1
|
Chen Y, Luo C, Huang X, Li W, Yan H, Ji H, Zhou J, Liao H. Prediction of change in suitable habitats of Senna obtusifolia and Senna tora under climate change. Sci Rep 2024; 14:30904. [PMID: 39730691 DOI: 10.1038/s41598-024-81883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Senna obtusifolia (L.) Irwin & Barneby and Senna tora (L.) Roxb represent important medicinal resources in traditional Chinese medicine for more than two millennia. Sustainable resource utilization and preservation strategies for Senna species necessitate a thorough understanding of the climatic factors governing their distribution patterns. Therefore, this study aimed to identify the key climate variables shaping the current and potential future global distribution of both Senna species. To achieve this, the MaxEnt ecological niche model was employed, integrating species occurrence data with relevant environmental variables. The results indicated that Bio13 and Bio14 were the most critical variables affecting distribution of S. tora, while Bio6 and Bio14 were crucial for S. obtusifolia. The moderate and high suitability habitats of S. obtusifolia and S. tora consist of ca. 189.69 × 104 km2 and 129.07 × 104 km2, respectively, under current situation. Moreover, the global distribution of both species under various climate scenarios revealed that the suitable habitats of both Senna species will reach the maximum during the 2081-2100 period under the SSP585 scenario. Projections across all four climate scenarios indicate a general northward migration in the core distribution of both Senna species. Intriguingly, the observed high degree of ecological niche overlap between the two species aligns with their close phylogenetic relationship. These findings provide valuable insights into the potential future distribution and ecological niche of Senna species, informing sustainable utilization and preservation strategies for Senna resources.
Collapse
Affiliation(s)
- Yineng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Chenlu Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xue Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Wenjie Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huiyue Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
2
|
Xu Y, Liu X, Gao Y, Liu Y, Chen S, Chen C, Cheng J, Guo C, Xu Q, Di J, Zhang J, Liu A, Jiang J. Metabolomic analysis revealed the edible and extended-application potential of specific Polygonum multiflorum tissues. Heliyon 2024; 10:e25990. [PMID: 38404795 PMCID: PMC10884814 DOI: 10.1016/j.heliyon.2024.e25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
The diverse applications of various tissues of Polygonum Multiflorum (PM) encompass the use of its leaf and bud as tea and vegetables, as well as the utilization of its expanded root tubers and caulis as medicinal substances. However, previous studies in the field of metabolomics have primarily focused on the medicinal properties of PM. In order to investigate the potential for broader applications of other tissues within PM, a metabolomic analysis was conducted for the first time using UPLC-Q-TOF-MS/MS on 15 fresh PM tissues. A total of 231 compounds, including newly discovered compounds such as torosachrysone and dihydro-trihydroxystilbene acid derivatives, were identified within PM. Through clustering analysis, the PM tissues were categorized into edible and medicinal parts, with edible tissues exhibiting higher levels of phenolic acids, organic acids, and flavonoids, while the accumulation of quinones, dianthrones, stilbenes, and xanthones was observed in medicinal tissues. Comparative analysis demonstrated the potential application of discarded tissues, such as unexpanded root tuber (an industrial alternative to expanded root tuber) and young caulis (with edible potential). Moreover, the quantification of representative metabolites indicated that flowers and buds contained significant amounts of flavonoids or phenolic acids, suggesting their potential as functional food. Additionally, the edible portion of PM exhibited a high content of quercitrin, ranging from 0.59 to 10.37 mg/g. These findings serve as a valuable point of reference for the expanded utilization of PM tissues, thereby mitigating resource waste in this plant.
Collapse
Affiliation(s)
- Yudi Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianju Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jintang Cheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingxia Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jipeng Di
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - An Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinzhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
3
|
Cucu AA, Pașca C, Cucu AB, Moise AR, Bobiş O, Dezsi Ș, Blaga Petrean A, Dezmirean DS. Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania. PLANTS (BASEL, SWITZERLAND) 2024; 13:428. [PMID: 38337961 PMCID: PMC10857060 DOI: 10.3390/plants13030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Fallopia japonica (Japanese knotweed, Reynoutria japonica or Polygonum cuspidatum) is considered an extremely invasive plant worldwide and a bioindicator of heavy metals. Yet, its potential as a crop for honeybees is still underevaluated. This study employs atomic absorption spectrometry to quantitatively analyze the concentration of macro-elements, namely, calcium (Ca), potassium (K) and magnesium (Mg); micro-elements, such as copper (Cu), iron (Fe), manganese (Mn) and selenium (Se); and trace elements, i.e., cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb) in different anatomic parts of Fallopia japonica (FJ) plants (roots, rhizomes, stems, leaves) and their traceability into honey. This research encompasses a thorough examination of samples collected from the northwestern and western part of Romania, providing insights into their elemental composition. The results showed that the level of trace elements decreases in terms of traceability in honey samples (Pb was not detected in any of the analyzed samples, while Cd had a minimum content 0.001 mg/kg), ensuring its quality and health safety for consumption. Moreover, the data generated can function as a valuable resource to explore the plant's positive eco-friendly impacts, particularly in relation to its honey.
Collapse
Affiliation(s)
- Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Alexandru-Bogdan Cucu
- National Institute for Research and Development in Forestry (INCDS) “Marin Drăcea”, 400202 Braşov, Romania;
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Otilia Bobiş
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| | - Ștefan Dezsi
- Faculty of Geography, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Anamaria Blaga Petrean
- Department of Animal Production and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania;
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur St., 400372 Cluj-Napoca, Romania; (A.-A.C.); (A.R.M.)
| |
Collapse
|
4
|
Vidican R, Mihăiescu T, Pleșa A, Mălinaș A, Pop BA. Investigations Concerning Heavy Metals Dynamics in Reynoutria japonica Houtt.-Soil Interactions. TOXICS 2023; 11:323. [PMID: 37112550 PMCID: PMC10144182 DOI: 10.3390/toxics11040323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Reynoutria japonica Houtt (RJ) is an extremely invasive plant species, found nowadays in a wide range of habitats, including those polluted with heavy metals (HM). The aim of this study was to investigate HM dynamics in RJ-soil interactions in five habitats historically polluted with HM located in Baia Mare city, Romania. The concentrations of major metal elements (Cd, Cu, Pb, Zn) in plant tissues (roots, stems, leaves) and soil samples collected from the study sites were analyzed via portable ED-XRF spectroscopy (converted), and the translocation factor (TF) and bioconcentration factor (BCF) were calculated. The mean values of HM in soil samples collected from the study sites exceeded the threshold limit values established by Romanian legislation. Generally, the highest concentration of Cd was recorded in the above-ground part of the plant (stem and leaves), while for Cu, Pb and Zn, the highest values (with few exceptions) were recorded in the root. The metal transfer was highly effective from soil to RJ, such that all four of the HM studied exceeded the normal range of metals in a plant. Analysis of metal concentrations in plant tissues showed an efficient movement of Cd and Zn to the above-ground parts of the plant, a tendency particularly pronounced in the case of Cd (TF and BCF > 1), while Pb was the least bioaccumulated HM. It may be concluded that RJ is able to tolerate high concentrations of HM, being a good phytoextractor for Cd and Zn.
Collapse
Affiliation(s)
- Roxana Vidican
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Tania Mihăiescu
- Department of Environmental Engineering and Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Pleșa
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anamaria Mălinaș
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bianca-Alexandra Pop
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Schmitz D, Girardi J, Jamin J, Bundschuh M, Geng B, Feldmann R, Rösch V, Riess K, Schirmel J. Copper Uptake and Its Effects on Two Riparian Plant Species, the Native Urtica dioica, and the Invasive Fallopia japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030481. [PMID: 36771566 PMCID: PMC9921552 DOI: 10.3390/plants12030481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 05/31/2023]
Abstract
Copper accumulating in stream sediments can be transported to adjacent riparian habitats by flooding. Although being an essential element for plants, copper is toxic at high concentrations and restricts, among other things, plant growth. Besides copper, invasive plants, such as Fallopia japonica, which are known to be tolerant toward heavy metals, modify riparian habitats. If the tolerance of F. japonica is higher compared to native plants, this could accelerate invasion under high heavy metal stress. Therefore, we aimed to compare the effect of copper on two common riparian plants, the invasive F. japonica and the native Urtica dioica. We performed a pot experiment with a gradient from 0 to 2430 mg kg-1 of soil copper. We hypothesized that (i) negative effects on plant growth increase with increasing soil copper concentrations with F. japonica being less affected and (ii) accumulating higher amounts of copper in plant tissues compared to U. dioica. In support of our first hypothesis, growth (height, leaf number) and biomass (above- and belowground) of F. japonica were impacted at the 810 mg kg-1 treatment, while the growth of U. dioica was already impacted at 270 mg kg-1. Due to 100% mortality of plants, the 2430 mg kg-1 treatment was omitted from the analysis. In contrast, chlorophyll content slightly increased with increasing copper treatment for both species. While U. dioica accumulated more copper in total, the copper uptake by F. japonica increased more strongly after exposure compared to the control. In the 810 mg kg-1 treatment, copper concentrations in F. japonica were up to 2238% higher than in the control but only up to 634% higher in U. dioica. Our results indicate that F. japonica might be able to more efficiently detoxify internal copper concentrations controlling heavy metal effects compared to the native species. This could give F. japonica a competitive advantage particularly in polluted areas, facilitating its invasion success.
Collapse
Affiliation(s)
- Daniel Schmitz
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Johanna Girardi
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Jellian Jamin
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Benedict Geng
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Rico Feldmann
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Verena Rösch
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Kai Riess
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Jens Schirmel
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
- Eusserthal Ecosystem Research Station, University of Kaiserslautern-Landau, 76829 Landau, Germany
| |
Collapse
|
6
|
Lerch S, Sirguey C, Michelot-Antalik A, Jurjanz S. Accumulation of metallic trace elements in Reynoutria japonica: a risk assessment for plant biomass valorization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67390-67401. [PMID: 35522409 PMCID: PMC9492613 DOI: 10.1007/s11356-022-20485-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/23/2022] [Indexed: 05/14/2023]
Abstract
Sustainable solutions aiming at limiting Reynoutria japonica invasion consist of frequent removal of its aerial biomass. The aims of this study were to measure the accumulation of metallic trace elements (MTE) in R. japonica, and to assess the eco-toxicological risk related to the valorization of the produced biomass. R. japonica fragmented rhizomes were regenerated in pots for 41 days on a control soil (CTL) or a moderately MTE-contaminated soil (POL, 3.6 mg Cd kg-1 DM). Growth traits were recorded, as well as MTE bioconcentration (BCF) and translocation factors (TF) from soil to plant organs. Whatever the MTE and plant organs, BCF remained below one (mean Cd-BCF for stem and leaf: 0.07 and 0.29 for CTL and POL, respectively), conversely to TF (until 2.2 for Cd and Ni in POL soil). When grown on the POL soil, R. japonica stem and leaf Cd content was close to the EU maximum regulatory limit for organic amendments or animal feed. Model simulations suggested that liver and kidney Cd concentrations would exceed the regulatory limit in food when adult cattle or sheep constantly ingest R. japonica grown on the POL soil over 200 to 800 days. The results of the present study will be useful to help managers in selecting efficient and safe solutions for the control of R. japonica invasion.
Collapse
Affiliation(s)
- Sylvain Lerch
- Université de Lorraine, INRAE, URAFPA, 54000, Nancy, France.
- Ruminant Research Group, Agroscope, 1725, Posieux, Switzerland.
| | | | | | - Stefan Jurjanz
- Université de Lorraine, INRAE, URAFPA, 54000, Nancy, France
| |
Collapse
|
7
|
Liu D, Zhu L, Li T, Zhao Z. Mutualism between Dark Septate Endophytes (DSEs) and their host plants under metal stress: a case study. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1954097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Di Liu
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| | - Lingling Zhu
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| | - Zhiwei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
8
|
Zhu Y, Wang H, Lv X, Zhang Y, Wang W. Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci Rep 2020; 10:20112. [PMID: 33208871 PMCID: PMC7674410 DOI: 10.1038/s41598-020-77142-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
Consistent use of large amounts of fertilizers, pesticides, and mulch can cause the accumulation of harmful substances in cotton plants. Among these harmful substances, cadmium (Cd), an undegradable element, stands out as being particularly highly toxic to plants. The objective of this study was to evaluate the ability of biochar (3%) and biofertilizer (1.5%) to decrease Cd uptake, increase cotton dry weight, and modulate the activities of photosynthetic and peroxidase (POD), superoxide dismutase (SOD), catalase enzyme (CAT) in cotton (Gossypium hirsutum L.) grown in Cd-contaminated soil (0, 1, 2, or 4 mg Cd kg-1 soil) in pots. These studies showed that, as expected, exogenous Cd adversely affects cotton chlorophyll and photosynthesis. However, biochar and biofertilizer increased cotton dry weight by an average of 16.82% and 32.62%, respectively. Meanwhile, biochar and biofertilizer decreased the accumulation of Cd in cotton organs, and there was a significant reduction in the amount of Cd in bolls (P < 0.05). Biochar and biofertilizer have a positive impact on cotton chlorophyll content, net photosynthesis, stomatal conductance, transpiration rate, and intercellular CO2 concentration. Thus, the addition of biochar and biofertilizer promote cotton growth. However, biochar and biofertilizer increased the SOD activity of leaves (47.70% and 77.21%), CAT activity of leaves (35.40% and 72.82%), SOD activity of roots (33.62% and 39.37%), and CAT activity of roots (36.91% and 60.29%), respectively, and the addition of biochar and biofertilizer decreased the content of MDA and electrolyte leakage rate. Redundancy analyses showed that biochar and biofertilizer also improved SOD and POD activities by reducing the heavy metal-induced oxidative stress in cotton and reducing Cd uptake in cotton organs. Therefore, biochar and biofertilizer have a positive effect on the growth of cotton.
Collapse
Affiliation(s)
- Yongqi Zhu
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Xin Lv
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Yutong Zhang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Weiju Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| |
Collapse
|