, Baret F. Scoring Cercospora Leaf Spot on Sugar Beet: Comparison of UGV and UAV Phenotyping Systems. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:9452123. [PMID: 33313567 PMCID: PMC7706347 DOI: 10.34133/2020/9452123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/30/2020] [Indexed: 05/19/2023]
Abstract
Selection of sugar beet (Beta vulgaris L.) cultivars that are resistant to Cercospora Leaf Spot (CLS) disease is critical to increase yield. Such selection requires an automatic, fast, and objective method to assess CLS severity on thousands of cultivars in the field. For this purpose, we compare the use of submillimeter scale RGB imagery acquired from an Unmanned Ground Vehicle (UGV) under active illumination and centimeter scale multispectral imagery acquired from an Unmanned Aerial Vehicle (UAV) under passive illumination. Several variables are extracted from the images (spot density and spot size for UGV, green fraction for UGV and UAV) and related to visual scores assessed by an expert. Results show that spot density and green fraction are critical variables to assess low and high CLS severities, respectively, which emphasizes the importance of having submillimeter images to early detect CLS in field conditions. Genotype sensitivity to CLS can then be accurately retrieved based on time integrals of UGV- and UAV-derived scores. While UGV shows the best estimation performance, UAV can show accurate estimates of cultivar sensitivity if the data are properly acquired. Advantages and limitations of UGV, UAV, and visual scoring methods are finally discussed in the perspective of high-throughput phenotyping.
Collapse
Affiliation(s)
- S. Jay
- INRAE, UMR 114 EMMAH, UMT CAPTE, F-84914 Avignon, France
| | - A. Comar
- HIPHEN SAS, 84000 Avignon, France
| | | | | | | | - G. Daubige
- INRAE, UMR 114 EMMAH, UMT CAPTE, F-84914 Avignon, France
| | - W. Li
- HIPHEN SAS, 84000 Avignon, France
| | | | - S. Thomas
- ARVALIS-Institut du végétal, 84000 Avignon, France
| | - N. Henry
- Florimond Desprez, 59242 Capelle-en-Pévèle, France
| | - M. Weiss
- INRAE, UMR 114 EMMAH, UMT CAPTE, F-84914 Avignon, France
| | - F. Baret
- INRAE, UMR 114 EMMAH, UMT CAPTE, F-84914 Avignon, France
| |
Collapse
|
14
|
Innovative RNAi Strategies and Tactics to Tackle Plum Pox Virus (PPV) Genome in Prunus domestica-Plum. PLANTS 2019; 8:plants8120565. [PMID: 31810364 PMCID: PMC6963518 DOI: 10.3390/plants8120565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
We developed an innovative RNAi concept based on two gene constructs built from the capsid gene (CP) cistron of the Plum pox virus (PPV) genome. First, designated as amiCPRNA, a potential molecule interfering with PPV genome translation and the second one is the ami-siCPRNA to target viral genome translation and PPV RNA replication. Following the previous engineering of these constructs in an experimental herbaceous host, they were introduced into Prunus domestica (plum tree) genome. Previously propagated onto a susceptible rootstock, these clones were graft-inoculated with PPV. After four dormancy cycles, and consistent with our experience of PPV infection, some clones showed a common phenomenon of silencing that can differ between the detailed plant phenotypes. Three different phenotypes were developed by the amisiCPRNA clones. First, the high resistance character shown by the amisiCPRNA plum-7 that was similar to the resistance expressed by HoneySweet plum. Secondly, a recovery reaction was developed by the two other amisiCPRNA plum-3 and plum-4 that differed from the rest, characterized as susceptible clones, among these were the amiCPRNA plums. Having assessed the behavior of these plums versus the herbaceous host accumulating the similar form of RNAi: ami-, si-, and ami-siRNA, challenging assays in perennials consistently reflect the natural context of viral genome targeting.
Collapse
|
15
|
Xia Z, Zhao Z, Gao X, Jiao Z, Wu Y, Zhou T, Fan Z. Characterization of Maize miRNAs in Response to Synergistic Infection of Maize Chlorotic Mottle Virus and Sugarcane Mosaic Virus. Int J Mol Sci 2019; 20:ijms20133146. [PMID: 31252649 PMCID: PMC6650953 DOI: 10.3390/ijms20133146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
The synergistic infection of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) causes maize lethal necrosis, with considerable losses to global maize production. microRNAs (miRNAs) are conserved non-coding small RNAs that play essential regulatory roles in plant development and environmental stress responses, including virus infection. However, the characterization of maize miRNAs in response to synergistic infection of MCMV and SCMV remains largely unknown. In this study, the profiles of small RNAs from MCMV and SCMV single- and co-infected (S + M) maize plants were obtained by high-throughput sequencing. A total of 173 known miRNAs, belonging to 26 miRNA families, and 49 novel miRNAs were profiled. The expression patterns of most miRNAs in S + M-infected maize plants were similar to that in SCMV-infected maize plants, probably due to the existence of RNA silencing suppressor HC-Pro. Northern blotting and quantitative real-time PCR were performed to validate the accumulation of miRNAs and their targets in different experimental treatments, respectively. The down-regulation of miR159, miR393, and miR394 might be involved in antiviral defense to synergistic infection. These results provide novel insights into the regulatory networks of miRNAs in maize plants in response to the synergistic infection of MCMV and SCMV.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhenxing Zhao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiyuan Jiao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Zhou
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
de Vries S, de Vries J, Rose LE. The Elaboration of miRNA Regulation and Gene Regulatory Networks in Plant⁻Microbe Interactions. Genes (Basel) 2019; 10:genes10040310. [PMID: 31010062 PMCID: PMC6523410 DOI: 10.3390/genes10040310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plants are exposed to diverse abiotic and biotic stimuli. These require fast and specific integrated responses. Such responses are coordinated at the protein and transcript levels and are incorporated into larger regulatory networks. Here, we focus on the evolution of transcriptional regulatory networks involved in plant–pathogen interactions. We discuss the evolution of regulatory networks and their role in fine-tuning plant defense responses. Based on the observation that many of the cornerstones of immune signaling in angiosperms are also present in streptophyte algae, it is likely that some regulatory components also predate the origin of land plants. The degree of functional conservation of many of these ancient components has not been elucidated. However, ongoing functional analyses in bryophytes show that some components are conserved. Hence, some of these regulatory components and how they are wired may also trace back to the last common ancestor of land plants or earlier. Of course, an understanding of the similarities and differences during the evolution of plant defense networks cannot ignore the lineage-specific coevolution between plants and their pathogens. In this review, we specifically focus on the small RNA regulatory networks involved in fine-tuning of the strength and timing of defense responses and highlight examples of pathogen exploitation of the host RNA silencing system. These examples illustrate well how pathogens frequently target gene regulation and thereby alter immune responses on a larger scale. That this is effective is demonstrated by the diversity of pathogens from distinct kingdoms capable of manipulating the same gene regulatory networks, such as the RNA silencing machinery.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, 38106 Braunschweig, Germany.
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
- CEPLAS-Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|