1
|
Agrawal S, Kumar A, Gupta Y, Trivedi A. Potato Biofortification: A Systematic Literature Review on Biotechnological Innovations of Potato for Enhanced Nutrition. HORTICULTURAE 2024; 10:292. [DOI: 10.3390/horticulturae10030292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Potato biofortification is a comprehensive approach aimed at enhancing the nutritional content of potatoes, addressing widespread nutrient deficiencies and contributing to global food security. This systematic review examines the existing literature on various aspects of potato biofortification, encompassing genetic, agronomic, and biotechnological strategies. The review highlights the nutritional significance of potatoes, emphasizing their role as a staple food in many regions. Genetic approaches to biofortification involve the identification and use of natural variations in potato germplasm to develop varieties with elevated levels of essential nutrients. This includes targeting key micronutrients, such as iron, zinc, and vitamins, through traditional breeding methods. The review explores the genetic diversity within potato germplasm and the potential for breeding programs to develop nutrient-rich varieties. Agronomic practices play a crucial role in potato biofortification, with studies demonstrating the impact of tuber priming and the application of mineral fertilizers on nutrient concentrations in potatoes. The review delves into the intricacies of agronomic biofortification, emphasizing the importance of precise dosages and timing for optimal results. Biotechnological tools, including transgenic and non-transgenic approaches, are discussed in the context of potato biofortification. The review evaluates the efficiency and ethical considerations associated with the development of biofortified transgenic potatoes and emphasizes the significance of non-transgenic approaches in addressing consumer concerns and regulatory barriers. Overall, this systematic review provides a comprehensive overview of the current state of potato biofortification research. It synthesizes findings from diverse studies, offering insights into the potential of biofortified potatoes to address hidden hunger and contribute to improved nutritional outcomes. This review also identifies knowledge gaps and areas for future research, guiding the direction of efforts to harness the full potential of potato biofortification for global food and nutrition security.
Collapse
Affiliation(s)
- Smita Agrawal
- Department of Horticulture, B.M. College of Agriculture Khandwa, Khandwa 450001, Madhya Pradesh, India
| | - Amit Kumar
- Department of Horticulture, B.M. College of Agriculture Khandwa, Khandwa 450001, Madhya Pradesh, India
| | - Yash Gupta
- Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Ayushi Trivedi
- Department of Natural Resource Management, College of Forestry and Research Station, Sankra Patan, Durg 491111, Chhattisgarh, India
| |
Collapse
|
2
|
Recent Advances in Molecular Improvement for Potato Tuber Traits. Int J Mol Sci 2022; 23:ijms23179982. [PMID: 36077378 PMCID: PMC9456189 DOI: 10.3390/ijms23179982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.
Collapse
|
3
|
Lu L, Cao H, Li H, Zhang H, Li S, Wang J. Diversity and profiles of volatile compounds in twenty-five peppermint genotypes grown in China. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hua Cao
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Han Li
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hao Zhang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Shenchong Li
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jihua Wang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
4
|
Tahir J, Brendolise C, Hoyte S, Lucas M, Thomson S, Hoeata K, McKenzie C, Wotton A, Funnell K, Morgan E, Hedderley D, Chagné D, Bourke PM, McCallum J, Gardiner SE, Gea L. QTL Mapping for Resistance to Cankers Induced by Pseudomonas syringae pv. actinidiae (Psa) in a Tetraploid Actinidia chinensis Kiwifruit Population. Pathogens 2020; 9:E967. [PMID: 33233616 PMCID: PMC7709049 DOI: 10.3390/pathogens9110967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Polyploidy is a key driver of significant evolutionary changes in plant species. The genus Actinidia (kiwifruit) exhibits multiple ploidy levels, which contribute to novel fruit traits, high yields and resistance to the canker-causing dieback disease incited by Pseudomonas syringae pv. actinidiae (Psa) biovar 3. However, the genetic mechanism for resistance to Psa observed in polyploid kiwifruit is not yet known. In this study we performed detailed genetic analysis of a tetraploid Actinidia chinensis var. chinensis population derived from a cross between a female parent that exhibits weak tolerance to Psa and a highly Psa-resistant male parent. We used the capture-sequencing approach across the whole kiwifruit genome and generated the first ultra-dense maps in a tetraploid kiwifruit population. We located quantitative trait loci (QTLs) for Psa resistance on these maps. Our approach to QTL mapping is based on the use of identity-by-descent trait mapping, which allowed us to relate the contribution of specific alleles from their respective homologues in the male and female parent, to the control of Psa resistance in the progeny. We identified genes in the diploid reference genome whose function is suggested to be involved in plant defense, which underly the QTLs, including receptor-like kinases. Our study is the first to cast light on the genetics of a polyploid kiwifruit and suggest a plausible mechanism for Psa resistance in this species.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland 1025, New Zealand; (J.T.); (C.B.)
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland 1025, New Zealand; (J.T.); (C.B.)
| | - Stephen Hoyte
- The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand;
| | - Marielle Lucas
- Breeding Department, Enza Zaden, 1602 DB Enkhuizen, The Netherlands;
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand;
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| | - Catherine McKenzie
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| | - Andrew Wotton
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Keith Funnell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Ed Morgan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Duncan Hedderley
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Peter M. Bourke
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand;
| | - Susan E. Gardiner
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; (A.W.); (K.F.); (E.M.); (D.H.); (D.C.)
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke 3182, New Zealand; (K.H.); (C.M.)
| |
Collapse
|
5
|
Hooper CM, Castleden IR, Aryamanesh N, Black K, Grasso SV, Millar AH. CropPAL for discovering divergence in protein subcellular location in crops to support strategies for molecular crop breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:812-827. [PMID: 32780488 DOI: 10.1111/tpj.14961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Agriculture faces increasing demand for yield, higher plant-derived protein content and diversity while facing pressure to achieve sustainability. Although the genomes of many of the important crops have been sequenced, the subcellular locations of most of the encoded proteins remain unknown or are only predicted. Protein subcellular location is crucial in determining protein function and accumulation patterns in plants, and is critical for targeted improvements in yield and resilience. Integrating location data from over 800 studies for 12 major crop species into the cropPAL2020 data collection showed that while >80% of proteins in most species are not localised by experimental data, combining species data or integrating predictions can help bridge gaps at similar accuracy. The collation and integration of over 61 505 experimental localisations and more than 6 million predictions showed that the relative sizes of the protein catalogues located in different subcellular compartments are comparable between crops and Arabidopsis. A comprehensive cross-species comparison showed that between 50% and 80% of the subcellulomes are conserved across species and that conservation only depends to some degree on the phylogenetic relationship of the species. Protein subcellular locations in major biosynthesis pathways are more often conserved than in metabolic pathways. Underlying this conservation is a clear potential for subcellular diversity in protein location between species by means of gene duplication and alternative splicing. Our cropPAL data set and search platform (https://crop-pal.org) provide a comprehensive subcellular proteomics resource to drive compartmentation-based approaches for improving yield, protein composition and resilience in future crop varieties.
Collapse
Affiliation(s)
- Cornelia M Hooper
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian R Castleden
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nader Aryamanesh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Robinson Research Institute and Adelaide Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kylie Black
- University Library, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Sally V Grasso
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
6
|
Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population. Genetics 2020; 215:579-595. [PMID: 32371382 PMCID: PMC7337090 DOI: 10.1534/genetics.120.303080] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/26/2020] [Indexed: 11/18/2022] Open
Abstract
In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. [Formula: see text], is an important autopolyploid species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic complexity. Current fixed-effect models can fit only a single QTL and are generally hard to interpret. Here, we report the use of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population ('Beauregard' × 'Tanzania') with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments in Peru, and jointly adjusted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684 markers distributed along 15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at every centiMorgan position. Multiple interval mapping was performed using our R package QTLpoly and detected a total of 13 QTL, ranging from none to four QTL per trait, which explained up to 55% of the total variance. Some regions, such as those on LGs 3 and 15, were consistently detected among root number and yield traits, and provided a basis for candidate gene search. In addition, some QTL were found to affect commercial and noncommercial root traits distinctly. Further best linear unbiased predictions were decomposed into additive allele effects and were used to compute multiple QTL-based breeding values for selection. Together with quantitative genotyping and its appropriate usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding as well as in other autopolyploids.
Collapse
|
7
|
Klaassen MT, Dees DCT, Garrido RM, Báez JA, Schrijen M, Baldeón Mendoza PG, Trindade LM. Overexpression of a putative nitrate transporter (StNPF1.11) increases plant height, leaf chlorophyll content and tuber protein content of young potato plants. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:464-472. [PMID: 32209206 DOI: 10.1071/fp19342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 05/13/2023]
Abstract
Nitrate (NO3-) fertilisers are commonly used to improve the yield and quality of most non-legume crops such as potato (Solanum tuberosum L.). Root cells absorb nitrate from the soil using plasma membrane-bound transporters. In this study, we overexpressed a putative nitrate transporter from potato (StNPF1.11) to study its effect on the level of tuber protein content in potato. At 10 weeks after planting, overexpression of StNPF1.11 increased the mean level of protein content of all n = 23 transformants by 42% compared with the wild-type control. The level of chlorophyll content in leaves (from upper and lower plant parts) also increased for several individuals at 10 weeks. Tuber yield (fresh) was not structurally impaired; however, the mean tuber dry matter content of the transformants was reduced by 3-8% at 19 weeks. At 19 weeks, an overall increase in protein content was not clearly observed. Throughout plant development, half of the transformants were taller than the control. A basic understanding of the mechanisms that regulate plant nitrogen uptake, transport and utilisation, enable the development of tools to improve both crop nutrition and crop quality that are needed to enhance the viability and sustainability of future plant production systems.
Collapse
Affiliation(s)
- Michiel T Klaassen
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ Wageningen, The Netherlands; and Aeres University of Applied Sciences, Department of Applied Research, PO Box 374, 8250 AJ Dronten, The Netherlands
| | - Dianka C T Dees
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Rommel M Garrido
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Jorge Alemán Báez
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Michiel Schrijen
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Pablo G Baldeón Mendoza
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Luisa M Trindade
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ Wageningen, The Netherlands; and Corresponding author.
| |
Collapse
|
8
|
The Correlation between Soil Nutrient and Potato Quality in Loess Plateau of China Based on PLSR. SUSTAINABILITY 2020. [DOI: 10.3390/su12041588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Potato tuber quality is influenced by the interaction of soil nutrients. Hence, simple correlation analysis cannot accurately reflect the true relationship between soil nutrients and potato tuber quality. In this study, potato tuber quality and soil nutrient content were used as research materials in the Loess Plateau of China. The partial least square regression (PLSR) method was used to establish the regression equation between potato quality and soil nutrient. The major soil nutrient indexes influencing potato quality were screened out to provide theoretical basis for potato field management. The results showed that the major soil nutrient factors influencing the potato tuber quality in Loess Plateau were soil ammonium nitrogen, soil nitrate nitrogen, soil available phosphorus, pH, and soil available potassium. Soil pH value is the most important factor affecting potato starch, reducing sugar content, and soluble protein content. Soil nitrate nitrogen is one of the important factors affecting potato tuber soluble total sugar content, vitamin C, browning intensity, and polyphenol oxidase activity. Soil ammonium nitrogen was positively correlated with the total soluble sugar content of potato tubers, and negatively correlated with reducing sugar content, browning intensity, and polyphenol oxidase activity. However, soil available potassium has positive effects on potato starch and reducing sugar content, and negative effects on soluble protein and browning strength. Results of this study indicates that the major soil nutrient factors influencing potato tuber quality were soil nitrate nitrogen and soil pH value.
Collapse
|