1
|
El-Tohory S, Zeng W, Huang J, Moussa MG, Dong L, Ismael MA, Khalifa O, Salama MA, Hekal MA, Basyouny MAE, Zhran M, Wu J. Effect of intercropping and biochar amendments on lead removal capacity by Corchorus olitorius and Zea mays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42277-42294. [PMID: 38865046 DOI: 10.1007/s11356-024-33849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/25/2024] [Indexed: 06/13/2024]
Abstract
Intercropping is a sustainable strategy recognized for boosting crop production and mitigating heavy metal toxicity in contaminated soils. This study investigates the effects of biochar amendments on Pb-contaminated soil, utilizing monocropping and intercropping techniques with C. olitorius and Z. mays. The research assesses Pb removal capacity, nutrient uptake, antioxidant enzymes, and soil Pb fractionation. In monocropping, the phytoremediation ratio for C. olitorius increased from 16.67 to 27.33%, while in intercropping, it rose from 19.00 to 28.33% with biochar amendments. Similarly, Z. mays exhibited an increased phytoremediation ratio from 53.33 to 74.67% in monocropping and from 63.00 to 78.67% in intercropping with biochar amendments. Intercropping significantly increased the peroxidase (POD) activity in Z. mays roots by 22.53%, and there were notable increases in shoot POD of C. olitorius (11.54%) and Z. mays (16.20%) with biochar application. CAT showed consistent improvements, increasing by 37.52% in C. olitorius roots and 74.49% in Z. mays roots with biochar. Biochar amendments significantly increased N content in soil under sole cropping of Z. mays and intercropping systems. In contrast, Cu content increased by 56.34%, 59.05%, and 79.80% in monocropping (C. olitorius and Z. mays) and intercropping systems, respectively. This suggests that biochar enhances nutrient availability, improving phytoremediation efficacy in Pb-contaminated soil. Phyto availability of trace metals (Zn, Mn, Cu, and Fe) exhibited higher levels with biochar amendments than those without. The findings indicate that intercropping and biochar amendments elevate antioxidant enzyme levels, reducing reactive oxygen species and mitigating Pb toxicity effects. This approach improves phytoremediation efficiency and holds promise for soil pollution remediation while enhancing nutrient content and crop quality in Pb-contaminated soil.
Collapse
Affiliation(s)
- Shaimaa El-Tohory
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Wenzhi Zeng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China.
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mohamed G Moussa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
- International Center for Biosaline Agriculture, ICBA, 14660, Dubai, United Arab Emirates
| | - Liming Dong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Marwa A Ismael
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Omar Khalifa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed A Salama
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed A Hekal
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed A E Basyouny
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mostafa Zhran
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
2
|
Idowu GA. Heavy metals research in Nigeria: a review of studies and prioritization of research needs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65940-65961. [PMID: 35896878 DOI: 10.1007/s11356-022-22174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 05/24/2023]
Abstract
Nigeria is experiencing continuous economic and industrial transformations, typical of many developing nations. In addition to its well-established oil industry, which is infamous for exuding various kinds of pollutants, there are increased mining operations, indiscriminate disposal and burning of wastes, illegal oil refinery and terroristic insurgency, all poised to increase the levels of heavy metal contaminants in the Nigerian environment. A recent revelation indicates that about 2 million people in South-western Nigeria alone could potentially be poisoned by lead (Pb) and mercury (Hg), emanating from illegal mining operations. This further underscores the importance of investigations of toxic trace metal levels in the country. The current review of 148 research articles was conducted to provide an understanding of the scope of heavy metals research in Nigeria and to prioritize needed research. The review recognized that the scope of heavy metals studies has been wide, covering matrices such as cosmetics, human blood, hair, medicines, foods, beverages, water, air, soil and crude oil. However, important toxic metals, especially mercury (Hg), arsenic (As) and antimony (Sb), are largely under-investigated. Also, there is a need for more studies to be conducted in the northern part of the country. Furthermore, studies need to focus on marine environments rather than the freshwater ecosystems alone. Techniques such as the inductively coupled plasma-optical emission spectrometry (ICP-OES) and particle-induced X-ray emission (PIXE) analyses are herein recommended to bridge the data gap and to overcome limitations in trace metals analyses in the Nigerian total environment.
Collapse
Affiliation(s)
- Gideon Aina Idowu
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P. M. B. 704, Akure, Nigeria.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|