1
|
Panigrahi S, Kumar U, Swami S, Singh Y, Balyan P, Singh KP, Dhankher OP, Varshney RK, Roorkiwal M, Amiri KM, Mir RR. Meta QTL analysis for dissecting abiotic stress tolerance in chickpea. BMC Genomics 2024; 25:439. [PMID: 38698307 PMCID: PMC11067088 DOI: 10.1186/s12864-024-10336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.
Collapse
Affiliation(s)
- Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sonu Swami
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
- Department of Botany & Plant Physiology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, USA
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Khaled Ma Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, J&K, India.
| |
Collapse
|
2
|
Aydoğan A. Comparison of different screening methods for the selection of Ascochyta blight disease on chickpea ( Cicer arietinum L.) genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1347884. [PMID: 38595758 PMCID: PMC11002132 DOI: 10.3389/fpls.2024.1347884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Chickpea (Cicer arietinum L.) is the second most important edible food grain legume, widely grown all over the world. However, the cultivation and production of chickpea are mainly affected by the Ascochyta blight (AB) disease, which causes losses of up to 100% in areas with high humidity and warm temperature conditions. Various screening methods are used in the selection of chickpea genotypes for resistance to AB disease. These methods are natural field condition (NFC), artificial epidemic field condition (AEC), marker-assisted selection (MAS), and real-time PCR (RT-PCR). The study was conducted with 88 chickpea test genotypes between the 2014 and 2016 growing seasons. The results of the screening were used to sort the genotypes into three categories: susceptible (S), moderately resistant (MR), and resistant (R). Using MAS screening, 13, 21, and 54 chickpea genotypes were identified as S, MR, and R, respectively. For RT-PCR screening, 39 genotypes were S, 31 genotypes were MR, and 18 genotypes were R. In the AEC method for NFC screening, 7, 17, and 64 genotypes were S, MR, and R, while 74 and 6 genotypes were S and MR, and 8 genotypes were R-AB disease. As a result of screening chickpea genotypes for AB disease, it was determined that the most effective method was artificial inoculation (AEC) under field conditions. In the study, Azkan, ICC3996, Tüb-19, and Tüb-82 were determined as resistant within all methods for Pathotype 1.
Collapse
Affiliation(s)
- Abdulkadir Aydoğan
- Head of Food Legumes Breeding, Central Research Institute for Field Crops, Yenimahalle, Türkiye
| |
Collapse
|
3
|
Sari D, Sari H, Ikten C, Toker C. Genome-wide discovery of di-nucleotide SSR markers based on whole genome re-sequencing data of Cicer arietinum L. and Cicer reticulatum Ladiz. Sci Rep 2023; 13:10351. [PMID: 37365279 DOI: 10.1038/s41598-023-37268-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Simple sequence repeats (SSRs) are valuable genetic markers due to their co-dominant inheritance, multi-allelic and reproducible nature. They have been largely used for exploiting genetic architecture of plant germplasms, phylogenetic analysis, and mapping studies. Among the SSRs, di-nucleotide repeats are the most frequent of the simple repeats distributed throughout the plant genomes. In present study, we aimed to discover and develop di-nucleotide SSR markers by using the whole genome re-sequencing (WGRS) data from Cicer arietinum L. and C. reticulatum Ladiz. A total of 35,329 InDels were obtained in C. arietinum, whereas 44,331 InDels in C. reticulatum. 3387 InDels with 2 bp length were detected in C. arietinum, there were 4704 in C. reticulatum. Among 8091 InDels, 58 di-nucleotide regions that were polymorphic between two species were selected and used for validation. We tested primers for evaluation of genetic diversity in 30 chickpea genotypes including C. arietinum, C. reticulatum, C. echinospermum P.H. Davis, C. anatolicum Alef., C. canariense A. Santos & G.P. Lewis, C. microphyllum Benth., C. multijugum Maesen, C. oxyodon Boiss. & Hohen. and C. songaricum Steph ex DC. A total of 244 alleles were obtained for 58 SSR markers giving an average of 2.36 alleles per locus. The observed heterozygosity was 0.08 while the expected heterozygosity was 0.345. Polymorphism information content was found to be 0.73 across all loci. Phylogenetic tree and principal coordinate analysis clearly divided the accessions into four groups. The SSR markers were also evaluated in 30 genotypes of a RIL population obtained from an interspecific cross between C. arietinum and C. reticulatum. Chi-square (χ2) test revealed an expected 1:1 segregation ratio in the population. These results demonstrated the success of SSR identification and marker development for chickpea with the use of WGRS data. The newly developed 58 SSR markers are expected to be useful for chickpea breeders.
Collapse
Affiliation(s)
- Duygu Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey.
| | - Hatice Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Cengiz Ikten
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Cengiz Toker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| |
Collapse
|
4
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, Sikarwar RS, Payasi DK. Breeding and Genomic Approaches towards Development of Fusarium Wilt Resistance in Chickpea. Life (Basel) 2023; 13:988. [PMID: 37109518 PMCID: PMC10144025 DOI: 10.3390/life13040988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Chickpea is an important leguminous crop with potential to provide dietary proteins to both humans and animals. It also ameliorates soil nitrogen through biological nitrogen fixation. The crop is affected by an array of biotic and abiotic factors. Among different biotic stresses, a major fungal disease called Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (FOC), is responsible for low productivity in chickpea. To date, eight pathogenic races of FOC (race 0, 1A, and 1B/C, 2-6) have been reported worldwide. The development of resistant cultivars using different conventional breeding methods is very time consuming and depends upon the environment. Modern technologies can improve conventional methods to solve these major constraints. Understanding the molecular response of chickpea to Fusarium wilt can help to provide effective management strategies. The identification of molecular markers closely linked to genes/QTLs has provided great potential for chickpea improvement programs. Moreover, omics approaches, including transcriptomics, metabolomics, and proteomics give scientists a vast viewpoint of functional genomics. In this review, we will discuss the integration of all available strategies and provide comprehensive knowledge about chickpea plant defense against Fusarium wilt.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Vinod Patel
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - R. S. Sikarwar
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
5
|
Koul B, Sharma K, Sehgal V, Yadav D, Mishra M, Bharadwaj C. Chickpea ( Cicer arietinum L.) Biology and Biotechnology: From Domestication to Biofortification and Biopharming. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212926. [PMID: 36365379 PMCID: PMC9654780 DOI: 10.3390/plants11212926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 05/13/2023]
Abstract
Chickpea (Cicer arietinum L.), the world's second most consumed legume crop, is cultivated in more than 50 countries around the world. It is a boon for diabetics and is an excellent source of important nutrients such as vitamins A, C, E, K, B1-B3, B5, B6, B9 and minerals (Fe, Zn, Mg and Ca) which all have beneficial effects on human health. By 2050, the world population can cross 9 billion, and in order to feed the teaming millions, chickpea production should also be increased, as it is a healthy alternative to wheat flour and a boon for diabetics. Moreover, it is an important legume that is crucial for food, nutrition, and health security and the livelihood of the small-scale farmers with poor resources, in developing countries. Although marvelous improvement has been made in the development of biotic and abiotic stress-resistant varieties, still there are many lacunae, and to fulfill that, the incorporation of genomic technologies in chickpea breeding (genomics-assisted breeding, high-throughput and precise-phenotyping and implementation of novel breeding strategies) will facilitate the researchers in developing high yielding, climate resilient, water use efficient, salt-tolerant, insect/pathogen resistant varieties, acceptable to farmers, consumers, and industries. This review focuses on the origin and distribution, nutritional profile, genomic studies, and recent updates on crop improvement strategies for combating abiotic and biotic stresses in chickpea.
Collapse
Affiliation(s)
- Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India
- Correspondence: (B.K.); (D.Y.); (M.M.)
| | - Komal Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India
| | - Vrinda Sehgal
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (B.K.); (D.Y.); (M.M.)
| | - Meerambika Mishra
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (B.K.); (D.Y.); (M.M.)
| | - Chellapilla Bharadwaj
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi 110012, India
| |
Collapse
|
6
|
Singh R, Kumar K, Purayannur S, Chen W, Verma PK. Ascochyta rabiei: A threat to global chickpea production. MOLECULAR PLANT PATHOLOGY 2022; 23:1241-1261. [PMID: 35778851 PMCID: PMC9366070 DOI: 10.1111/mpp.13235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED The necrotrophic fungus Ascochyta rabiei causes Ascochyta blight (AB) disease in chickpea. A. rabiei infects all aerial parts of the plant, which results in severe yield loss. At present, AB disease occurs in most chickpea-growing countries. Globally increased incidences of A. rabiei infection and the emergence of new aggressive isolates directed the interest of researchers toward understanding the evolution of pathogenic determinants in this fungus. In this review, we summarize the molecular and genetic studies of the pathogen along with approaches that are helping in combating the disease. Possible areas of future research are also suggested. TAXONOMY kingdom Mycota, phylum Ascomycota, class Dothideomycetes, subclass Coelomycetes, order Pleosporales, family Didymellaceae, genus Ascochyta, species rabiei. PRIMARY HOST A. rabiei survives primarily on Cicer species. DISEASE SYMPTOMS A. rabiei infects aboveground parts of the plant including leaves, petioles, stems, pods, and seeds. The disease symptoms first appear as watersoaked lesions on the leaves and stems, which turn brown or dark brown. Early symptoms include small circular necrotic lesions visible on the leaves and oval brown lesions on the stem. At later stages of infection, the lesions may girdle the stem and the region above the girdle falls off. The disease severity increases at the reproductive stage and rounded lesions with concentric rings, due to asexual structures called pycnidia, appear on leaves, stems, and pods. The infected pod becomes blighted and often results in shrivelled and infected seeds. DISEASE MANAGEMENT STRATEGIES Crop failures may be avoided by judicious practices of integrated disease management based on the use of resistant or tolerant cultivars and growing chickpea in areas where conditions are least favourable for AB disease development. Use of healthy seeds free of A. rabiei, seed treatments with fungicides, and proper destruction of diseased stubbles can also reduce the fungal inoculum load. Crop rotation with nonhost crops is critical for controlling the disease. Planting moderately resistant cultivars and prudent application of fungicides is also a way to combat AB disease. However, the scarcity of AB-resistant accessions and the continuous evolution of the pathogen challenges the disease management process. USEFUL WEBSITES https://www.ndsu.edu/pubweb/pulse-info/resourcespdf/Ascochyta%20blight%20of%20chickpea.pdf https://saskpulse.com/files/newsletters/180531_ascochyta_in_chickpeas-compressed.pdf http://www.pulseaus.com.au/growing-pulses/bmp/chickpea/ascochyta-blight http://agriculture.vic.gov.au/agriculture/pests-diseases-and-weeds/plant-diseases/grains-pulses-and-cereals/ascochyta-blight-of-chickpea http://www.croppro.com.au/crop_disease_manual/ch05s02.php https://www.northernpulse.com/uploads/resources/722/handout-chickpeaascochyta-nov13-2011.pdf http://oar.icrisat.org/184/1/24_2010_IB_no_82_Host_Plant https://www.crop.bayer.com.au/find-crop-solutions/by-pest/diseases/ascochyta-blight.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Kamal Kumar
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
- Department of Plant Molecular BiologyUniversity of Delhi (South Campus)New DelhiIndia
| | - Savithri Purayannur
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, USDA Agricultural Research Service, and Department of Plant PathologyWashington State UniversityPullmanWashingtonUSA
| | - Praveen Kumar Verma
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
- Plant Immunity Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
7
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
8
|
Eker T, Sari D, Sari H, Tosun HS, Toker C. A kabuli chickpea ideotype. Sci Rep 2022; 12:1611. [PMID: 35102187 PMCID: PMC8803941 DOI: 10.1038/s41598-022-05559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
The concept of 'crop ideotype' is coined as a desirable plant model expected to better perform for seed yield, oils and other useful characteristics when developed as a cultivar, and it consists of two major approaches, namely, (i) 'defect elimination', that is, integration of disease resistance to a susceptible genotype from a resistant genotype and (ii) 'selection for yield' by improving yield after crosses between desirable parents. For consideration of these approaches, here we introduced an ideotype in kabuli chickpea (Cicer arietinum L.) which is high-yielding, extra-large-seeded, and double- or multi-podded, has high plant height and imparipinnate-leafed traits, and is heat tolerant and resistant to ascochyta blight [Ascochyta rabiei (Pass.) Labr.], which causes considerable yield losses, via marker-assisted selection. F3 and F4 lines were evaluated for agro-morphological traits divided into six classes, namely, (i) imparipinnate-leafed and single-podded progeny, (ii) imparipinnate-leafed and double-podded progeny, (iii) imparipinnate-leafed and multi-podded progeny, (iv) unifoliolate-leafed and single-podded progeny, (v) unifoliolate-leafed and double-podded progeny, (vi) unifoliolate-leafed and multi-podded progeny. F3:4 lines having 100-seed weight ≥ 45 g and double- or multi-podded traits were additionally assessed for resistance to ascochyta blight using molecular markers including SCY17590 and CaETR-1. Superior lines having higher values than their best parents were determined for all studied traits indicating that economic and important traits including yield and seed size in chickpea could be improved by crossing suitable parents. Imparipinnate-leafed and multi-podded plants had not only the highest number of pods and seeds per plant but also the highest yield. On the other hand, imparipinnate-leafed and single podded progeny had the largest seed size, followed by imparipinnate-leafed and double-podded progeny. Multi-podded plants produced 23% more seed yield than that of single-podded plants, while multi-podded plants attained 7.6% more seed yield than that of double-podded plants. SCY17590 and CaETR-1 markers located on LG4 related to QTLAR2 and QTLAR1 were found in 14 lines among 152 F3:4 lines. Six superior lines were selected for being double- or multi-podded, imparipinnate-leafed, suitable for combine harvest, heat-tolerant, and resistant to ascochyta blight, and having both of two resistance markers and extra-large seeds as high as 50-60 g per 100-seed weight. Resistance alleles from two different backgrounds for resistance to ascochyta blight were integrated with double- or multi-podded kabuli chickpea lines having high yield, extra-large seeds, high plant height, imparipinnate-leaves and high heat tolerance, playing a crucial role for future demands of population and food security. These approaches seem to be applicable in ideotype breeding for other important crop plants.
Collapse
Affiliation(s)
- Tuba Eker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey.
| | - Duygu Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Hatice Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Hilal Sule Tosun
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Cengiz Toker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| |
Collapse
|
9
|
Jeffrey C, Trethowan R, Kaiser B. Chickpea tolerance to temperature stress: Status and opportunity for improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153555. [PMID: 34739858 DOI: 10.1016/j.jplph.2021.153555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Chickpea is a globally important commercial crop and a key source of protein for vegetarian populations. Though chickpea was domesticated at least 3000 years ago, research into abiotic stress tolerance has been limited compared to cereal crops such as wheat. This review investigates the impacts of heat stress on chickpea, focusing on reproductive development. The fertilisation process is particularly sensitive to environmental stress, such as drought and heat that can reduce yields by up to 70%. Current research has largely focused on breeding cultivars that reach maturity faster to avoid stress rather than true thermotolerance and little is known of the impact of heat on cellular processes. This review suggests that there is ample variation within the chickpea gene pool for selective breeding to achieve improved abiotic stress tolerance. Rates of genetic progress will improve once key QTL are identified and the link between thermotolerance and pollen viability confirmed. Other benefits may arise from better understanding of heat shock proteins and molecular chaperones and their role in the protection of reproductive processes.
Collapse
Affiliation(s)
- Cara Jeffrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| | - Richard Trethowan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia.
| | - Brent Kaiser
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Kushwah A, Bhatia D, Singh I, Thudi M, Singh G, Bindra S, Vij S, Gill BS, Bharadwaj C, Singh S, Varshney RK. Identification of stable heat tolerance QTLs using inter-specific recombinant inbred line population derived from GPF 2 and ILWC 292. PLoS One 2021; 16:e0254957. [PMID: 34370732 PMCID: PMC8352073 DOI: 10.1371/journal.pone.0254957] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
Heat stress during reproductive stages has been leading to significant yield losses in chickpea (Cicer arietinum L.). With an aim of identifying the genomic regions or QTLs responsible for heat tolerance, 187 F8 recombinant inbred lines (RILs) derived from the cross GPF 2 (heat tolerant) × ILWC 292 (heat sensitive) were evaluated under late-sown irrigated (January-May) and timely-sown irrigated environments (November-April) at Ludhiana and Faridkot in Punjab, India for 13 heat tolerance related traits. The pooled ANOVA for both locations for the traits namely days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), plant height (PH), pods per plant (NPP), biomass (BIO), grain yield (YLD), 100-seed weight (HSW), harvest index (HI), membrane permeability index (MPI), relative leaf water content (RLWC) and pollen viability (PV)) showed a highly significant difference in RILs. The phenotyping data coupled with the genetic map comprising of 1365 ddRAD-Seq based SNP markers were used for identifying the QTLs for heat tolerance. Composite interval mapping provided a total of 28 and 23 QTLs, respectively at Ludhiana and Faridkot locations. Of these, 13 consensus QTLs for DG, DFI, DFF, DHF, PH, YLD, and MPI have been identified at both locations. Four QTL clusters containing QTLs for multiple traits were identified on the same genomic region at both locations. Stable QTLs for days to flowering can be one of the major factors for providing heat tolerance as early flowering has an advantage of more seed setting due to a comparatively longer reproductive period. Identified QTLs can be used in genomics-assisted breeding to develop heat stress-tolerant high yielding chickpea cultivars.
Collapse
Affiliation(s)
- Ashutosh Kushwah
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Gurpreet Singh
- Regional Research Station, Faridkot, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Shayla Bindra
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Suruchi Vij
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - B. S. Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Institute of Agricultural Research (IARI), New Delhi, India
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
11
|
Hashem A, Tabassum B, Abd_Allah EF. Omics Approaches in Chickpea Fusarium Wilt Disease Management. Fungal Biol 2020. [DOI: 10.1007/978-3-030-35947-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Ghangal R, Singh VK, Khemka NK, Rajkumar MS, Garg R, Jain M. Updates on Genomic Resources in Chickpea for Crop Improvement. Methods Mol Biol 2020; 2107:19-33. [PMID: 31893441 DOI: 10.1007/978-1-0716-0235-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, rapid advancement has been done in generation of genomic resources for the important legume crop chickpea. Here, we provide an update on important advancements made on availability of genomic resources for this crop. The availability of reference genome and transcriptome sequences, and resequencing of several accessions have enabled the discovery of gene space and molecular markers in chickpea. These resources have helped in elucidating evolutionary relationship and identification of quantitative trait loci for important agronomic traits. Gene expression in different tissues/organs during development and under abiotic/biotic stresses has been interrogated. In addition, single-base resolution DNA methylation patterns in different organs have been analyzed to understand gene regulation. Overall, we provide a consolidated overview of available genomic resources of chickpea that may help in fulfilling the promises for improvement of this important crop.
Collapse
Affiliation(s)
- Rajesh Ghangal
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vikash K Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niraj K Khemka
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Ortega R, Hecht VFG, Freeman JS, Rubio J, Carrasquilla-Garcia N, Mir RR, Penmetsa RV, Cook DR, Millan T, Weller JL. Altered Expression of an FT Cluster Underlies a Major Locus Controlling Domestication-Related Changes to Chickpea Phenology and Growth Habit. FRONTIERS IN PLANT SCIENCE 2019; 10:824. [PMID: 31333691 PMCID: PMC6616154 DOI: 10.3389/fpls.2019.00824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/07/2019] [Indexed: 05/20/2023]
Abstract
Flowering time is a key trait in breeding and crop evolution, due to its importance for adaptation to different environments and for yield. In the particular case of chickpea, selection for early phenology was essential for the successful transition of this species from a winter to a summer crop. Here, we used genetic and expression analyses in two different inbred populations to examine the genetic control of domestication-related differences in flowering time and growth habit between domesticated chickpea and its wild progenitor Cicer reticulatum. A single major quantitative trait locus for flowering time under short-day conditions [Days To Flower (DTF)3A] was mapped to a 59-gene interval on chromosome three containing a cluster of three FT genes, which collectively showed upregulated expression in domesticated relative to wild parent lines. An equally strong association with growth habit suggests a pleiotropic effect of the region on both traits. These results indicate the likely molecular explanation for the characteristic early flowering of domesticated chickpea, and the previously described growth habit locus Hg. More generally, they point to de-repression of this specific gene cluster as a conserved mechanism for achieving adaptive early phenology in temperate legumes.
Collapse
Affiliation(s)
- Raul Ortega
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | | | - Jules S. Freeman
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Scion, Rotorua, New Zealand
| | - Josefa Rubio
- E. Genomica y Biotecnologia, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Córdoba, Spain
| | | | - Reyazul Rouf Mir
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - R. Varma Penmetsa
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Teresa Millan
- Department of Genetics ETSIAM, University of Córdoba, Córdoba, Spain
| | - James L. Weller
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, Varshney RK. Development and evaluation of high-density Axiom ® CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:890-901. [PMID: 28913885 PMCID: PMC5866945 DOI: 10.1111/pbi.12836] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 05/04/2023]
Abstract
To accelerate genomics research and molecular breeding applications in chickpea, a high-throughput SNP genotyping platform 'Axiom® CicerSNP Array' has been designed, developed and validated. Screening of whole-genome resequencing data from 429 chickpea lines identified 4.9 million SNPs, from which a subset of 70 463 high-quality nonredundant SNPs was selected using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on p-convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The developed Axiom® CicerSNP Array was used for genotyping two recombinant inbred line populations, namely ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261). Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03) and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High-density genetic maps comprising 13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main-effect QTLs on genetic map. Higher precision and potential of this array is expected to advance chickpea genetics and breeding applications.
Collapse
Affiliation(s)
- Manish Roorkiwal
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Ankit Jain
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Sandip M. Kale
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Annapurna Chitikineni
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Mahendar Thudi
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- School of Agriculture and Environment & Institute of AgricultureThe University of Western AustraliaCrawleyPerthAustralia
| |
Collapse
|
15
|
Ates D, Aldemir S, Alsaleh A, Erdogmus S, Nemli S, Kahriman A, Ozkan H, Vandenberg A, Tanyolac B. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS One 2018; 13:e0191375. [PMID: 29351563 PMCID: PMC5774769 DOI: 10.1371/journal.pone.0191375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Background Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. Materials and methods A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including “CDC Redberry” x “ILL7502” (LR8), “ILL8006” x “CDC Milestone” (LR11) and “PI320937” x “Eston” (LR39). Results The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. Conclusion This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.
Collapse
Affiliation(s)
- Duygu Ates
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Secil Aldemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Alsaleh
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Semih Erdogmus
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Seda Nemli
- Department of Bieoengineering and Genetics, Gumushane University, Gumushane, Turkey
| | - Abdullah Kahriman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanlı Urfa, Turkey
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Albert Vandenberg
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bahattin Tanyolac
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| |
Collapse
|
16
|
Millán T, Madrid E, Castro P, Gil J, Rubio J. Genetic Mapping and Quantitative Trait Loci. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-66117-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
17
|
Mallikarjuna BP, Samineni S, Thudi M, Sajja SB, Khan AW, Patil A, Viswanatha KP, Varshney RK, Gaur PM. Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1140. [PMID: 28729871 PMCID: PMC5498527 DOI: 10.3389/fpls.2017.01140] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 06/14/2017] [Indexed: 05/20/2023]
Abstract
Flowering time is an important trait for adaptation and productivity of chickpea in the arid and the semi-arid environments. This study was conducted for molecular mapping of genes/quantitative trait loci (QTLs) controlling flowering time in chickpea using F2 populations derived from four crosses (ICCV 96029 × CDC Frontier, ICC 5810 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier). Genetic studies revealed monogenic control of flowering time in the crosses ICCV 96029 × CDC Frontier, BGD 132 × CDC Frontier and ICC 16641 × CDC Frontier, while digenic control with complementary gene action in ICC 5810 × CDC Frontier. The intraspecific genetic maps developed from these crosses consisted 75, 75, 68 and 67 markers spanning 248.8 cM, 331.4 cM, 311.1 cM and 385.1 cM, respectively. A consensus map spanning 363.8 cM with 109 loci was constructed by integrating four genetic maps. Major QTLs corresponding to flowering time genes efl-1 from ICCV 96029, efl-3 from BGD 132 and efl-4 from ICC 16641 were mapped on CaLG04, CaLG08 and CaLG06, respectively. The QTLs and linked markers identified in this study can be used in marker-assisted breeding for developing early maturing chickpea.
Collapse
Affiliation(s)
- Bingi P. Mallikarjuna
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- Department of Genetics and Plant Breeding, University of Agricultural SciencesRaichur, India
| | - Srinivasan Samineni
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Sobhan B. Sajja
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Aamir W. Khan
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Ayyanagowda Patil
- Department of Genetics and Plant Breeding, University of Agricultural SciencesRaichur, India
| | - Kannalli P. Viswanatha
- Department of Genetics and Plant Breeding, University of Agricultural SciencesRaichur, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Pooran M. Gaur
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- The UWA Institute of Agriculture, University of Western AustraliaPerth, WA, Australia
- *Correspondence: Pooran M. Gaur
| |
Collapse
|
18
|
Jingade P, Ravikumar RL. Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Genet 2016; 94:723-9. [PMID: 26690528 DOI: 10.1007/s12041-015-0589-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of genetic maps for Fusarium wilt resistance in chickpea have been reported in earlier studies, however QTLs identified for Fusarium wilt resistance were unstable. Hence, the present study aims to map novel molecular markers and to identify QTLs for Fusarium wilt resistance in chickpea. An intraspecific linkage map of chickpea (Cicer arietinum L.) was constructed using F10-F11 recombinant inbred lines (RILs) derived from a cross between K850 and WR315 segregating for H2 locus. A set of 31 polymorphic simple sequence repeat (SSR) markers obtained by screening 300 SSRs and were used for genotyping. The linkage map had four linkage groups and coverage of 690 cM with a marker density of 5.72 cM. The RILs were screened for their wilt reaction across two seasons in wilt sick plot at International Crop Research Institute for Semi-Arid Tropics (ICRISAT), Hyderabad, India. Five major quantitative trait loci (QTLs) were detected in both seasons for late wilting (60 days after sowing). A stable QTL (GSSR 18-TC14801) for wilt resistance was identified in both the seasons, and the QTL explained a variance of 69.80 and 60.80% in 2007 and 2008 rabi respectively.
Collapse
Affiliation(s)
- Pavankumar Jingade
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bengaluru 560 065, India.
| | | |
Collapse
|
19
|
Varma Penmetsa R, Carrasquilla-Garcia N, Bergmann EM, Vance L, Castro B, Kassa MT, Sarma BK, Datta S, Farmer AD, Baek JM, Coyne CJ, Varshney RK, von Wettberg EJB, Cook DR. Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor. THE NEW PHYTOLOGIST 2016; 211:1440-51. [PMID: 27193699 DOI: 10.1111/nph.14010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/24/2016] [Indexed: 05/28/2023]
Abstract
Chickpea (Cicer arietinum) is among the founder crops domesticated in the Fertile Crescent. One of two major forms of chickpea, the so-called kabuli type, has white flowers and light-colored seed coats, properties not known to exist in the wild progenitor. The origin of the kabuli form has been enigmatic. We genotyped a collection of wild and cultivated chickpea genotypes with 538 single nucleotide polymorphisms (SNPs) and examined patterns of molecular diversity relative to geographical sources and market types. In addition, we examined sequence and expression variation in candidate anthocyanin biosynthetic pathway genes. A reduction in genetic diversity and extensive genetic admixture distinguish cultivated chickpea from its wild progenitor species. Among germplasm, the kabuli form is polyphyletic. We identified a basic helix-loop-helix (bHLH) transcription factor at chickpea's B locus that conditions flower and seed colors, orthologous to Mendel's A gene of garden pea, whose loss of function is associated invariantly with the kabuli type of chickpea. From the polyphyletic distribution of the kabuli form in germplasm, an absence of nested variation within the bHLH gene and invariant association of loss of function of bHLH among the kabuli type, we conclude that the kabuli form arose multiple times during the phase of phenotypic diversification after initial domestication of cultivated chickpea.
Collapse
Affiliation(s)
- R Varma Penmetsa
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
| | | | - Emily M Bergmann
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Lisa Vance
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Brenna Castro
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Mulualem T Kassa
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Birinchi K Sarma
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
- Department of Mycology and Plant Pathology, Banaras Hindu University, Pandit Madan Mohan Malviya Road, Varanasi, Uttar Pradesh, 221005, India
| | - Subhojit Datta
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
- Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA
| | - Jong-Min Baek
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
| | - Clarice J Coyne
- USDA-ARS, Western Regional Plant Introduction Station, Washington State University, 59 Johnson Hall, Pullman, WA, 99164-6402, USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Center of Excellence in Genomics, Patancheru, Andhra Pradesh, 502324, India
| | - Eric J B von Wettberg
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Kushlan Institute for Tropical Science, Fairchild Tropical Botanic Garden, 10901 Old Cutter Road, Coral Gables, FL, 33156, USA
| | - Douglas R Cook
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Parida SK, Verma M, Yadav SK, Ambawat S, Das S, Garg R, Jain M. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource. FRONTIERS IN PLANT SCIENCE 2015; 6:645. [PMID: 26347762 PMCID: PMC4543896 DOI: 10.3389/fpls.2015.00645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/03/2015] [Indexed: 05/18/2023]
Abstract
Development of informative polymorphic simple sequence repeat (SSR) markers at a genome-wide scale is essential for efficient large-scale genotyping applications. We identified genome-wide 1835 SSRs showing polymorphism between desi and kabuli chickpea. A total of 1470 polymorphic SSR markers from diverse coding and non-coding regions of the chickpea genome were developed. These physically mapped SSR markers exhibited robust amplification efficiency (73.9%) and high intra- and inter-specific polymorphic potential (63.5%), thereby suggesting their immense use in various genomics-assisted breeding applications. The SSR markers particularly derived from intergenic and intronic sequences revealed high polymorphic potential. Using the mapped SSR markers, a wider functional molecular diversity (16-94%, mean: 68%), and parentage- and cultivar-specific admixed domestication pattern and phylogenetic relationships in a structured population of desi and kabuli chickpea genotypes was evident. The intra-specific polymorphism (47.6%) and functional molecular diversity (65%) potential of polymorphic SSR markers developed in our study is much higher than that of previous documentations. Finally, we have developed a user-friendly web resource, Chickpea Microsatellite Database (CMsDB; http://www.nipgr.res.in/CMsDB.html), which provides public access to the data and results reported in this study. The developed informative SSR markers can serve as a resource for various genotyping applications, including genetic enhancement studies in chickpea.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
21
|
Bajaj D, Upadhyaya HD, Khan Y, Das S, Badoni S, Shree T, Kumar V, Tripathi S, Gowda CLL, Singh S, Sharma S, Tyagi AK, Chattopdhyay D, Parida SK. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci Rep 2015; 5:9264. [PMID: 25786576 PMCID: PMC4365403 DOI: 10.1038/srep09264] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/13/2015] [Indexed: 01/02/2023] Open
Abstract
High experimental validation/genotyping success rate (94-96%) and intra-specific polymorphic potential (82-96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8-25.8% with LOD: 7.0-13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1-171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopdhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
22
|
|
23
|
Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar'an B. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 2014; 15:708. [PMID: 25150411 PMCID: PMC4158123 DOI: 10.1186/1471-2164-15-708] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the whole genome sequencing, genetic map provides an essential framework for accurate and efficient genome assembly and validation. The main objectives of this study were to develop a high-density genetic map using RAD-Seq (Restriction-site Associated DNA Sequencing) genotyping-by-sequencing (RAD-Seq GBS) and Illumina GoldenGate assays, and to examine the alignment of the current map with the kabuli chickpea genome assembly. RESULTS Genic single nucleotide polymorphisms (SNPs) totaling 51,632 SNPs were identified by 454 transcriptome sequencing of Cicer arietinum and Cicer reticulatum genotypes. Subsequently, an Illumina GoldenGate assay for 1,536 SNPs was developed. A total of 1,519 SNPs were successfully assayed across 92 recombinant inbred lines (RILs), of which 761 SNPs were polymorphic between the two parents. In addition, the next generation sequencing (NGS)-based GBS was applied to the same population generating 29,464 high quality SNPs. These SNPs were clustered into 626 recombination bins based on common segregation patterns. Data from the two approaches were used for the construction of a genetic map using a population derived from an intraspecific cross. The map consisted of 1,336 SNPs including 604 RAD recombination bins and 732 SNPs from Illumina GoldenGate assay. The map covered 653 cM of the chickpea genome with an average distance between adjacent markers of 0.5 cM. To date, this is the most extensive genetic map of chickpea using an intraspecific population. The alignment of the map with the CDC Frontier genome assembly revealed an overall conserved marker order; however, a few local inconsistencies within the Cicer arietinum pseudochromosome 1 (Ca1), Ca5 and Ca8 were detected. The map enabled the alignment of 215 unplaced scaffolds from the CDC Frontier draft genome assembly. The alignment also revealed varying degrees of recombination rates and hotspots across the chickpea genome. CONCLUSIONS A high-density genetic map using RAD-Seq GBS and Illumina GoldenGate assay was developed and aligned with the existing kabuli chickpea draft genome sequence. The analysis revealed an overall conserved marker order, although some localized inversions between draft genome assembly and the genetic map were detected. The current analysis provides an insight of the recombination rates and hotspots across the chickpea genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bunyamin Tar'an
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
24
|
Ruperao P, Chan CKK, Azam S, Karafiátová M, Hayashi S, Cížková J, Saxena RK, Simková H, Song C, Vrána J, Chitikineni A, Visendi P, Gaur PM, Millán T, Singh KB, Taran B, Wang J, Batley J, Doležel J, Varshney RK, Edwards D. A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:778-86. [PMID: 24702794 DOI: 10.1111/pbi.12182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/21/2014] [Accepted: 02/09/2014] [Indexed: 05/09/2023]
Abstract
With the expansion of next-generation sequencing technology and advanced bioinformatics, there has been a rapid growth of genome sequencing projects. However, while this technology enables the rapid and cost-effective assembly of draft genomes, the quality of these assemblies usually falls short of gold standard genome assemblies produced using the more traditional BAC by BAC and Sanger sequencing approaches. Assembly validation is often performed by the physical anchoring of genetically mapped markers, but this is prone to errors and the resolution is usually low, especially towards centromeric regions where recombination is limited. New approaches are required to validate reference genome assemblies. The ability to isolate individual chromosomes combined with next-generation sequencing permits the validation of genome assemblies at the chromosome level. We demonstrate this approach by the assessment of the recently published chickpea kabuli and desi genomes. While previous genetic analysis suggests that these genomes should be very similar, a comparison of their chromosome sizes and published assemblies highlights significant differences. Our chromosomal genomics analysis highlights short defined regions that appear to have been misassembled in the kabuli genome and identifies large-scale misassembly in the draft desi genome. The integration of chromosomal genomics tools within genome sequencing projects has the potential to significantly improve the construction and validation of genome assemblies. The approach could be applied both for new genome assemblies as well as published assemblies, and complements currently applied genome assembly strategies.
Collapse
Affiliation(s)
- Pradeep Ruperao
- University of Queensland, St. Lucia, Queensland, Australia; Australian Centre for Plant Functional Genomics, University of Queensland, St. Lucia, Queensland, Australia; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Varshney RK, Mir RR, Bhatia S, Thudi M, Hu Y, Azam S, Zhang Y, Jaganathan D, You FM, Gao J, Riera-Lizarazu O, Luo MC. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct Integr Genomics 2014; 14:59-73. [PMID: 24610029 PMCID: PMC4273598 DOI: 10.1007/s10142-014-0363-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance "QTL-hotspot" region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.
Collapse
Affiliation(s)
- Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Reyazul Rouf Mir
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Yuqin Hu
- University of California, Davis, USA
| | - Sarwar Azam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Deepa Jaganathan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Frank M. You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Canada
| | | | - Oscar Riera-Lizarazu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Dow AgroSciences, Pullman, USA
| | | |
Collapse
|
26
|
Ali L, Madrid E, Varshney RK, Azam S, Millan T, Rubio J, Gil J. Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:481-488. [PMID: 24247237 DOI: 10.1007/s00122-013-2233-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 10/31/2013] [Indexed: 06/02/2023]
Abstract
For the first time the putative NSP2 gene in chickpea has been identified using pairs of NILs differing for the Rn1 / rn1 nodulation gene that was located in LG5 of chickpea genetic map. An intraspecific cross between the mutant non-nodulating genotype PM233, carrying the recessive gene rn1, and the wild-type CA2139 was used to develop two pairs of near-isogenic lines (NILs) for nodulation in chickpea. These pairs of NILs were characterized using sequence tagged microsatellite site (STMS) markers distributed across different linkage groups (LGs) of the chickpea genetic map leading to the detection of polymorphic markers located in LG5. Using this information, together with the genome annotation in Medicago truncatula, a candidate gene (NSP2) known to be involved in nodulation pathway was selected for mapping in chickpea. The full length sequence obtained in chickpea wild-type (CaNSP2) was 1,503 bp. Linkage analysis in an F3 population of 118 plants derived from the cross between the pair of NILS NIL7-2A (nod) × NIL7-2B (non-nod) revealed a co-localization between CaNSP2 and Rn1 gene. These data implicate the CaNSP2 gene as a candidate for identity to Rn1, and suggest that it could act in the nodulation signaling transduction pathway similarly to that in other legumes species.
Collapse
Affiliation(s)
- L Ali
- Dpto Genética, Univ Córdoba, Campus de excelencia internacional CeiA3, Campus de Rabanales, 14071, Córdoba, Spain,
| | | | | | | | | | | | | |
Collapse
|
27
|
Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:445-62. [PMID: 24326458 PMCID: PMC3910274 DOI: 10.1007/s00122-013-2230-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/31/2013] [Indexed: 05/19/2023]
Abstract
Analysis of phenotypic data for 20 drought tolerance traits in 1-7 seasons at 1-5 locations together with genetic mapping data for two mapping populations provided 9 QTL clusters of which one present on CaLG04 has a high potential to enhance drought tolerance in chickpea improvement. Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50% production losses in chickpea. In order to dissect the complex nature of drought tolerance and to use genomics tools for enhancing yield of chickpea under drought conditions, two mapping populations-ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261) segregating for drought tolerance-related root traits were phenotyped for a total of 20 drought component traits in 1-7 seasons at 1-5 locations in India. Individual genetic maps comprising 241 loci and 168 loci for ICCRIL03 and ICCRIL04, respectively, and a consensus genetic map comprising 352 loci were constructed ( http://cmap.icrisat.ac.in/cmap/sm/cp/varshney/). Analysis of extensive genotypic and precise phenotypic data revealed 45 robust main-effect QTLs (M-QTLs) explaining up to 58.20% phenotypic variation and 973 epistatic QTLs (E-QTLs) explaining up to 92.19% phenotypic variation for several target traits. Nine QTL clusters containing QTLs for several drought tolerance traits have been identified that can be targeted for molecular breeding. Among these clusters, one cluster harboring 48% robust M-QTLs for 12 traits and explaining about 58.20% phenotypic variation present on CaLG04 has been referred as "QTL-hotspot". This genomic region contains seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11). Introgression of this region into elite cultivars is expected to enhance drought tolerance in chickpea.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Satovic Z, Avila CM, Cruz-Izquierdo S, Díaz-Ruíz R, García-Ruíz GM, Palomino C, Gutiérrez N, Vitale S, Ocaña-Moral S, Gutiérrez MV, Cubero JI, Torres AM. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genomics 2013; 14:932. [PMID: 24377374 PMCID: PMC3880837 DOI: 10.1186/1471-2164-14-932] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/12/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. RESULTS A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. CONCLUSION We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different marker technologies. Combined with syntenic approaches, the consensus map will increase marker density in selected genomic regions and will be useful for future faba bean molecular breeding applications.
Collapse
Affiliation(s)
- Zlatko Satovic
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
- Present addresses: Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Carmen M Avila
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| | - Serafin Cruz-Izquierdo
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
- Colegio de Postgraduados, Recursos Genéticos y Productividad – Genética, Campus Montecillo, Km 36.5 Carretera México-Texcoco, C.P., Texcoco, Edo. de México 56230, México
| | - Ramón Díaz-Ruíz
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
- Colegio de Postgraduados, Campus Puebla, Km 125.5 Carretera México-Puebla, C.P., Puebla, Pue 72760, México
| | - Gloria M García-Ruíz
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| | - Carmen Palomino
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| | - Natalia Gutiérrez
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| | - Stefania Vitale
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| | - Sara Ocaña-Moral
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| | - María Victoria Gutiérrez
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| | - José I Cubero
- Departamento de Mejora Genética, IAS-CSIC, Apdo. 4084, Córdoba 14080, Spain
| | - Ana M Torres
- IFAPA, Centro Alameda del Obispo, Área de Mejora y Biotecnología, Avda. Menéndez Pidal s/n, Apdo. 3092, Córdoba 14080, Spain
| |
Collapse
|
29
|
Taran B, Warkentin TD, Vandenberg A. Fast track genetic improvement of ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1639-1647. [PMID: 23463492 DOI: 10.1007/s00122-013-2080-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/23/2013] [Indexed: 06/01/2023]
Abstract
Ascochyta blight (AB) caused by the fungus Ascochyta rabiei Pass. Lab. is one of the major diseases of chickpea worldwide and a constraint to production in western Canada. The use of varieties with high levels of resistance is considered the most economical solution for long-term ascochyta blight management in chickpea. QTL for resistance to ascochyta blight have been identified in chickpea. The availability of molecular markers associated with QTL for ascochyta blight resistant and double podding provides an opportunity to apply marker-assisted backcrossing to introgress the traits into adapted chickpea cultivars. In the present study, molecular markers that were linked to the QTL for ascochyta blight resistance and the double podding trait, and those unlinked to the resistance were used in foreground and background selection, respectively, in backcrosses between moderately resistant donors (CDC Frontier and CDC 425-14) and the adapted varieties (CDC Xena, CDC Leader and FLIP98-135C). The strategy included two backcrosses and selection for two QTL for ascochyta blight resistance and a locus associated with double podding. The fixation of the elite genetic background was monitored with 16-22 SSR markers to accelerate restoration of the genetic background at each backcross. By the BC2F1 generation, plants with improved ascochyta blight resistance and double podding were identified. The selected plants possessed the majority of elite parental type SSR alleles on all fragments analyzed except the segment of LG 4, LG 6 and LG 8 that possessed the target QTL. The results showed that the adapted variety could be efficiently converted into a variety with improved resistance in two backcross generations.
Collapse
Affiliation(s)
- B Taran
- Crop Development Center, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | | | | |
Collapse
|
30
|
Zheng X, Kuang Y, Lv W, Cao D, Zhang X, Li C, Lu C, Sun X. A consensus linkage map of common carp (Cyprinus carpio L.) to compare the distribution and variation of QTLs associated with growth traits. SCIENCE CHINA-LIFE SCIENCES 2013; 56:351-9. [PMID: 23483339 DOI: 10.1007/s11427-012-4427-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/03/2012] [Indexed: 12/15/2022]
Abstract
The ability to detect and identify quantitative trait loci (QTLs) in a single population is often limited. Analyzing multiple populations in QTL analysis improves the power of detecting QTLs and provides a better understanding of their functional allelic variation and distribution. In this study, a consensus map of the common carp was constructed, based on four populations, to compare the distribution and variation of QTLs. The consensus map spans 2371.6 cM across the 42 linkage groups and comprises 257 microsatellites and 421 SNPs, with a mean marker interval of 3.7 cM/marker. Sixty-seven QTLs affecting four growth traits from the four populations were mapped to the consensus map. Only one QTL was common to three populations, and nine QTLs were detected in two populations. However, no QTL was common to all four populations. The results of the QTL comparison suggest that the QTLs are responsible for the phenotypic variability observed for these traits in a broad array of common carp germplasms. The study also reveals the different genetic performances between major and minor genes in different populations.
Collapse
Affiliation(s)
- Xianhu Zheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 2013; 31:240-6. [DOI: 10.1038/nbt.2491] [Citation(s) in RCA: 832] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
|
32
|
Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 2013; 31:1120-34. [PMID: 23313999 DOI: 10.1016/j.biotechadv.2013.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/16/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; CGIAR Generation Challenge Programme (GCP), c/o CIMMYT, DF 06600, Mexico; The University of Western Australia, Crawley 6009, Australia; Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P. Can genomics boost productivity of orphan crops? Nat Biotechnol 2012; 30:1172-1176. [PMID: 23222781 DOI: 10.1007/978-3-319-66117-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Rajeev K Varshney
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | | | | | | | | | | |
Collapse
|
34
|
Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, Phan HTT, Cubero JI, Torres AM. Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1767-82. [PMID: 22864387 DOI: 10.1007/s00122-012-1952-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/21/2012] [Indexed: 05/20/2023]
Abstract
This study presents the development of an enhanced map in faba bean. The map contains 258 loci, mostly gene-based markers, organized in 16 linkage groups that expand 1,875 cM, with an average inter-marker distance of 7.26 cM. The combination of EST-derived markers with a number of markers physically located or previously ascribed to chromosomes by trisomic segregation, allowed the allocation of eight linkage groups (229 markers), to specific chromosomes. Moreover, this approach provided anchor points to establish a global homology among the faba bean chromosomes and those of closely-related legumes species. The map was used to identify and validate, for the first time, QTLs controlling five flowering and reproductive traits: days to flowering, flowering length, pod length, number of seeds per pod and number of ovules per pod. Twelve QTLs stable in the 2 years of evaluation were identified in chromosomes II, V and VI. Comparative mapping suggested the conservation of one of the faba bean genomic regions controlling the character days to flowering in other five legume species (Medicago, Lotus, pea, lupine, chickpea). Additional syntenic co-localizations of QTLs controlling pod length and number of seeds per pod between faba bean and Lotus japonicus are likely. The new genetic map opens the way for further translational studies between faba bean and related legume species, and provides an efficient tool for breeding applications such as QTL analysis and marker-assisted selection.
Collapse
Affiliation(s)
- S Cruz-Izquierdo
- Área de Mejora y Biotecnología, IFAPA, Centro Alameda del Obispo, Apdo. 3092, 14080 Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S, Banik M. Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1783-95. [PMID: 22890805 PMCID: PMC3493668 DOI: 10.1007/s00122-012-1953-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/21/2012] [Indexed: 05/06/2023]
Abstract
Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1-52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551 cM with a mean marker density of 2.0 cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274 Mb or 74 % of the estimated flax genome size of 370 Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB, R3T 2M9, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bohra A, Saxena RK, Gnanesh BN, Saxena K, Byregowda M, Rathore A, KaviKishor PB, Cook DR, Varshney RK. An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1325-38. [PMID: 22772726 PMCID: PMC3442162 DOI: 10.1007/s00122-012-1916-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/05/2012] [Indexed: 05/21/2023]
Abstract
Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750 kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6 cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059 cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24 %. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.
Collapse
Affiliation(s)
- Abhishek Bohra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 India
- Osmania University, Hyderabad, 500007 India
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 India
- Osmania University, Hyderabad, 500007 India
| | - B. N. Gnanesh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 India
- University of Agricultural Sciences, Bengaluru (UAS-B), 560065 India
| | - Kulbhushan Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 India
| | - M. Byregowda
- University of Agricultural Sciences, Bengaluru (UAS-B), 560065 India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 India
| | | | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 India
- CGIAR Generation Challenge Programme (GCP), c/o CIMMYT, 06600 Mexico DF, Mexico
| |
Collapse
|
37
|
|
38
|
Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S. High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 2012; 19:357-73. [PMID: 22864163 PMCID: PMC3473369 DOI: 10.1093/dnares/dss018] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present study reports the large-scale discovery of genome-wide single-nucleotide polymorphisms (SNPs) in chickpea, identified mainly through the next generation sequencing of two genotypes, i.e. Cicer arietinum ICC4958 and its wild progenitor C. reticulatum PI489777, parents of an inter-specific reference mapping population of chickpea. Development and validation of a high-throughput SNP genotyping assay based on Illumina's GoldenGate Genotyping Technology and its application in building a high-resolution genetic linkage map of chickpea is described for the first time. In this study, 1022 SNPs were identified, of which 768 high-confidence SNPs were selected for designing the custom Oligo Pool All (CpOPA-I) for genotyping. Of these, 697 SNPs could be successfully used for genotyping, demonstrating a high success rate of 90.75%. Genotyping data of the 697 SNPs were compiled along with those of 368 co-dominant markers mapped in an earlier study, and a saturated genetic linkage map of chickpea was constructed. One thousand and sixty-three markers were mapped onto eight linkage groups spanning 1808.7 cM (centiMorgans) with an average inter-marker distance of 1.70 cM, thereby representing one of the most advanced maps of chickpea. The map was used for the synteny analysis of chickpea, which revealed a higher degree of synteny with the phylogenetically close Medicago than with soybean. The first set of validated SNPs and map resources developed in this study will not only facilitate QTL mapping, genome-wide association analysis and comparative mapping in legumes but also help anchor scaffolds arising out of the whole-genome sequencing of chickpea.
Collapse
Affiliation(s)
- Rashmi Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Novák K, Biedermannová E, Vondrys J. Functional markers delimiting a Medicago orthologue of pea symbiotic gene NOD3. EUPHYTICA 2012; 186:761-777. [PMID: 0 DOI: 10.1007/s10681-011-0586-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 11/12/2011] [Indexed: 05/21/2023]
|
40
|
Madrid E, Rajesh PN, Rubio J, Gil J, Millán T, Chen W. Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTL(AR1) implicated in ascochyta blight resistance in chickpea. PLANT CELL REPORTS 2012; 31:1033-1042. [PMID: 22238063 DOI: 10.1007/s00299-011-1221-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/13/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Two alleles of a chickpea (Cicer arietinum L.) ethylene receptor-like sequence (CaETR-1) were sequence-characterized using synteny analysis with genome sequences of Medicago truncatula L. The full length of the sequence obtained in the accession FLIP84-92C resistant to ascochyta blight (CaETR-1a) span 4,428 bp, including the polyadenylation signal in the 3'-untranslated region (UTR), whereas it has a 730 bp deletion in the 3'-UTR region in the susceptible accession PI359075 (CaETR-1b). The deduced protein belongs to subfamily II of the ethylene receptors and contains all the domains that define EIN4 homologs in Arabidopsis. The EIN4-like sequence (CaETR-1) has been mapped using a recombinant inbred line (RIL) population derived from an intraspecific cross between ILC3279 and WR315, resistant and susceptible to blight, respectively. The locus was located in LGIVa of the genetic map, flanked by markers NCPGR91 and GAA47 (at distances of 11.3 and 17.9 cM, respectively). This is the first potentially functional sequence identified under a QTL peak for ascochyta blight resistance in chickpea (QTL(AR1)). This EIN4-like (CaETR-1) sequence explained up to 33.8% of the total phenotypic variation. This sequence could be directly related to blight resistance, together with other QTLs that have been found to be involved in resistance to this major chickpea disease.
Collapse
Affiliation(s)
- E Madrid
- Departamento de Genética, Universidad de Córdoba, Campus Rabanales, Edif. C5, 14071 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Choudhary S, Gaur R, Gupta S. EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1449-62. [PMID: 22301907 DOI: 10.1007/s00122-012-1800-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
Well-saturated linkage maps especially those based on expressed sequence tag (EST)-derived genic molecular markers (GMMs) are a pre-requisite for molecular breeding. This is especially true in important legumes such as chickpea where few simple sequence repeats (SSR) and even fewer GMM-based maps have been developed. Therefore, in this study, 2,496 ESTs were generated from chickpea seeds and utilized for the development of 487 novel EST-derived functional markers which included 125 EST-SSRs, 151 intron targeted primers (ITPs), 109 expressed sequence tag polymorphisms (ESTPs), and 102 single nucleotide polymorphisms (SNPs). Whereas ESTSSRs, ITPs, and ESTPs were developed by in silico analysis of the developed EST sequences, SNPs were identified by allele resequencing and their genotyping was performedusing the Illumina GoldenGate Assay. Parental polymorphism was analyzed between C. arietinum ICC4958 and C. reticulatum PI489777, parents of the reference chickpea mapping population, using a total of 872 markers: 487 new gene-based markers developed in this study along with 385 previously published markers, of which 318 (36.5%) were found to be polymorphic and were used for genotyping. The genotypic data were integrated with the previously published data of 108 markers and an advanced linkage map was generated that contained 406 loci distributed on eight linkage groups that spanned 1,497.7 cM. The average marker density was 3.68 cM and the average number of markers per LG was 50.8. Among the mapped markers, 303 new genomic locations were defined that included 177 gene-based and 126 gSSRs (genomic SSRs) thereby producing the most advanced gene-rich map of chickpea solely based on co-dominant markers.
Collapse
Affiliation(s)
- Shalu Choudhary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No 10531, New Delhi 110067, India
| | | | | |
Collapse
|
42
|
Zatloukalová P, Hřibová E, Kubaláková M, Suchánková P, Simková H, Adoración C, Kahl G, Millán T, Doležel J. Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res 2011; 19:729-39. [PMID: 21947955 DOI: 10.1007/s10577-011-9235-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 11/29/2022]
Abstract
Cultivated chickpea is the third most important legume after field bean and garden pea worldwide. Despite considerable breeding towards improved yield and resistance to biotic and abiotic stresses, the production of chickpea remained stagnant, but molecular tools are expected to increase the impact of current improvement programs. As a first step towards this goal, various genetic linkage maps have been established and markers linked to resistance genes been identified. However, until now, only one linkage group (LG) has been assigned to a specific chromosome. In the present work, mitotic chromosomes were sorted using flow cytometry and used as template for PCR with primers designed for genomic regions flanking microsatellites. These primers amplify sequence-tagged microsatellite site markers. This approach confirmed the assignment of LG8 to the smallest chromosome H. For the first time, LG5 was linked to the largest chromosome A, LG4 to a medium-sized chromosome E, while LG3 was anchored to the second largest chromosome B. Chromosomes C and D could not be flow-sorted separately and were jointly associated to LG6 and LG7. By the same token, chromosomes F and G were anchored to LG1 and LG2. To establish a set of preferably diagnostic cytogenetic markers, the genomic distribution of various probes was verified using FISH. Moreover, a partial genomic bacterial artificial chromosome (BAC) library was constructed and putative single/low-copy BAC clones were mapped cytogenetically. As a result, two clones were identified localizing specifically to chromosomes E and H, for which no cytogenetic markers were yet available.
Collapse
Affiliation(s)
- Pavlína Zatloukalová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovská 6, 77200 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M. Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. PLANT PHYSIOLOGY 2011; 156:1661-78. [PMID: 21653784 PMCID: PMC3149962 DOI: 10.1104/pp.111.178616] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/07/2011] [Indexed: 05/17/2023]
Abstract
Chickpea (Cicer arietinum) is an important food legume crop but lags in the availability of genomic resources. In this study, we have generated about 2 million high-quality sequences of average length of 372 bp using pyrosequencing technology. The optimization of de novo assembly clearly indicated that hybrid assembly of long-read and short-read primary assemblies gave better results. The hybrid assembly generated a set of 34,760 transcripts with an average length of 1,020 bp representing about 4.8% (35.5 Mb) of the total chickpea genome. We identified more than 4,000 simple sequence repeats, which can be developed as functional molecular markers in chickpea. Putative function and Gene Ontology terms were assigned to at least 73.2% and 71.0% of chickpea transcripts, respectively. We have also identified several chickpea transcripts that showed tissue-specific expression and validated the results using real-time polymerase chain reaction analysis. Based on sequence comparison with other species within the plant kingdom, we identified two sets of lineage-specific genes, including those conserved in the Fabaceae family (legume specific) and those lacking significant similarity with any non chickpea species (chickpea specific). Finally, we have developed a Web resource, Chickpea Transcriptome Database, which provides public access to the data and results reported in this study. The strategy for optimization of de novo assembly presented here may further facilitate the transcriptome sequencing and characterization in other organisms. Most importantly, the data and results reported in this study will help to accelerate research in various areas of genomics and implementing breeding programs in chickpea.
Collapse
|
44
|
Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1577-89. [PMID: 21384113 PMCID: PMC3082040 DOI: 10.1007/s00122-011-1556-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/12/2011] [Indexed: 05/18/2023]
Abstract
A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2-20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here, therefore, has a total of 300 loci including 126 GMM loci and spans 766.56 cM, with an average inter-marker distance of 2.55 cM. In summary, this is the first report on the development of large-scale genic markers including development of easily assayable markers and a transcript map of chickpea. These resources should be useful not only for genome analysis and genetics and breeding applications of chickpea, but also for comparative legume genomics.
Collapse
Affiliation(s)
- Neha Gujaria
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Dr. Hari Singh Gaur University, Sagar, 470003 Madhya Pradesh India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Preeti Dauthal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Anuja Dubey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Pavana Hiremath
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - A. Bhanu Prakash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Andrew Farmer
- National Centre for Genome Resources (NCGR), Santa Fe, NM 87505 USA
| | - Mangla Bhide
- Dr. Hari Singh Gaur University, Sagar, 470003 Madhya Pradesh India
| | - Trushar Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Pooran M. Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Sabhyata Bhatia
- National Institute for Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Douglas R. Cook
- University of California, Davis (UC-Davis), Davis, CA 95616 USA
| | - Greg D. May
- National Centre for Genome Resources (NCGR), Santa Fe, NM 87505 USA
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- CGIAR Generation Challenge Programme (GCP), c/o CIMMYT, 06600 Mexico, DF Mexico
| |
Collapse
|
45
|
Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics 2011; 12:117. [PMID: 21329497 PMCID: PMC3050819 DOI: 10.1186/1471-2164-12-117] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background Chickpea (Cicer arietinum L.) is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites) markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. Results A microsatellite enriched library of chickpea (enriched for (GT/CA)n and (GA/CT)n repeats) was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded) × JG-62 (double podded)] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3%) were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map and the previously published chickpea intraspecific map, integration of maps was performed which revealed improvement of marker density and saturation of the region in the vicinity of sfl (double-podding) gene thereby bringing about an advancement of the current map. Conclusion An arsenal of 181 new chickpea STMS markers was reported. The developed intraspecific linkage map defined map positions of 138 markers which included 101 new locations.Map integration with a previously published map was carried out which revealed an advanced map with improved density. This study is a major contribution towards providing advanced genomic resources which will facilitate chickpea geneticists and molecular breeders in developing superior genotypes with improved traits.
Collapse
Affiliation(s)
- Rashmi Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No, 10531, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|