1
|
Lin CY, Robledo Buritica J, Sarkar P, Jassar O, Rocha SV, Batuman O, Stelinski LL, Levy A. An insect virus differentially alters gene expression among life stages of an insect vector and enhances bacterial phytopathogen transmission. J Virol 2025; 99:e0163024. [PMID: 39714167 PMCID: PMC11784072 DOI: 10.1128/jvi.01630-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Diaphorina citri transmits Candidatus Liberibacter asiaticus (CLas) between citrus plants which causes the expression of huanglongbing disease in citrus. D. citri flavi-like virus (DcFLV) co-occurs intracellularly with CLas in D. citri populations in the field. However, the impact(s) of DcFLV presence on the insect vector and its interaction with the CLas phytopathogen remain unclear. We compared CLas acquisition and transmission efficiencies as well as transcriptomic expression between viruliferous and non-viruliferous psyllids at multiple life stages. Viruliferous nymphs acquired higher titers of CLas than non-viruliferous nymphs, whereas viruliferous adults acquired less CLas than those without virus. The presence of DcFLV increased the transmission of CLas by both nymphs and adults. Furthermore, RNA-seq and functional gene expression analyses revealed that endoplasmic reticulum stress-, autophagy-, and defense-related genes were significantly upregulated in viruliferous adult psyllids, whereas most of these genes were downregulated in viruliferous nymphs. Our work demonstrates that DcFLV differentially modulates various cellular and physiological functions in D. citri in a life stage-dependent manner and promotes the acquisition of CLas at the nymphal stage and transmission of the pathogen at the adult stage of the vector. Collectively, our results suggest that D. citri vectors with DcFLV exhibit greater pathogen transmission efficiency than those without virus. IMPORTANCE Huanglongbing (HLB), caused by fastidious bacteria from three Candidatus Liberibacter species, is the most damaging disease impacting the citrus industry worldwide. Spread by the Asian citrus psyllid (Diaphorina citri) in Asia and the Americas, HLB causes substantial financial losses, and has reduced citrus production in Florida by more than 90%. Although there are ongoing efforts to limit spread of the disease, effective HLB management remains elusive. Suppressing vector populations and decreasing CLas transmission are the two strategies that need to be urgently improved. Recently, a D. citri flavi-like virus (DcFLV) was characterized within its D. citri host, and it co-occurs intracellularly with CLas in psyllid populations. Here, we show that viruliferous nymphs exhibit higher CLas acquisition than non-viruliferous nymphs. Furthermore, both viruliferous adults and nymphs exhibit increased CLas transmission efficiency. We suggest the possibility of manipulating DcFLV in D. citri populations to reduce CLas transmission for HLB disease management.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | | | - Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Ola Jassar
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Sâmara Vieira Rocha
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, USA
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Li H, Liu Y, Wei X, Pan H, Zhang Y, Zhou X, Chu D. Heterogeneous distribution of Cardinium in whitefly populations is associated with host nuclear genetic background. INSECT SCIENCE 2023; 30:1701-1712. [PMID: 37147785 DOI: 10.1111/1744-7917.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/07/2023]
Abstract
Inherited bacterial symbionts are very common in arthropods, but infection frequency can vary widely among populations. Experiments and interpopulation comparisons suggest that host genetic background might be important in explaining this variation. Our extensive field investigation showed that the infection pattern of the facultative symbiont Cardinium was heterogeneous across geographical populations of the invasive whitefly Bemisia tabaci Mediterranean (MED) in China, with genetic nuclear differences evident in 2 of the populations: 1 with a low infection rate (SD line) and 1 with a high infection rate (HaN line). However, whether the heterogeneous frequency of Cardinium is associated with the host genetic background remains poorly understood. Here, we compared the fitness of the Cardinium-infected and uninfected sublines with similar nuclear genetic backgrounds from SD and HaN lines, respectively, and further determine whether host extranuclear or nuclear genotype influenced the Cardinium-host phenotype by performing 2 new introgression series of 6 generations between SD and HaN lines (i.e., Cardinium-infected females of SD were backcrossed with uninfected males of HaN, and vice versa). The results showed that Cardinium provides marginal fitness benefits in the SD line, whereas Cardinium provides strong fitness benefits in the HaN line. Further, both Cardinium and the Cardinium-host nuclear interaction influence the fecundity and pre-adult survival rate of B. tabaci, whereas the extranuclear genotype does not. In conclusion, our results provide evidence that Cardinium-mediated fitness effects were closely associated with the host genetic background, which provides a fundamental basis for understanding the mechanism underlying the heterogeneous distribution of Cardinium in B. tabaci MED populations across China.
Collapse
Affiliation(s)
- Hongran Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong Province, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ying Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong Province, China
| | - Xiaoying Wei
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong Province, China
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shangdong Province, China
| |
Collapse
|
3
|
Salloum PM, Jorge F, Dheilly NM, Poulin R. Adoption of alternative life cycles in a parasitic trematode is linked to microbiome differences. Biol Lett 2023; 19:20230091. [PMID: 37282491 PMCID: PMC10244958 DOI: 10.1098/rsbl.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
For parasites with complex multi-host life cycles, the facultative truncation of the cycle represents an adaptation to challenging conditions for transmission. However, why certain individuals are capable of abbreviating their life cycle while other conspecifics are not remains poorly understood. Here, we test whether conspecific trematodes that either follow the normal three-host life cycle or skip their final host by reproducing precociously (via progenesis) in an intermediate host differ in the composition of their microbiomes. Characterization of bacterial communities based on sequencing of the V4 hypervariable region of the 16S SSU rRNA gene revealed that the same bacterial taxa occur in both normal and progenetic individuals, independent of host identity and temporal variation. However, all bacterial phyla recorded in our study, and two-thirds of bacterial families, differed in abundance between the two morphs, with some achieving higher abundance in the normal morph and others in the progenetic morph. Although the evidence is purely correlative, our results reveal a weak association between microbiome differences and intraspecific plasticity in life cycle pathways. Advances in functional genomics and experimental microbiome manipulation will allow future tests of the significance of these findings.
Collapse
Affiliation(s)
| | - Fátima Jorge
- Otago Micro and Nano Imaging, Electron Microscopy Unit, University of Otago, Dunedin 9016, New Zealand
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 22440, Ploufragan, France
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Jorge F, Dheilly NM, Froissard C, Poulin R. Association between parasite microbiomes and caste development and colony structure in a social trematode. Mol Ecol 2022; 31:5608-5617. [PMID: 36004565 PMCID: PMC9826137 DOI: 10.1111/mec.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Abstract
Division of labour through the formation of morphologically and functionally distinct castes is a recurring theme in the evolution of animal sociality. The mechanisms driving the differentiation of individuals into distinct castes remain poorly understood, especially for animals forming clonal colonies. We test the association between microbiomes and caste formation within the social trematode Philophthalmus attenuatus, using a metabarcoding approach targeting the bacterial 16S SSU rRNA gene. Clonal colonies of this trematode within snail hosts comprise large reproductive individuals which produce dispersal stages, and small, non-reproducing soldiers which defend the colony against invaders. In colonies extracted directly from field-collected snails, reproductives harboured more diverse bacterial communities than soldiers, and reproductives and soldiers harboured distinct bacterial communities, at all taxonomic levels considered. No single bacterial taxon showed high enough prevalence in either soldiers or reproductives to be singled out as a key driver, indicating that the whole microbial community contributes to these differences. Other colonies were experimentally exposed to antibiotics to alter their bacterial communities, and sampled shortly after treatment and weeks later after allowing for turnover of colony members. At those time points, bacterial communities of the two castes still differed across all antibiotic treatments; however, the caste ratio within colonies changed: after antibiotic disruption and turnover of individuals, new individuals were more likely to become reproductives than in undisturbed control colonies. Our results reveal that each caste has a distinct microbiome; whether the social context affects the microbiota, or whether microbes contribute to modulating the phenotype of individuals, remains to be determined.
Collapse
Affiliation(s)
- Fátima Jorge
- Otago Micro and Nano Imaging, Electron Microscopy UnitUniversity of OtagoDunedinNew Zealand
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA,Unité Génétique Virale de Biosécurité, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail ‐ Laboratoire de Ploufragan‐PlouzanéANSESPloufraganFrance
| | | | - Robert Poulin
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
5
|
Sentis A, Hemptinne J, Magro A, Outreman Y. Biological control needs evolutionary perspectives of ecological interactions. Evol Appl 2022; 15:1537-1554. [PMID: 36330295 PMCID: PMC9624075 DOI: 10.1111/eva.13457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 05/30/2024] Open
Abstract
While ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.e., artificial selection and genetic engineering). In agroecosystems, the evolution of BCAs traits and performance depends on heritable phenotypic variation, trait genetic architecture, selection strength, stochastic processes, and other selective forces. Humans can manipulate these natural processes to increase the likelihood of evolutionary trait improvement, by artificially increasing heritable phenotypic variation, strengthening selection, controlling stochastic processes, or overpassing evolution through genetic engineering. We highlight these facets by reviewing recent studies addressing the importance of natural processes of evolution and human manipulations of these processes in biological control. We then discuss the interactions between the natural processes of evolution occurring in agroecosystems and affecting the artificially improved BCAs after their release. We emphasize that biological control cannot be summarized by interactions between species pairs because pests and biological control agents are entangled in diverse communities and are exposed to a multitude of deterministic and stochastic selective forces that can change rapidly in direction and intensity. We conclude that the combination of different evolutionary approaches can help optimize BCAs to remain efficient under changing environmental conditions and, ultimately, favor agroecosystem sustainability.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Jean‐Louis Hemptinne
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | - Alexandra Magro
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | | |
Collapse
|
6
|
Pons I, Scieur N, Dhondt L, Renard ME, Renoz F, Hance T. Pervasiveness of the symbiont Serratia symbiotica in the aphid natural environment: distribution, diversity and evolution at a multitrophic level. FEMS Microbiol Ecol 2022; 98:6526308. [PMID: 35142841 DOI: 10.1093/femsec/fiac012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Symbioses are significant drivers of insect evolutionary ecology. Despite recent findings that these associations can emerge from environmentally derived bacterial precursors, there is still little information on how these potential progenitors of insect symbionts circulate in trophic systems. Serratia symbiotica represents a valuable model for deciphering evolutionary scenarios of bacterial acquisition by insects, as its diversity includes gut-associated strains that retained the ability to live independently of their hosts, representing a potential reservoir for symbioses emergence. Here, we conducted a field study to examine the distribution and diversity of S. symbiotica found in aphid populations, and in different compartments of their surrounding environment. Twenty % of aphids colonies were infected with S. symbiotica, including a wide diversity of strains with varied tissue tropism corresponding to different lifestyle. We also showed that the prevalence of S. symbiotica is influenced by seasonal temperatures. We found that S. symbiotica was present in non-aphid species and in host plants, and that its prevalence in these samples was higher when associated aphid colonies were infected. Furthermore, phylogenetic analyses suggest the existence of horizontal transfers between the different trophic levels. These results provide a new picture of the pervasiveness of an insect symbiont in nature.
Collapse
Affiliation(s)
- Inès Pons
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Nora Scieur
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Linda Dhondt
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Eve Renard
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Sochard C, Dupont C, Simon JC, Outreman Y. Secondary Symbionts Affect Foraging Capacities of Plant-Specialized Genotypes of the Pea Aphid. MICROBIAL ECOLOGY 2021; 82:1009-1019. [PMID: 33704553 DOI: 10.1007/s00248-021-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Ecological specialization is widespread in animals, especially in phytophagous insects, which have often a limited range of host plant species. This host plant specialization results from divergent selection on insect populations, which differ consequently in traits like behaviors involved in plant use. Although recent studies highlighted the influence of symbionts on dietary breadth of their insect hosts, whether these microbial partners influence the foraging capacities of plant-specialized insects has received little attention. In this study, we used the pea aphid Acyrthosiphon pisum, which presents distinct plant-specialized lineages and several secondary bacterial symbionts, to examine the possible effects of symbionts on the different foraging steps from plant searching to host plant selection. In particular, we tested the effect of secondary symbionts on the aphid capacity (1) to explore habitat at long distance (estimated through the production of winged offspring), (2) to explore habitat at short distance, and (3) to select its host plant. We found that secondary symbionts had a variable influence on the production of winged offspring in some genotypes, with potential consequences on dispersal and survival. By contrast, symbionts influenced both short-distance exploration and host plant selection only marginally. The implication of symbionts' influence on insect foraging capacities is discussed.
Collapse
Affiliation(s)
- Corentin Sochard
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Corentin Dupont
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Yannick Outreman
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France.
| |
Collapse
|
8
|
Sochard C, Bellec L, Simon JC, Outreman Y. Influence of "protective" symbionts throughout the different steps of an aphid-parasitoid interaction. Curr Zool 2021; 67:441-453. [PMID: 34616941 PMCID: PMC8489026 DOI: 10.1093/cz/zoaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.
Collapse
Affiliation(s)
| | - Laura Bellec
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
| | | | | |
Collapse
|
9
|
Leclair M, Buchard C, Mahéo F, Simon JC, Outreman Y. A Link Between Communities of Protective Endosymbionts and Parasitoids of the Pea Aphid Revealed in Unmanipulated Agricultural Systems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.618331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the last decade, the influence of microbial symbionts on ecological and physiological traits of their hosts has been increasingly recognized. However, most of these effects have been revealed under laboratory conditions, which oversimplifies the complexity of the factors involved in the dynamics of symbiotic associations in nature. The pea aphid, Acyrthosiphon pisum, forms a complex of plant-adapted biotypes, which strongly differ in the prevalence of their facultative endosymbionts. Some of the facultative endosymbionts of A. pisum have been shown to confer protection against natural enemies, among which Hamiltonella defensa is known to protect its host from parasitoid wasps. Here, we tested under natural conditions whether the endosymbiont communities of different A. pisum biotypes had a protective effect on their hosts and whether endosymbiotic associations and parasitoid communities associated with the pea aphid complex were linked. A space-time monitoring of symbiotic associations, parasitoid pressure and parasitoid communities was carried out in three A. pisum biotypes respectively specialized on Medicago sativa (alfalfa), Pisum sativum (pea), and Trifolium sp. (clover) throughout the whole cropping season. While symbiotic associations, and to a lesser extent, parasitoid communities were stable over time and structured mainly by the A. pisum biotypes, the parasitoid pressure strongly varied during the season and differed among the three biotypes. This suggests a limited influence of parasitoid pressure on the dynamics of facultative endosymbionts at a seasonal scale. However, we found a positive correlation between the α and β diversities of the endosymbiont and parasitoid communities, indicating interactions between these two guilds. Also, we revealed a negative correlation between the prevalence of H. defensa and Fukatsuia symbiotica in co-infection and the intensity of parasitoid pressure in the alfalfa biotype, confirming in field conditions the protective effect of this symbiotic combination.
Collapse
|
10
|
Badji CA, Sol-Mochkovitch Z, Fallais C, Sochard C, Simon JC, Outreman Y, Anton S. Alarm Pheromone Responses Depend on Genotype, but Not on the Presence of Facultative Endosymbionts in the Pea Aphid Acyrthosiphon pisum. INSECTS 2021; 12:43. [PMID: 33430009 PMCID: PMC7826508 DOI: 10.3390/insects12010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Aphids use an alarm pheromone, E-β farnesene (EBF), to warn conspecifics of potential danger. The antennal sensitivity and behavioural escape responses to EBF can be influenced by different factors. In the pea aphid, Acyrthosiphon pisum, different biotypes are adapted to different legume species, and within each biotype, different genotypes exist, which can carry or not Hamiltonella defensa, a bacterial symbiont that can confer protection against natural enemies. We investigate here the influence of the aphid genotype and symbiotic status on the escape behaviour using a four-way olfactometer and antennal sensitivity for EBF using electroantennograms (EAGs). Whereas the investigated three genotypes from two biotypes showed significantly different escape and locomotor behaviours in the presence of certain EBF doses, the infection with H. defensa did not significantly modify the escape behaviour and only marginally influenced the locomotor behaviour at high doses of EBF. Dose-response curves of EAG amplitudes after stimulation with EBF differed significantly between aphid genotypes in correlation with behavioural differences, whereas antennal sensitivity to EBF did not change significantly as a function of the symbiotic status. The protective symbiont H. defensa does thus not modify the olfactory sensitivity to the alarm pheromone. How EBF sensitivity is modified between genotypes or biotypes remains to be investigated.
Collapse
Affiliation(s)
- Cesar Auguste Badji
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| | - Zoé Sol-Mochkovitch
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| | - Charlotte Fallais
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| | - Corentin Sochard
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 35000 Rennes, France; (C.S.); (Y.O.)
| | | | - Yannick Outreman
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 35000 Rennes, France; (C.S.); (Y.O.)
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| |
Collapse
|
11
|
Pandharikar G, Gatti JL, Simon JC, Frendo P, Poirié M. Aphid infestation differently affects the defences of nitrate-fed and nitrogen-fixing Medicago truncatula and alters symbiotic nitrogen fixation. Proc Biol Sci 2020; 287:20201493. [PMID: 32873201 PMCID: PMC7542793 DOI: 10.1098/rspb.2020.1493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022] Open
Abstract
Legumes can meet their nitrogen requirements through root nodule symbiosis, which could also trigger plant systemic resistance against pests. The pea aphid Acyrthosiphon pisum, a legume pest, can harbour different facultative symbionts (FS) influencing various traits of their hosts. It is therefore worth determining if and how the symbionts of the plant and the aphid modulate their interaction. We used different pea aphid lines without FS or with a single one (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica) to infest Medicago truncatula plants inoculated with Sinorhizobium meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate (non-inoculated, NI). The growth of SNF and NI plants was reduced by aphid infestation, while aphid weight (but not survival) was lowered on SNF compared to NI plants. Aphids strongly affected the plant nitrogen fixation depending on their symbiotic status, suggesting indirect relationships between aphid- and plant-associated microbes. Finally, all aphid lines triggered expression of Pathogenesis-Related Protein 1 (PR1) and Proteinase Inhibitor (PI), respective markers for salicylic and jasmonic pathways, in SNF plants, compared to only PR1 in NI plants. We demonstrate that the plant symbiotic status influences plant-aphid interactions while that of the aphid can modulate the amplitude of the plant's defence response.
Collapse
|
12
|
Dennis AB, Ballesteros GI, Robin S, Schrader L, Bast J, Berghöfer J, Beukeboom LW, Belghazi M, Bretaudeau A, Buellesbach J, Cash E, Colinet D, Dumas Z, Errbii M, Falabella P, Gatti JL, Geuverink E, Gibson JD, Hertaeg C, Hartmann S, Jacquin-Joly E, Lammers M, Lavandero BI, Lindenbaum I, Massardier-Galata L, Meslin C, Montagné N, Pak N, Poirié M, Salvia R, Smith CR, Tagu D, Tares S, Vogel H, Schwander T, Simon JC, Figueroa CC, Vorburger C, Legeai F, Gadau J. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics 2020; 21:376. [PMID: 32471448 PMCID: PMC7257214 DOI: 10.1186/s12864-020-6764-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
Collapse
Affiliation(s)
- Alice B Dennis
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland.
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Jens Bast
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
- Institute of Zoology, Universität zu Köln, 50674, Köln, Germany
| | - Jan Berghöfer
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maya Belghazi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, PINT, PFNT, Marseille, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Zoé Dumas
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Corinne Hertaeg
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Department of Environmental Systems Sciences, D-USYS, ETH Zürich, Zürich, Switzerland
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Mark Lammers
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Blas I Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ina Lindenbaum
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nina Pak
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Chris R Smith
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
| | - Sophie Tares
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | | | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany.
| |
Collapse
|
13
|
Jorge F, Dheilly NM, Poulin R. Persistence of a Core Microbiome Through the Ontogeny of a Multi-Host Parasite. Front Microbiol 2020; 11:954. [PMID: 32508779 PMCID: PMC7248275 DOI: 10.3389/fmicb.2020.00954] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022] Open
Abstract
Animal microbiomes influence their development, behavior and interactions with other organisms. Parasitic metazoans also harbor microbial communities; although they are likely to modulate host-parasite interactions, little is known about parasite microbiomes. The persistence of microbial communities throughout the life of a parasite is particularly challenging for helminths with complex life cycles. These parasites undergo major morphological changes during their life, and parasitize host species that are immunologically, physiologically, and phylogenetically very different. Here, using 16S amplicon sequencing, we characterize the microbiome of the trematode Coitocaecum parvum across four of its life stages: sporocysts, metacercariae and adults inhabiting (respectively) snails, crustaceans and fish, as well as free-living cercariae. Our results demonstrate that, at each life stage, the parasite possesses a phylogenetically diverse microbiome, distinct from that of its hosts or the external environment. The parasite's microbiome comprises bacterial taxa specific to each life stage in different hosts, as well as a small core set of taxa that persists across the parasite's whole life. The apparent existence of an ontogenetically and vertically transmitted core microbiome is supported by the findings that the diversity and taxonomic composition of the microbiome does not vary significantly among life stages, and that the main source of microbial taxa at any life stage is the previous life stage. Our results suggest that microbes are an integrated component of the trematode, possibly shaping its phenotype and host-parasite interactions.
Collapse
Affiliation(s)
- Fátima Jorge
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
- Unité Génétique Virale de Biosécurité, Laboratoire de Ploufragan-Plouzané, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Ploufragan, France
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Hafer-Hahmann N, Vorburger C. Parasitoids as drivers of symbiont diversity in an insect host. Ecol Lett 2020; 23:1232-1241. [PMID: 32375203 DOI: 10.1111/ele.13526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Immune systems have repeatedly diversified in response to parasite diversity. Many animals have outsourced part of their immune defence to defensive symbionts, which should be affected by similar evolutionary pressures as the host's own immune system. Protective symbionts provide efficient and specific protection and respond to changing selection pressure by parasites. Here we use the aphid Aphis fabae, its protective symbiont Hamiltonella defensa, and its parasitoid Lysiphlebus fabarum to test whether parasite diversity can maintain diversity in protective symbionts. We exposed aphid populations with the same initial symbiont composition to parasitoid populations that differed in their diversity. As expected, single parasitoid genotypes mostly favoured a single symbiont that was most protective against that particular parasitoid, while multiple symbionts persisted in aphids exposed to more diverse parasitoid populations, which in turn affected aphid population density and rates of parasitism. Parasite diversity may be crucial to maintaining symbiont diversity in nature.
Collapse
Affiliation(s)
- Nina Hafer-Hahmann
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Christoph Vorburger
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Fitness costs of the cultivable symbiont Serratia symbiotica and its phenotypic consequences to aphids in presence of environmental stressors. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Renoz F, Pons I, Hance T. Evolutionary responses of mutualistic insect-bacterial symbioses in a world of fluctuating temperatures. CURRENT OPINION IN INSECT SCIENCE 2019; 35:20-26. [PMID: 31302355 DOI: 10.1016/j.cois.2019.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Climate change is altering the abundance and distribution of millions of insect species around the world and is a major contributor to the decline of numerous species. Many insect species may be indirectly affected through their nutritional dependence on mutualistic bacteria. Indeed, these bacterial partners generally have a highly reduced and static genome, resulting from millions of years of coevolution and isolation in insect cells, and have limited adaptive capacity. The dependence of insects on bacterial partners with narrow environmental tolerance also restricts their ability to adapt, potentially increasing the risk of their extinction, particularly in a world characterized by increasing and fluctuating temperatures. In this review, we examine how climate change can affect the evolutionary trajectories of bacterial mutualism in insects by considering the possible alternatives that may compensate for the dependence on bacterial partners that have become 'Achilles' heels'. We also discuss the beneficial and compensatory effects, as well as the antagonistic effects associated with so-called facultative symbionts in the context of an increased incidence of transient extreme temperatures.
Collapse
Affiliation(s)
- François Renoz
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Center, Croix de Sud 4-5, bte L7.07.04, 1348 Louvain-la-Neuve, Belgium.
| | - Inès Pons
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Center, Croix de Sud 4-5, bte L7.07.04, 1348 Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Center, Croix de Sud 4-5, bte L7.07.04, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Sochard C, Leclair M, Simon JC, Outreman Y. Host plant effects on the outcomes of defensive symbioses in the pea aphid complex. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10005-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Renoz F, Pons I, Vanderpoorten A, Bataille G, Noël C, Foray V, Pierson V, Hance T. Evidence for Gut-Associated Serratia symbiotica in Wild Aphids and Ants Provides New Perspectives on the Evolution of Bacterial Mutualism in Insects. MICROBIAL ECOLOGY 2019; 78:159-169. [PMID: 30276419 DOI: 10.1007/s00248-018-1265-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Many insects engage in symbiotic associations with diverse assemblages of bacterial symbionts that can deeply impact on their ecology and evolution. The intraspecific variation of symbionts remains poorly assessed while phenotypic effects and transmission behaviors, which are key processes for the persistence and evolution of symbioses, may differ widely depending on the symbiont strains. Serratia symbiotica is one of the most frequent symbiont species in aphids and a valuable model to assess this intraspecific variation since it includes both facultative and obligate symbiotic strains. Despite evidence that some facultative S. symbiotica strains exhibit a free-living capacity, the presence of these strains in wild aphid populations, as well as in insects with which they maintain regular contact, has never been demonstrated. Here, we examined the prevalence, diversity, and tissue tropism of S. symbiotica in wild aphids and associated ants. We found a high occurrence of S. symbiotica infection in ant populations, especially when having tended infected aphid colonies. We also found that the S. symbiotica diversity includes strains found located within the gut of aphids and ants. In the latter, this tissue tropism was found restricted to the proventriculus. Altogether, these findings highlight the extraordinary diversity and versatility of an insect symbiont and suggest the existence of novel routes for symbiont acquisition in insects.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium.
| | - Inès Pons
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Alain Vanderpoorten
- Department of Biology, Institute of Botany, University of Liège, B22 Sart Tilman, 4000, Liege, Belgium
| | - Gwennaël Bataille
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR CNRS 5237, 34293, Montpellier, France
| | - Valentin Pierson
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
New Insights into the Nature of Symbiotic Associations in Aphids: Infection Process, Biological Effects, and Transmission Mode of Cultivable Serratia symbiotica Bacteria. Appl Environ Microbiol 2019; 85:AEM.02445-18. [PMID: 30850430 DOI: 10.1128/aem.02445-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 11/20/2022] Open
Abstract
Symbiotic microorganisms are widespread in nature and can play a major role in the ecology and evolution of animals. The aphid-Serratia symbiotica bacterium interaction provides a valuable model to study the mechanisms behind these symbiotic associations. The recent discovery of cultivable S. symbiotica strains with a free-living lifestyle allowed us to simulate their environmental acquisition by aphids to examine the mechanisms involved in this infection pathway. Here, after oral ingestion, we analyzed the infection dynamics of cultivable S. symbiotica during the host's lifetime using quantitative PCR and fluorescence techniques and determined the immediate fitness consequences of these bacteria on their new host. We further examined the transmission behavior and phylogenetic position of cultivable strains. Our study revealed that cultivable S. symbiotica bacteria are predisposed to establish a symbiotic association with a new aphid host, settling in its gut. We show that cultivable S. symbiotica bacteria colonize the entire aphid digestive tract following infection, after which the bacteria multiply exponentially during aphid development. Our results further reveal that gut colonization by the bacteria induces a fitness cost to their hosts. Nevertheless, it appeared that the bacteria also offer an immediate protection against parasitoids. Interestingly, cultivable S. symbiotica strains seem to be extracellularly transmitted, possibly through the honeydew, while S. symbiotica is generally considered a maternally transmitted bacterium living within the aphid body cavity and bringing some benefits to its hosts, despite its costs. These findings provide new insights into the nature of symbiosis in aphids and the mechanisms underpinning these interactions.IMPORTANCE S. symbiotica is one of the most common symbionts among aphid populations and includes a wide variety of strains whose degree of interdependence on the host may vary considerably. S. symbiotica strains with a free-living capacity have recently been isolated from aphids. By using these strains, we established artificial associations by simulating new bacterial acquisitions involved in aphid gut infections to decipher their infection processes and biological effects on their new hosts. Our results showed the early stages involved in this route of infection. So far, S. symbiotica has been considered a maternally transmitted aphid endosymbiont. Nevertheless, we show that our cultivable S. symbiotica strains occupy and replicate in the aphid gut and seem to be transmitted over generations through an environmental transmission mechanism. Moreover, cultivable S. symbiotica bacteria are both parasites and mutualists given the context, as are many aphid endosymbionts. Our findings give new perception of the associations involved in bacterial mutualism in aphids.
Collapse
|
20
|
Pons I, Renoz F, Noël C, Hance T. Circulation of the Cultivable Symbiont Serratia symbiotica in Aphids Is Mediated by Plants. Front Microbiol 2019; 10:764. [PMID: 31037067 PMCID: PMC6476230 DOI: 10.3389/fmicb.2019.00764] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022] Open
Abstract
Symbiosis is a common phenomenon in nature that substantially affects organismal ecology and evolution. Fundamental questions regarding how mutualistic associations arise and evolve in nature remain, however, poorly studied. The aphid-Serratia symbiotica bacterium interaction represents a valuable model to study mechanisms shaping these symbiotic interspecific interactions. S. symbiotica strains capable of living independently of aphid hosts have recently been isolated. These strains probably resulted from horizontal transfers and could be an evolutionary link to an intra-organismal symbiosis. In this context, we used the tripartite interaction between the aphid Aphis fabae, a cultivable S. symbiotica bacterium, and the host plant Vicia faba to evaluate the bacterium ability to circulate in this system, exploring its environmental acquisition by aphids and horizontal transmission between aphids via the host plant. Using molecular analyses and fluorescence techniques, we showed that the cultivable S. symbiotica can enter the plants and induce new bacterial infections in aphids feeding on these new infected plants. Remarkably, we also found that the bacterium can have positive effects on the host plant, mainly at the root level. Furthermore, our results demonstrated that cultivable S. symbiotica can be horizontally transferred from infected to uninfected aphids sharing the same plant, providing first direct evidence that plants can mediate horizontal transmission of certain strains of this symbiont species. These findings highlight the importance of considering symbiotic associations in complex systems where microorganisms can circulate between different compartments. Our study can thus have major implications for understanding the multifaceted interactions between microbes, insects and plants.
Collapse
Affiliation(s)
- Inès Pons
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
21
|
Hafer N, Vorburger C. Diversity begets diversity: do parasites promote variation in protective symbionts? CURRENT OPINION IN INSECT SCIENCE 2019; 32:8-14. [PMID: 31113636 DOI: 10.1016/j.cois.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Insects commonly possess heritable microbial symbionts that increase their resistance to particular parasites. A diverse community of defensive symbionts may thus provide hosts with effective and specific protection against multiple parasites, although costs might constrain the accumulation of many symbionts. In parallel to the allelic diversity in the MHC complex of the vertebrate immune system, parasite diversity could be the driving force behind symbiont diversity. There is indeed evidence that parasites have the ability to drive frequencies of defensive symbionts in their hosts, and that these symbionts influence parasite communities, but direct evidence that parasite diversity can promote symbiont diversity is still lacking. We provide suggestions to investigate this potential link.
Collapse
Affiliation(s)
- Nina Hafer
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - Christoph Vorburger
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
22
|
Monticelli LS, Outreman Y, Frago E, Desneux N. Impact of host endosymbionts on parasitoid host range - from mechanisms to communities. CURRENT OPINION IN INSECT SCIENCE 2019; 32:77-82. [PMID: 31113635 DOI: 10.1016/j.cois.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
In insects, bacterial endosymbionts are known to influence the ecology of their hosts by modifying interactions with natural enemies such as parasitoids. Symbionts can modulate both parasitoid behavioral and/or physiological traits as well as host behaviors and life-history traits. Together these suggest that endosymbionts may impact the host range of parasitoids. For example, endosymbionts may narrow parasitoid host range through first, reducing parasitoid ability to locate hosts and/or larval survival, second, affecting fitness traits of the emerging adult parasitoid and/or third, modulating the outcome of interference and exploitative competition between parasitoid species. From both a fundamental and applied point of view, these symbiotic effects would influence the ecology and evolution of parasitoids and associated population-level processes and ecosystem services (e.g. biocontrol).
Collapse
Affiliation(s)
- Lucie S Monticelli
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS UMR1355-7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Yannick Outreman
- Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, UMR IGEPP, 35000, Rennes, France
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Reunion, France
| | - Nicolas Desneux
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS UMR1355-7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.
| |
Collapse
|
23
|
Ben-Ari M, Outreman Y, Denis G, Le Gallic JF, Inbar M, Simon JC. Differences in escape behavior between pea aphid biotypes reflect their host plants’ palatability to mammalian herbivores. Basic Appl Ecol 2019. [DOI: 10.1016/j.baae.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Li S, Liu D, Zhang R, Zhai Y, Huang X, Wang D, Shi X. Effects of a presumably protective endosymbiont on life-history characters and their plasticity for its host aphid on three plants. Ecol Evol 2018; 8:13004-13013. [PMID: 30619600 PMCID: PMC6308870 DOI: 10.1002/ece3.4754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/30/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022] Open
Abstract
Hamiltonella defensa is well known for its protective roles against parasitoids for its aphid hosts, but its functional roles in insect-plant interactions are less understood. Thus, the impact of H. defensa infections on life-history characters and the underlying genetic variation for the grain aphid, Sitobion avenae (Fabricius), was explored on three plants (i.e., wheat, oat, and rye). Compared to cured lines, H. defensa infected lines of S. avenae had lower fecundity on wheat and oat, but not on rye, suggesting an infection cost for the aphid on susceptible host plants. However, when tested on rye, the infected lines showed a shorter developmental time for the nymphal stage than corresponding cured lines, showing some benefit for S. avenae carrying the endosymbiont on resistant host plants. The infection of H. defensa altered genetic variation underlying its host S. avenea's life-history characters, which was shown by differences in heritabilities and genetic correlations of life-history characters between S. avenae lines infected and cured of the endosymbiont. This was further substantiated by disparity in G-matrices of their life-history characters for the two types of aphid lines. The G-matrices for life-history characters of aphid lines infected with and cured of H. defensa were significantly different from each other on rye, but not on oat, suggesting strong plant-dependent effects. The developmental durations of infected S. avenae lines showed a lower plasticity compared with those of corresponding cured lines, and this could mean higher adaptability for the infected lines.Overall, our results showed novel functional roles of a common secondary endosymbiont (i.e., H. defensa) in plant-insect interactions, and its infections could have significant consequences for the evolutionary ecology of its host insect populations in nature.
Collapse
Affiliation(s)
- Shirong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Rongfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Yingting Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xianliang Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| |
Collapse
|
25
|
Guyomar C, Legeai F, Jousselin E, Mougel C, Lemaitre C, Simon JC. Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches. MICROBIOME 2018; 6:181. [PMID: 30305166 PMCID: PMC6180509 DOI: 10.1186/s40168-018-0562-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/20/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Most metazoans are involved in durable relationships with microbes which can take several forms, from mutualism to parasitism. The advances of NGS technologies and bioinformatics tools have opened opportunities to shed light on the diversity of microbial communities and to give some insights into the functions they perform in a broad array of hosts. The pea aphid is a model system for the study of insect-bacteria symbiosis. It is organized in a complex of biotypes, each adapted to specific host plants. It harbors both an obligatory symbiont supplying key nutrients and several facultative symbionts bringing additional functions to the host, such as protection against biotic and abiotic stresses. However, little is known on how the symbiont genomic diversity is structured at different scales: across host biotypes, among individuals of the same biotype, or within individual aphids, which limits our understanding on how these multi-partner symbioses evolve and interact. RESULTS We present a framework well adapted to the study of genomic diversity and evolutionary dynamics of the pea aphid holobiont from metagenomic read sets, based on mapping to reference genomes and whole genome variant calling. Our results revealed that the pea aphid microbiota is dominated by a few heritable bacterial symbionts reported in earlier works, with no discovery of new microbial associates. However, we detected a large and heterogeneous genotypic diversity associated with the different symbionts of the pea aphid. Partitioning analysis showed that this fine resolution diversity is distributed across the three considered scales. Phylogenetic analyses highlighted frequent horizontal transfers of facultative symbionts between host lineages, indicative of flexible associations between the pea aphid and its microbiota. However, the evolutionary dynamics of symbiotic associations strongly varied depending on the symbiont, reflecting different histories and possible constraints. In addition, at the intra-host scale, we showed that different symbiont strains may coexist inside the same aphid host. CONCLUSIONS We present a methodological framework for the detailed analysis of NGS data from microbial communities of moderate complexity and gave major insights into the extent of diversity in pea aphid-symbiont associations and the range of evolutionary trajectories they could take.
Collapse
Affiliation(s)
- Cervin Guyomar
- INRA, UMR 1349 INRA/Agrocampus Ouest/Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Le Rheu, France
- Université Rennes 1, Inria, CNRS, IRISA, F-35000, Rennes, France
| | - Fabrice Legeai
- INRA, UMR 1349 INRA/Agrocampus Ouest/Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Le Rheu, France
- Université Rennes 1, Inria, CNRS, IRISA, F-35000, Rennes, France
| | - Emmanuelle Jousselin
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, Montpellier, France
| | - Christophe Mougel
- INRA, UMR 1349 INRA/Agrocampus Ouest/Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Le Rheu, France
| | - Claire Lemaitre
- Université Rennes 1, Inria, CNRS, IRISA, F-35000, Rennes, France
| | - Jean-Christophe Simon
- INRA, UMR 1349 INRA/Agrocampus Ouest/Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Le Rheu, France.
| |
Collapse
|
26
|
Zhu YX, Song YL, Zhang YK, Hoffmann AA, Zhou JC, Sun JT, Hong XY. Incidence of Facultative Bacterial Endosymbionts in Spider Mites Associated with Local Environments and Host Plants. Appl Environ Microbiol 2018; 84:e02546-17. [PMID: 29330177 PMCID: PMC5835729 DOI: 10.1128/aem.02546-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Spider mites are frequently associated with multiple endosymbionts whose infection patterns often exhibit spatial and temporal variation. However, the association between endosymbiont prevalence and environmental factors remains unclear. Here, we surveyed endosymbionts in natural populations of the spider mite, Tetranychus truncatus, in China, screening 935 spider mites from 21 localities and 12 host plant species. Three facultative endosymbiont lineages, Wolbachia, Cardinium, and Spiroplasma, were detected at different infection frequencies (52.5%, 26.3%, and 8.6%, respectively). Multiple endosymbiont infections were observed in most local populations, and the incidence of individuals with the Wolbachia-Spiroplasma coinfection was higher than expected from the frequency of each infection within a population. Endosymbiont infection frequencies exhibited associations with environmental factors: Wolbachia infection rates increased at localities with higher annual mean temperatures, while Cardinium and Spiroplasma infection rates increased at localities from higher altitudes. Wolbachia was more common in mites from Lycopersicon esculentum and Glycine max compared to those from Zea mays This study highlights that host-endosymbiont interactions may be associated with environmental factors, including climate and other geographically linked factors, as well as the host's food plant.IMPORTANCE The aim of this study was to examine the incidence of endosymbiont distribution and the infection patterns in spider mites. The main findings are that multiple endosymbiont infections were more common than expected and that endosymbiont infection frequencies were associated with environmental factors. This work highlights that host-endosymbiont interactions need to be studied within an environmental and geographic context.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue-Ling Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan-Kai Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jin-Cheng Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Doremus MR, Smith AH, Kim KL, Holder AJ, Russell JA, Oliver KM. Breakdown of a defensive symbiosis, but not endogenous defences, at elevated temperatures. Mol Ecol 2017; 27:2138-2151. [DOI: 10.1111/mec.14399] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/17/2017] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - Kyungsun L. Kim
- Department of Entomology University of Georgia Athens GA USA
| | | | | | - Kerry M. Oliver
- Department of Entomology University of Georgia Athens GA USA
| |
Collapse
|
28
|
Martinez AJ, Doremus MR, Kraft LJ, Kim KL, Oliver KM. Multi‐modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J Anim Ecol 2017; 87:464-477. [DOI: 10.1111/1365-2656.12675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Adam J. Martinez
- Department of Entomology University of Georgia Athens GA USA
- Department of Evolutionary Ecology Johannes Gutenberg University Mainz Germany
| | | | - Laura J. Kraft
- Department of Entomology University of Georgia Athens GA USA
| | - Kyungsun L. Kim
- Department of Entomology University of Georgia Athens GA USA
| | - Kerry M. Oliver
- Department of Entomology University of Georgia Athens GA USA
| |
Collapse
|
29
|
Sampaio MV, Korndörfer AP, Pujade-Villar J, Hubaide JEA, Ferreira SE, Arantes SO, Bortoletto DM, Guimarães CM, Sánchez-Espigares JA, Caballero-López B. Brassica aphid (Hemiptera: Aphididae) populations are conditioned by climatic variables and parasitism level: a study case of Triângulo Mineiro, Brazil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:410-418. [PMID: 28316286 DOI: 10.1017/s0007485317000220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cosmopolitan pests such as Brevicoryne brassicae, Lipaphis pseudobrassicae, and Myzus persicae (Aphididae) cause significant damage to Brassicaceae crops. Assessment of the important biotic and abiotic factors that regulate these pests is an essential step in the development of effective Integrated Pest Management programs for these aphids. This study evaluated the influence of leaf position, precipitation, temperature, and parasitism on populations of L. pseudobrassicae, M. persicae, and B. brassicae in collard greens fields in the Triângulo Mineiro region (Minas Gerais state), Brazil. Similar numbers of B. brassicae were found on all parts of the collard green plants, whereas M. persicae and L. pseudobrassicae were found in greatest numbers on the middle and lower parts of the plant. While temperature and precipitation were positively related to aphid population size, their effects were not accumulative, as indicated by a negative interaction term. Although Diaeretiella rapae was the main parasitoid of these aphids, hyperparasitism was dominant; the main hyperparasitoid species recovered from plant samples was Alloxysta fuscicornis. Parasitoids seem to have similar distributions on plants as their hosts. These results may help predict aphid outbreaks and gives clues for specific intra-plant locations when searching for and monitoring aphid populations.
Collapse
Affiliation(s)
- M V Sampaio
- Federal University of Uberlândia, Agronomic Institute,Uberlândia - Minas Gerais,Brazil
| | - A P Korndörfer
- Federal University of Uberlândia, Agronomic Institute,Uberlândia - Minas Gerais,Brazil
| | - J Pujade-Villar
- Department of Animal Biology,Faculty of Biology,University of Barcelona,Spain
| | - J E A Hubaide
- Federal University of Uberlândia, Agronomic Institute,Uberlândia - Minas Gerais,Brazil
| | - S E Ferreira
- Federal University of Uberlândia, Agronomic Institute,Uberlândia - Minas Gerais,Brazil
| | - S O Arantes
- Federal University of Uberlândia, Agronomic Institute,Uberlândia - Minas Gerais,Brazil
| | - D M Bortoletto
- Federal University of Uberlândia, Agronomic Institute,Uberlândia - Minas Gerais,Brazil
| | - C M Guimarães
- Federal University of Uberlândia, Agronomic Institute,Uberlândia - Minas Gerais,Brazil
| | - J A Sánchez-Espigares
- Department of Statistics and Operations Research, Technical University of Catalonia,Barcelona,Spain
| | - B Caballero-López
- Natural Sciences Museum of Barcelona, Laboratory of Nature, Arthropods Department,MCNB,Barcelona,Spain
| |
Collapse
|