1
|
Wada Y, Iwasaki K, Yusa Y. Effects of adult and egg predators on hatching plasticity of the pulmonate limpet. Oecologia 2025; 207:86. [PMID: 40397028 PMCID: PMC12095334 DOI: 10.1007/s00442-025-05712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/10/2025] [Indexed: 05/22/2025]
Abstract
In response to predation threats during the embryonic period, prey from diverse taxonomic groups exhibit plasticity in their hatching timing. In theory, predators of adult prey, as well as predators of eggs or embryos, can influence hatching timing. Similarly, not only embryos but also parents of prey can regulate hatching timing. However, research on the influence of adult predators and adult prey on hatching timing in species with separate predators for adults and eggs remains limited. To the best of our knowledge, no study has investigated this phenomenon in marine invertebrates under natural conditions. In this study, we investigated the effects of life-stage-specific predators (i.e., adult and egg predators) on the hatching timing of the pulmonate limpet (Siphonaria sirius), which undergoes planktonic development on an intertidal rocky shore. The presence of adult predators before and after egg-laying did not affect the hatching timing. Furthermore, while the egg predators present before egg-laying did not influence hatching timing, those present after egg-laying accelerated it. The results indicate that embryos, rather than their parents, determine hatching timing in response to their own predation risk. This finding highlights a strategy in which organisms with planktonic development rely on embryonic plasticity to mitigate strong predation risks during the egg stage. To understand how predation risk shapes predator-prey dynamics, it is critical to identify how predators, specific to each life-history stage of prey (such as adult and egg), interact with prey at different life-history stages during key events like reproduction.
Collapse
Affiliation(s)
- Yoko Wada
- Faculty of Agriculture, Miyazaki University, Miyazaki, Japan.
| | | | - Yoichi Yusa
- Faculty of Science, Nara Women's University, Nara, Japan
| |
Collapse
|
2
|
Jung J, Caldwell MS, McDaniel JG, Warkentin KM. The Role of Vibration Amplitude in the Escape-Hatching Response of Red-Eyed Treefrog Embryos. Integr Org Biol 2025; 7:obaf012. [PMID: 40225269 PMCID: PMC11986817 DOI: 10.1093/iob/obaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
The function and adaptive significance of defensive behaviors depend on the contexts in which they naturally occur. Amplitude properties of predator cues are widely used by prey to assess predation risk, yet rarely studied in the context of the stimuli relevant to defensive decisions in nature. Red-eyed treefrog embryos, Agalychnis callidryas, hatch precociously in response to attacks on their arboreal egg clutches by snakes and wasps. They use vibrations excited during attacks to detect predators, but wind and rainstorms also excite intense vibrations. Past work has demonstrated that to avoid costly decision errors, A. callidryas nonredundantly combine information from the temporal and frequency properties of clutch vibrations. Here, we demonstrate that embryos also use absolute amplitude and fine-scale amplitude modulation information to refine their hatching decision. We used vibration recordings to characterize the amplitude properties of the most common predator and benign-source disturbances to A. callidryas egg clutches in nature and tested whether embryos at 3 ages across the onset of mechanosensory-cued hatching (4-6 days) respond to amplitude variation during playback of synthetic vibrations to eggs. Older embryos responded to much lower-amplitude vibrations, reflecting a >88-fold decrease in response threshold from 4 to 5 days. To assess how embryos combine amplitude with other vibration properties, we played embryos recorded exemplars of snake attack and rain vibrations of varying amplitudes and patterns of amplitude modulation. The amplitude response curve was steeper for snake recordings than for rain. While amplitude information alone is insufficient to discriminate predator attack from benign-source vibrations, A. callidryas employ an impressively complex strategy combining absolute amplitude, amplitude modulation, temporal, and frequency information for their hatching decision.
Collapse
Affiliation(s)
- J Jung
- Department of Zoology, Weber State University, Ogden, UT 84403, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - M S Caldwell
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - J G McDaniel
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - K M Warkentin
- Department of Biology, Boston University, Boston, MA 02215, USA
- Smithsonian Tropical Research Institute, Gamboa, Colón Province 0843-03092, Panamá
| |
Collapse
|
3
|
Méndez-Narváez J, Warkentin KM. Effects of larval foam-making and prolonged terrestriality on morphology, nitrogen excretion and development to metamorphosis in a Leptodactylid frog. PeerJ 2025; 13:e18990. [PMID: 40028200 PMCID: PMC11871897 DOI: 10.7717/peerj.18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
At ontogenetic transitions, animals often exhibit plastic variation in development, behavior and physiology in response to environmental conditions. Most terrestrial-breeding frogs have aquatic larval periods. Some species can extend their initial terrestrial period, as either a plastic embryonic response to balance trade-offs across environments or an enforced wait for rain that allows larvae to access aquatic habitats. Terrestrial larvae of the foam-nesting frog, Leptodactylus fragilis, can arrest development, make their own nest foam to prevent dehydration, and synthesize urea to avoid ammonia toxicity. These plastic responses enable survival during unpredictably long periods in underground nest chambers, waiting for floods to enable exit and continued development in water. However, such physiological and behavioral responses may have immediate and long-term carry-over effects across subsequent ecological and developmental transitions. We examined effects of prolonged terrestriality and larval foam-making activity on larval physiology, development, and metamorphosis in L. fragilis. We tested for changes in foam-making ability by measuring the nests larvae produced following complete removal of parental foam at different ages. We measured ammonia and urea levels in larval foam nests to assess nitrogen excretion patterns, testing for effects of larval age, soil hydration around parental nests, and repeated nest construction. We also assessed immediate and long-term effects of larval foam-making and prolonged terrestriality on larval morphology at water entry and development to metamorphosis. We found that larvae arrested development during prolonged time on land and even young larvae were able to effectively produce multiple foam nests. We found high ammonia concentrations in larval nests, very high urea excretion by developmentally arrested older larvae, and faster growth of larvae in water than while constructing nests. Nonetheless, sibling larvae had a similar aquatic larval period and size at metamorphosis, regardless of their nest-making activity and timing of water entry. Sibship size increased the size of larval foam nests, but reduced per-capita foam production and increased size at metamorphosis, suggesting maternal effects in cooperative groups. Metamorph size also decreased with aquatic larval period. Our results highlight the extent of larval ability to maintain and construct a suitable developmental environment and excrete N-waste as urea, which are both crucial for survival during enforced extensions of terrestriality. Our results suggest that the energetic reserves in large eggs are sufficient to meet metabolic costs of urea synthesis and foam production during developmental arrest over an extended period on land, with no apparent carry-over effects on fitness-relevant traits at metamorphosis.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia
- Biology Department, Boston University, Boston, Massachusetts, United States
| | - Karen M. Warkentin
- Biology Department, Boston University, Boston, Massachusetts, United States
- Smithsonian Tropical Research Institute, Panama, Panama
| |
Collapse
|
4
|
Salazar-Nicholls MJ, Bazante HM, Warkentin KM. Functional Morphology of Hatching: Ontogeny and Distribution of Hatching Gland Cells in Red-Eyed Treefrogs and a New Marker for Anuran Hatching Enzyme. J Morphol 2025; 286:e70029. [PMID: 39876483 DOI: 10.1002/jmor.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Environmentally cued hatching (ECH) is widespread in animals and requires regulation of hatching mechanisms. Enzymatic digestion of the egg membrane is a common hatching mechanism in vertebrates and invertebrates. In amphibians and fishes, hatching enzymes (HE) are synthesized and released by hatching gland cells (HGC), whose functional ontogeny determines when hatching can occur. Ontogenetic studies of HGC development or HE expression are limited, based largely on external cell morphology; few markers for HGC or HE are available, and those appear specific for Xenopus. Moreover, mechanisms regulating HE release are unknown in anurans. To investigate variation in the hatching process, we need tools to identify and analyze its components. Agalychnis callidryas (Hylidae) is a well-established model of ECH, showing plastically timed, acute HE release, unlike the gradual release described for some aquatic anurans. We developed a new antibody marker for A. callidryas HE that also labels HGC/HE in glassfrogs (Centrolenidae). As glassfrogs and treefrogs diverged 62 mya, the antibody may be broadly useful in anurans. We used the AcHE antibody to examine the development and distribution of HGC and accumulation of HE, two key elements of hatching mechanisms, in A. callidryas. We found a much larger number (ca. 4200) and broader distribution of HGC than has been documented in any amphibian, with HGC densely but non-contiguously distributed over the front of the head and eyes and scattered along the dorsal midline. HE expression begins before hatching competence and is strong throughout the plastic hatching period, unlike HE gene expression which diminishes after competence. The distribution and expression ontogeny of A. callidryas' HE/HGC appear related to their hatching performance, plasticity, and embryo morphology. The AcHE antibody will enable comparative research to elucidate co-variation in the functional morphology, performance, and ecological context of hatching.
Collapse
Affiliation(s)
| | - Henry Macías Bazante
- Laboratorio de Biología de Desarrollo, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
5
|
Méndez-Narváez J, Warkentin KM. Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. J Comp Physiol B 2023; 193:523-543. [PMID: 37639061 DOI: 10.1007/s00360-023-01506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Frogs evolved terrestrial development multiple times, necessitating mechanisms to avoid ammonia toxicity at early stages. Urea synthesis from ammonia is a key adaptation that reduces water dependence after metamorphosis. We tested for early expression and plasticity of enzymatic mechanisms of ammonia detoxification in three terrestrial-breeding frogs: foam-nest-dwelling larvae of Leptodactylus fragilis (Lf) and arboreal embryos of Hyalinobatrachium fleischmanni (Hf) and Agalychnis callidryas (Ac). Activity of two ornithine-urea cycle (OUC) enzymes, arginase and CPSase, and levels of their products urea and CP in tissues were high in Lf regardless of nest hydration, but reduced in experimental low- vs. high-ammonia environments. High OUC activity in wet and dry nests, comparable to that under experimental high ammonia, suggests terrestrial Lf larvae maintain high capacity for urea excretion regardless of their immediate risk of ammonia toxicity. This may aid survival through unpredictably long waiting periods before rain enables their transition to water. Moderate levels of urea and CP were present in Hf and Ac tissues and enzymatic activities were lower than in Lf. In both species, embryos in drying clutches can hatch and enter the water early, behaviorally avoiding ammonia toxicity. Moreover, glutamine synthetase was active in early stages of all three species, condensing ammonia and glutamate to glutamine as another mechanism of detoxification. Enzyme activity appeared highest in Lf, although substrate and product levels were higher in Ac and Lf. Our results reveal that multiple biochemical mechanisms of ammonia detoxification occur in early life stages of anuran lineages that evolved terrestrial development.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
6
|
Wisenden BD, Paulson DC, Orr M. Zebrafish embryos hatch early in response to chemical and mechanical indicators of predation risk, resulting in underdeveloped swimming ability of hatchling larvae. Biol Open 2022; 11:285133. [PMID: 36318109 PMCID: PMC9732867 DOI: 10.1242/bio.059229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Plasticity in hatching time allows embryos to maximize fitness by balancing the benefits and costs of remaining bound within the chorion against the benefits and costs of emerging as a free-swimming larva. Here, in the first experiment, we exposed zebrafish (Danio rerio) embryos to either chemical cues from crushed embryos (simulating egg predation) or to blank water control. Embryos exposed to alarm cues hatched sooner, and had shorter body lengths and underdeveloped fins, relative to larvae from the water treatment. Burst swimming speed was significantly slower for larvae that hatched from the alarm cue treatment than for larvae from the water treatment. In a second 2×2 experiment, we exposed zebrafish embryos to either chemical alarm cues from conspecific embryos, mechanical disturbance (magnetic stir bar) to simulate a predator probing the substrate for developing embryos, both chemical and mechanical indicators of risk, or neither (control). We found similar effects in terms of earlier time to hatch at an earlier stage of development and poorer swimming performance of hatchling larvae. In the second experiment, these effects occurred in response to mechanical disturbance with or without the presence of chemical alarm cues. Alarm cues alone produced no effects in the second experiment. Taken together, these data indicate that zebrafish embryos demonstrate a facultative trade-off between risk of predation acting on two stages of their life history.
Collapse
Affiliation(s)
- Brian D. Wisenden
- Biosciences Department, Minnesota State University Moorhead, Moorhead, MN 56563, USA,Author for correspondence ()
| | - Daniel C. Paulson
- Biosciences Department, Minnesota State University Moorhead, Moorhead, MN 56563, USA
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
7
|
Aquatic insects differentially affect lake sturgeon larval phenotypes and egg surface microbial communities. PLoS One 2022; 17:e0277336. [PMID: 36409729 PMCID: PMC9678266 DOI: 10.1371/journal.pone.0277336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Documentation of how interactions among members of different stream communities [e.g., microbial communities and aquatic insect taxa exhibiting different feeding strategies (FS)] collectively influence the growth, survival, and recruitment of stream fishes is limited. Considerable spatial overlap exists between early life stages of stream fishes, including species of conservation concern like lake sturgeon (Acipenser fulvescens), and aquatic insects and microbial taxa that abundantly occupy substrates on which spawning occurs. Habitat overlap suggests that species interactions across trophic levels may be common, but outcomes of these interactions are poorly understood. We conducted an experiment where lake sturgeon eggs were fertilized and incubated in the presence of individuals from one of four aquatic insect FS taxa including predators, facultative and obligate-scrapers, collector-filterers/facultative predators, and a control (no insects). We quantified and compared the effects of different insect taxa on the taxonomic composition and relative abundance of egg surface bacterial and lower eukaryotic communities, egg size, incubation time to hatch, free embryo body size (total length) at hatch, yolk-sac area, (a measure of resource utilization), and percent survival to hatch. Mean egg size varied significantly among insect treatments. Eggs exposed to predators had a lower mean percent survival to hatch. Eggs exposed to predators had significantly shorter incubation periods. At hatch, free embryos exposed to predators had significantly smaller yolk sacs and total length. Multivariate analyses revealed that egg bacterial and lower eukaryotic surface community composition varied significantly among insect treatments and between time periods (1 vs 4 days post-fertilization). Quantitative PCR documented significant differences in bacterial 16S copy number, and thus abundance on egg surfaces varied across insect treatments. Results indicate that lethal and non-lethal effects associated with interactions between lake sturgeon eggs and free embryos and aquatic insects, particularly predators, contributed to lake sturgeon trait variability that may affect population levels of recruitment.
Collapse
|
8
|
Jung J, Guo M, Crovella ME, McDaniel JG, Warkentin KM. Frog embryos use multiple levels of temporal pattern in risk assessment for vibration-cued escape hatching. Anim Cogn 2022; 25:1527-1544. [PMID: 35668245 DOI: 10.1007/s10071-022-01634-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
Stereotyped signals can be a fast, effective means of communicating danger, but animals assessing predation risk must often use more variable incidental cues. Red eyed-treefrog, Agalychnis callidryas, embryos hatch prematurely to escape from egg predators, cued by vibrations in attacks, but benign rain generates vibrations with overlapping properties. Facing high false-alarm costs, embryos use multiple vibration properties to inform hatching, including temporal pattern elements such as pulse durations and inter-pulse intervals. However, measures of snake and rain vibration as simple pulse-interval patterns are a poor match to embryo behavior. We used vibration playbacks to assess if embryos use a second level of temporal pattern, long gaps within a rhythmic pattern, as indicators of risks. Long vibration-free periods are common during snake attacks but absent from hard rain. Long gaps after a few initial vibrations increase the hatching response to a subsequent vibration series. Moreover, vibration patterns as short as three pulses, separated by long periods of silence, can induce as much hatching as rhythmic pulse series with five times more vibration. Embryos can retain information that increases hatching over at least 45 s of silence. This work highlights that embryo behavior is contextually modulated in complex ways. Identical vibration pulses, pulse groups, and periods of silence can be treated as risk cues in some contexts and not in others. Embryos employ a multi-faceted decision-making process to effectively distinguish between risk cues and benign stimuli.
Collapse
Affiliation(s)
- Julie Jung
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| | - Ming Guo
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Mark E Crovella
- Department of Computer Science, 111 Cummington Mall, Boston, MA, 02215, USA
| | - J Gregory McDaniel
- Department of Mechanical Engineering, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| |
Collapse
|
9
|
Méndez‐Narváez J, Warkentin KM. Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecol Evol 2022; 12:e8570. [PMID: 35222954 PMCID: PMC8843769 DOI: 10.1002/ece3.8570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Vertebrate colonization of land has occurred multiple times, including over 50 origins of terrestrial eggs in frogs. Some environmental factors and phenotypic responses that facilitated these transitions are known, but responses to water constraints and risk of ammonia toxicity during early development are poorly understood. We tested if ammonia accumulation and dehydration risk induce a shift from ammonia to urea excretion during early stages of four anurans, from three origins of terrestrial development. We quantified ammonia and urea concentrations during early development on land, under well-hydrated and dry conditions. Where we found urea excretion, we tested for a plastic increase under dry conditions and with ammonia accumulation in developmental environments. We assessed the potential adaptive role of urea excretion by comparing ammonia tolerance measured in 96h-LC50 tests with ammonia levels in developmental environments. Ammonia accumulated in foam nests and perivitelline fluid, increasing over development and reaching higher concentrations under dry conditions. All four species showed high ammonia tolerance, compared to fishes and aquatic-breeding frogs. Both nest-dwelling larvae of Leptodactylus fragilis and late embryos of Hyalinobatrachium fleischmanni excreted urea, showing a plastic increase under dry conditions. These two species can develop the longest on land and urea excretion appears adaptive, preventing their exposure to potentially lethal levels of ammonia. Neither late embryos of Agalychnis callidryas nor nest-dwelling larvae of Engystomops pustulosus experienced toxic ammonia levels under dry conditions, and neither excreted urea. Our results suggest that an early onset of urea excretion, its increase under dry conditions, and elevated ammonia tolerance can all help prevent ammonia toxicity during terrestrial development. High ammonia represents a general risk for development which may be exacerbated as climate change increases dehydration risk for terrestrial-breeding frogs. It may also be a cue that elicits adaptive physiological responses during early development.
Collapse
Affiliation(s)
- Javier Méndez‐Narváez
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- CalimaFundación para la Investigación de la Biodiversidad y Conservación en el TrópicoCaliColombia
| | - Karen M. Warkentin
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
10
|
Escape-hatching decisions show adaptive ontogenetic changes in how embryos manage ambiguity in predation risk cues. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Jung J, Kim SJ, Pérez Arias SM, McDaniel JG, Warkentin KM. How do red-eyed treefrog embryos sense motion in predator attacks? Assessing the role of vestibular mechanoreception. ACTA ACUST UNITED AC 2019; 222:jeb.206052. [PMID: 31586019 DOI: 10.1242/jeb.206052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/28/2019] [Indexed: 01/18/2023]
Abstract
The widespread ability to alter timing of hatching in response to environmental cues can serve as a defense against threats to eggs. Arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, can hatch up to 30% prematurely to escape predation. This escape-hatching response is cued by physical disturbance of eggs during attacks, including vibrations or motion, and thus depends critically on mechanosensory ability. Predator-induced hatching appears later in development than flooding-induced, hypoxia-cued hatching; thus, its onset is not constrained by the development of hatching ability. It may, instead, reflect the development of mechanosensor function. We hypothesize that vestibular mechanoreception mediates escape-hatching in snake attacks, and that the developmental period when hatching-competent embryos fail to flee from snakes reflects a sensory constraint. We assessed the ontogenetic congruence of escape-hatching responses and an indicator of vestibular function, the vestibulo-ocular reflex (VOR), in three ways. First, we measured VOR in two developmental series of embryos 3-7 days old to compare with the published ontogeny of escape success in attacks. Second, during the period of greatest variation in VOR and escape success, we compared hatching responses and VOR across sibships. Finally, in developmental series, we compared the response of individual embryos to a simulated attack cue with their VOR. The onset of VOR and hatching responses were largely concurrent at all three scales. Moreover, latency to hatch in simulated attacks decreased with increasing VOR. These results are consistent with a key role of the vestibular system in the escape-hatching response of A. callidryas embryos to attacks.
Collapse
Affiliation(s)
- Julie Jung
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Su J Kim
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Sonia M Pérez Arias
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - James G McDaniel
- Department of Mechanical Engineering, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.,Gamboa Laboratory, Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
12
|
Warkentin KM, Jung J, Rueda Solano LA, McDaniel JG. Ontogeny of escape-hatching decisions: vibrational cue use changes as predicted from costs of sampling and false alarms. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2663-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Cohen KL, Piacentino ML, Warkentin KM. Two types of hatching gland cells facilitate escape-hatching at different developmental stages in red-eyed treefrogs, Agalychnis callidryas (Anura: Phyllomedusidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | | | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| |
Collapse
|
14
|
Delia J, Rivera-Ordonez JM, Salazar-Nicholls MJ, Warkentin KM. Hatching plasticity and the adaptive benefits of extended embryonic development in glassfrogs. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9963-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
|
16
|
Mating patterns and post-mating isolation in three cryptic species of the Engystomops petersi species complex. PLoS One 2017; 12:e0174743. [PMID: 28388628 PMCID: PMC5384746 DOI: 10.1371/journal.pone.0174743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Determining the extent of reproductive isolation in cryptic species with dynamic geographic ranges can yield important insights into the processes that generate and maintain genetic divergence in the absence of severe geographic barriers. We studied mating patterns, propensity to hybridize in nature and subsequent fertilization rates, as well as survival and development of hybrid F1 offspring for three nominal species of the Engystomops petersi species complex in Yasuní National Park, Ecuador. We found at least two species in four out of six locations sampled, and 14.3% of the wild pairs genotyped were mixed-species (heterospecific) crosses. We also found reduced fertilization rates in hybrid crosses between E. petersi females and E. “magnus” males, and between E. “magnus” females and E. “selva” males but not in the reciprocal crosses, suggesting asymmetric reproductive isolation for these species. Larval development times decreased in F1 hybrid crosses compared to same species (conspecific) crosses, but we did not find significant reduction in larval survival or early metamorph survival. Our results show evidence of post-mating isolation for at least two hybrid crosses of the cryptic species we studied. The general decrease in fertilization rates in heterospecific crosses suggests that sexual selection and reinforcement might have not only contributed to the pattern of call variation and behavioral isolation we see between species today, but they may also contribute to further signal divergence and behavioral evolution, especially in locations where hybridization is common and fertilization success is diminished.
Collapse
|
17
|
Van Buskirk J. A Meta-Analysis on Facultative Responses of Embryonic Amphibians to Predation Risk. COPEIA 2016. [DOI: 10.1643/ce-15-383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Cohen KL, Seid MA, Warkentin KM. How embryos escape from danger: the mechanism of rapid, plastic hatching in red-eyed treefrogs. J Exp Biol 2016; 219:1875-83. [DOI: 10.1242/jeb.139519] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 02/05/2023]
Abstract
ABSTRACT
Environmentally cued hatching allows embryos to escape dangers and exploit new opportunities. Such adaptive responses require a flexibly regulated hatching mechanism sufficiently fast to meet relevant challenges. Anurans show widespread, diverse cued hatching responses, but their described hatching mechanisms are slow, and regulation of timing is unknown. Arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, escape from snake attacks and other threats by very rapid premature hatching. We used videography, manipulation of hatching embryos and electron microscopy to investigate their hatching mechanism. High-speed video revealed three stages of the hatching process: pre-rupture shaking and gaping, vitelline membrane rupture near the snout, and muscular thrashing to exit through the hole. Hatching took 6.5–49 s. We hypothesized membrane rupture to be enzymatic, with hatching enzyme released from the snout during shaking. To test this, we displaced hatching embryos to move their snout from its location during shaking. The membrane ruptured at the original snout position and embryos became trapped in collapsed capsules; they either moved repeatedly to relocate the hole or shook again and made a second hole to exit. Electron microscopy revealed that hatching glands are densely concentrated on the snout and absent elsewhere. They are full of vesicles in embryos and release most of their contents rapidly at hatching. Agalychnis callidryas' hatching mechanism contrasts with the slow process described in anurans to date and exemplifies one way in which embryos can achieve rapid, flexibly timed hatching to escape from acute threats. Other amphibians with cued hatching may also have novel hatching mechanisms.
Collapse
Affiliation(s)
- Kristina L. Cohen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Marc A. Seid
- Department of Biology-Neuroscience Program, University of Scranton, 800 Linden Street LSC274, Scranton, PA 18510, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| | - Karen M. Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
19
|
Hughey MC, Rogge JR, Thomas K, McCoy M, Warkentin KM. Escape-hatching responses of individual treefrog embryos vary with threat level in wasp attacks: a mechanistic analysis. BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Theory predicts that prey behavioural responses should reflect the level of risk posed by predators. We investigated how red-eyed treefrog embryos perceive and respond to spatially variable risk during wasp attacks on their clutches. First, we spatially restricted wasp activity on clutches and compared hatching of wasp-exposed, adjacent, and protected embryos. Hatching occurred in all zones but increased with exposure, being highest in directly exposed embryos. Second, we videotaped wasps attacking clutches and compared the experiences of embryos that hatched first and those that did not hatch until later. Embryos that hatched first experienced more predatory wasp activity directed at themselves or at siblings within a 2-egg radius. Models predicting hatching indicate that cues used to assess risk originate from the behaviour of wasps, rather than other embryos. This research demonstrates that embryos can integrate information about predator behaviour and proximity to respond appropriately based on their level of risk.
Collapse
Affiliation(s)
- Myra C. Hughey
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kristen Thomas
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Karen M. Warkentin
- Department of Biology, Boston University, Boston, MA 02215, USA
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Panamá, República de Panama
| |
Collapse
|