1
|
Bondavalli D, Urtis M, Grasso M, Giorgianni C, Cassani C, Sgarella A, Ferrari A, Rizzo G, Arbustini E. Four pathogenic variants co-occurring in a MINAS early-onset breast cancer. TUMORI JOURNAL 2024:3008916241301368. [PMID: 39663696 DOI: 10.1177/03008916241301368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Multilocus Inherited Neoplasia Allele Syndrome (MINAS) is a condition defined by the presence of germline pathogenic variants in more than one Cancer Susceptibility Gene (CSG). MINAS is still underreported in the literature and public databases. Since MINAS-related phenotypes are difficult to predict, case descriptions may contribute to risk assessment, treatment, and personalized surveillance for proband and relatives. CASE DESCRIPTION Here we report a unique case of early onset, bifocal, non-Triple Negative breast cancer in a 31-year-old woman. Fast metastatic dissemination involving the brain caused the death of the patient in a few months. Her multigene panel testing showed the co-occurrence of pathogenic variants in PALB2 (c.1221del; p.Thr408fs*40), ATM (c.8545C>T; p.Arg2849*), PMS2 (c.1919C>A; p.Ser640*), and MUTYH (c.1103G>A; p.Gly368Asp). The patient inherited the ATM and MUTYH variants from the mother, and PALB2 and PMS2 variants from the father. The brother inherited the maternal ATM and paternal PMS2 variants. A baseline imaging-based family screening excluded malignancies in both parents and in the brother. Tailored monitoring is ongoing based on the risk predicted by pathogenic variants identified in family members. CONCLUSIONS Currently, there are no predictive tools available to determine organ-specific cancer risk in MINAS patients. Given the uncertainty in predicting the phenotypic effect of multiple variants in CSGs, ongoing clinical surveillance and sharing data from complex cases are crucial for improving risk stratification in this condition.
Collapse
Affiliation(s)
- Davide Bondavalli
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Urtis
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carmela Giorgianni
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Adele Sgarella
- Department of Surgery, General Surgery III-Breast Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alberta Ferrari
- Department of Surgery, General Surgery III-Breast Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gianpiero Rizzo
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
2
|
Paller CJ, Tukachinsky H, Maertens A, Decker B, Sampson JR, Cheadle JP, Antonarakis ES. Pan-Cancer Interrogation of MUTYH Variants Reveals Biallelic Inactivation and Defective Base Excision Repair Across a Spectrum of Solid Tumors. JCO Precis Oncol 2024; 8:e2300251. [PMID: 38394468 PMCID: PMC10901435 DOI: 10.1200/po.23.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene MUTYH predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic MUTYH variants and MUTYH loss of heterozygosity (LOH) in a large pan-cancer analysis. MATERIALS AND METHODS Data from 354,366 solid tumor biopsies that were sequenced as part of routine clinical care were analyzed using a validated algorithm to distinguish germline from somatic MUTYH variants. RESULTS Biallelic germline pathogenic MUTYH variants were identified in 119 tissue biopsies. Most were CRCs and showed increased tumor mutational burden (TMB) and a mutational signature consistent with defective BER (COSMIC Signature SBS18). Germline heterozygous pathogenic variants were identified in 5,991 biopsies and their prevalence was modestly elevated in some cancer types. About 12% of these cancers (738 samples: including adrenal gland cancers, pancreatic islet cell tumors, nonglioma CNS tumors, GI stromal tumors, and thyroid cancers) showed somatic LOH for MUTYH, higher rates of chromosome 1p loss (where MUTYH is located), elevated genomic LOH, and higher COSMIC SBS18 signature scores, consistent with BER deficiency. CONCLUSION This analysis of MUTYH alterations in a large set of solid cancers suggests that in addition to the established role of biallelic pathogenic MUTYH variants in cancer predisposition, a broader range of cancers may possibly arise in MUTYH heterozygotes via a mechanism involving somatic LOH at the MUTYH locus and defective BER. However, the effect is modest and requires confirmation in additional studies before being clinically actionable.
Collapse
Affiliation(s)
- Channing J Paller
- Johns Hopkins University School of Medicine, Oncology, Baltimore, MD
| | | | - Alexandra Maertens
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD
| | | | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jeremy P Cheadle
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Emmanuel S Antonarakis
- University of Minnesota Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN
| |
Collapse
|
3
|
Slaught C, Berry EG, Bacik L, Skalet AH, Anadiotis G, Tuohy T, Leachman SA. Clinical challenges in interpreting multiple pathogenic mutations in single patients. Hered Cancer Clin Pract 2021; 19:15. [PMID: 33541411 PMCID: PMC7863461 DOI: 10.1186/s13053-021-00172-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In the past two decades, genetic testing for cancer risk assessment has entered mainstream clinical practice due to the availability of low-cost panels of multiple cancer-associated genes. However, the clinical value of multiple-gene panels for cancer susceptibility is not well established, especially in cases where panel testing identifies more than one pathogenic variant. The risk for specific malignancies as a result of a mutated gene is complex and likely influenced by superimposed modifier variants and/or environmental effects. Recent data suggests that the combination of multiple pathogenic variants may be fewer than reported by chance, suggesting that some mutation combinations may be detrimental. Management of patients with "incidentally" discovered mutations can be particularly challenging, especially when established guidelines call for radical procedures (e.g. total gastrectomy in CDH1) in patients and families without a classic clinical history concerning for that cancer predisposition syndrome. CASE PRESENTATION We present two cases, one of an individual and one of a family, with multiple pathogenic mutations detected by multi-gene panel testing to highlight challenges practitioners face in counseling patients about pathogenic variants and determining preventive and therapeutic interventions. CONCLUSIONS Ongoing investigation is needed to improve our understanding of inherited susceptibility to disease in general and cancer predisposition syndromes, as this information has the potential to lead to the development of more precise and patient-specific counseling and surveillance strategies. The real-world adoption of new or improved technologies into clinical practice frequently requires medical decision-making in the absence of established understanding of gene-gene interactions. In the meantime, practitioners must be prepared to apply a rationale based on currently available knowledge to clinical decision-making. Current practice is evolving to rely heavily on clinical concordance with personal and family history in making specific therapeutic decisions.
Collapse
Affiliation(s)
- Christa Slaught
- Department of Dermatology, Oregon Health & Science University, 3303 SW Bond Ave, Suite 16D, Portland, OR, 97239, USA
| | - Elizabeth G Berry
- Department of Dermatology, Oregon Health & Science University, 3303 SW Bond Ave, Suite 16D, Portland, OR, 97239, USA.
| | - Lindsay Bacik
- Department of Dermatology, Penn State Health, Hershey, USA
| | - Alison H Skalet
- Department of Dermatology, Oregon Health & Science University, 3303 SW Bond Ave, Suite 16D, Portland, OR, 97239, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, USA
| | - George Anadiotis
- Legacy Cancer Institute, Cancer Genetics Services, Legacy Health Systems, Portland, USA
| | - Therese Tuohy
- Legacy Cancer Institute, Cancer Genetics Services, Legacy Health Systems, Portland, USA
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health & Science University, 3303 SW Bond Ave, Suite 16D, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| |
Collapse
|
4
|
Schubert SA, Ruano D, Tiersma Y, Drost M, de Wind N, Nielsen M, van Hest LP, Morreau H, de Miranda NFCC, van Wezel T. Digenic inheritance of MSH6 and MUTYH variants in familial colorectal cancer. Genes Chromosomes Cancer 2020; 59:697-701. [PMID: 32615015 PMCID: PMC7689793 DOI: 10.1002/gcc.22883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
We describe a family severely affected by colorectal cancer (CRC) where whole-exome sequencing identified the coinheritance of the germline variants encoding MSH6 p.Thr1100Met and MUTYH p.Tyr179Cys in, at least, three CRC patients diagnosed before 60 years of age. Digenic inheritance of monoallelic MSH6 variants of uncertain significance and MUTYH variants has been suggested to predispose to Lynch syndrome-associated cancers; however, cosegregation with disease in the familial setting has not yet been established. The identification of individuals carrying multiple potential cancer risk variants is expected to rise with the increased application of whole-genome sequencing and large multigene panel testing in clinical genetic counseling of familial cancer patients. Here we demonstrate the coinheritance of monoallelic variants in MSH6 and MUTYH consistent with cosegregation with CRC, further supporting a role for digenic inheritance in cancer predisposition.
Collapse
Affiliation(s)
| | - Dina Ruano
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - Yvonne Tiersma
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Mark Drost
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Niels de Wind
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maartje Nielsen
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Liselotte P. van Hest
- Department of Clinical GeneticsAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Hans Morreau
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Tom van Wezel
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
5
|
Raetz AG, David SS. When you're strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair (Amst) 2019; 80:16-25. [PMID: 31203172 DOI: 10.1016/j.dnarep.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types. While the canonical OG:A repair activity of MUTYH is well characterized and similar to bacterial MutY, here we review more recent evidence that MUTYH has activities independent of OG:A repair and appear centered on the interdomain connector (IDC) region of MUTYH. We summarize evidence that MUTYH is involved in rapid DNA damage response (DDR) signaling, including PARP activation, 9-1-1 and ATR signaling, and SIRT6 activity. MUTYH alters survival and DDR to a wide variety of DNA damaging agents in a time course that is not consistent with the formation of OG:A mispairs. Studies that suggest MUTYH inhibits the repair of alkyl-DNA damage and cyclopyrimidine dimers (CPDs) is reviewed, and evidence of a synthetic lethal interaction with mismatch repair (MMR) is summarized. Based on these studies we suggest that MUTYH has evolved from an OG:A mispair glycosylase to a multifunctional scaffold for DNA damage response signaling.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Elsayed FA, Tops CMJ, Nielsen M, Ruano D, Vasen HFA, Morreau H, J Hes F, van Wezel T. Low frequency of POLD1 and POLE exonuclease domain variants in patients with multiple colorectal polyps. Mol Genet Genomic Med 2019; 7:e00603. [PMID: 30827058 PMCID: PMC6465667 DOI: 10.1002/mgg3.603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 01/19/2023] Open
Abstract
Background Germline mutations affecting the exonuclease domains of POLE and POLD1 predispose to colorectal adenomas and carcinoma. Here, we aimed to screen the exonuclease domains to find the genetic causes of multiple colorectal polyps in unexplained cases. Methods Using a custom next‐generation sequencing panel, we sequenced the exonuclease domains of POLE and POLD1 in 332 index patients diagnosed with multiple colorectal polyps without germline alteration in colorectal polyposis predisposing genes. Results We identified two variants of unknown significance. One germline POLD1 c.961G>A, p.(Gly321Ser) variant was found in two cases. The first patient was diagnosed with multiple polyps at age 35 and colorectal cancer (CRC) at age 37, with no known family history of CRC. The second patient was diagnosed with CRC at age 44 and cumulatively developed multiple polyps; this patient had two sisters with endometrial cancer who did not carry the variant. Furthermore, we identified a novel POLD1 c.955 T>G, p.(Cys319Gly) variant in a patient diagnosed with multiple colorectal adenomas at age 40. Co‐segregation analysis showed that one sister who cumulatively developed multiple adenomas from age 34, and another sister who developed CRC at age 38 did not carry the variant. We did not identify pathogenic variants in POLE and POLD1. Conclusion This study confirms the low frequency of causal variants in these genes in the predisposition for multiple colorectal polyps, and also establishes that these genes are a rare cause of the disease.
Collapse
Affiliation(s)
| | - Carli M J Tops
- Department of Clinical Genetics, LUMC, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, LUMC, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, LUMC, Leiden, The Netherlands
| | - Hans F A Vasen
- Department of Gastroenterology, LUMC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, LUMC, Leiden, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, LUMC, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, LUMC, Leiden, The Netherlands
| |
Collapse
|
7
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
8
|
Win AK, Reece JC, Buchanan DD, Clendenning M, Young JP, Cleary SP, Kim H, Cotterchio M, Dowty JG, MacInnis RJ, Tucker KM, Winship IM, Macrae FA, Burnett T, Le Marchand L, Casey G, Haile RW, Newcomb PA, Thibodeau SN, Lindor NM, Hopper JL, Gallinger S, Jenkins MA. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene. Fam Cancer 2016. [PMID: 26202870 DOI: 10.1007/s10689-015-9824-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understandin g the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95% confidence interval (CI) 9.19-50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95% CI 0.63-5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative.
Collapse
Affiliation(s)
- Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Parkville, VIC, 3010, Australia.
| | - Jeanette C Reece
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Parkville, VIC, 3010, Australia
- Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Clendenning
- Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne P Young
- Department of Oncology, The Queen Elizabeth Hospital, Woodville, SA, Australia
- SAHMRI Colorectal Node, Basil Hetzel Institute for Translational Research, Woodville, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sean P Cleary
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Hyeja Kim
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | | | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Parkville, VIC, 3010, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Katherine M Tucker
- Hereditary Cancer Clinic, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Ingrid M Winship
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Finlay A Macrae
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | | | - Graham Casey
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Polly A Newcomb
- School of Public Health, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Parkville, VIC, 3010, Australia
- Department of Epidemiology and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street, Parkville, VIC, 3010, Australia
| |
Collapse
|
9
|
Rosner G, Bercovich D, Daniel YE, Strul H, Fliss-Isakov N, Ben-Yehoiada M, Santo E, Halpern Z, Kariv R. Increased risk for colorectal adenomas and cancer in mono-allelic MUTYH mutation carriers: results from a cohort of North-African Jews. Fam Cancer 2016; 14:427-36. [PMID: 25822476 DOI: 10.1007/s10689-015-9799-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bi-allelic MUTYH gene mutations are associated with a clinical phenotype of multiple colorectal adenomas and an increased risk for colorectal cancer (CRC). It is unclear whether mono-allelic MUTYH gene carriers (heterozygotes) are also at increased risk for even few adenomas or cancer. In order to clarify an association between MUTYH heterozygotes and adenomas, we evaluated the frequency and types of MUTYH mutations and variants in 72 North-African Jews having few (≥3) colorectal adenomas with or without early onset (<50 years) CRC compared to 29 healthy controls. Germ-line DNA was analyzed for a panel of 6 MUTYH mutations and variants, and Sanger sequencing of the entire MUTYH gene was performed for mono-allelic MUTYH mutation carriers. APC gene mutations and Lynch syndrome were excluded in the relevant cases according to accepted clinical criteria. Twenty-two of the 72 adenoma subjects (30.5%) had MUTYH mutations or variants. Nine were homozygotes or compound heterozygotes: all had >10 adenomas and one had CRC. Thirteen others were mono-allelic carriers (heterozygotes) of a single MUTYH mutation: six had more than ten adenomas and seven had less than ten adenomas; of these 13 mono-allelic carriers, six had a neoplasm: three CRCs and three extra-intestinal tumors. Eleven of the thirteen mono-allelic carriers with adenomas had a family history of cancer in first or second degree relatives. A multivariable model showed positive correlation between G396D, Y179C and 1186 ins GG mutations and number of adenomas (OR 8.6, 10.2 and 14.4, respectively). The Q324H variant was negatively associated with the number of adenomatous polyps (OR -5.23). In conclusion, MUTYH mutations are prevalent among Jews of North-African origin with colorectal adenomas with or without early onset CRC. Mono-allelic MUTYH carriers with a family history of cancer had a clinical phenotype that varied from having only few adenomas to multiple (>10) adenomas. These findings support MUTYH testing in patients with even few adenomas and suggest the consideration of increased surveillance in mono-allelic carriers with a family history of cancer.
Collapse
Affiliation(s)
- Guy Rosner
- Departmant of Gastroenterology, Tel-Aviv Sourasky Medical Center, 6 Weizmann St., 64239, Tel Aviv, Israel,
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cohen SA, Tan CA, Bisson R. An Individual with Both MUTYH-Associated Polyposis and Lynch Syndrome Identified by Multi-Gene Hereditary Cancer Panel Testing: A Case Report. Front Genet 2016; 7:36. [PMID: 27014339 PMCID: PMC4792865 DOI: 10.3389/fgene.2016.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/29/2016] [Indexed: 01/21/2023] Open
Abstract
The utilization of next-generation sequencing technology to interrogate multiple genes simultaneously is being utilized more frequently in hereditary cancer testing. While this has benefits of reducing cost and allowing clinicians to cast a wide net in the elucidation of their patient's cancer, panel testing has the potential to reveal unexpected information. We report on a proband with pathogenic variants resulting in two different hereditary colon cancer syndromes. A 39-year-old male with a history of colon cancer, more than 20 colon polyps and a family history of colon cancer presented for genetic counseling. Testing with a 7-gene high-risk hereditary colon cancer panel identified a homozygous pathogenic variant, c.1187G>A (p.Gly396Asp) in MUTYH, and a likely pathogenic duplication of exon 7 in MSH2. Since this test result, the proband's mother was diagnosed with colon cancer; subsequent genetic testing confirmed she also carries the likely pathogenic duplication in the MSH2 gene. Although the cancer risk in individuals who carry multiple pathogenic variants has not been established for combined biallelic MUTYH-associated polyposis and Lynch syndrome, the identification of multiple pathogenic variants does allow for screening for cancers associated with both syndromes and has implications for cancer risk for family members. In particular, this has significant impact on those who test negative for a known familial pathogenic variant, yet could be still be at risk for cancer due to a second pathogenic variant in a family. More information is needed on the frequency of occurrence of multiple pathogenic variants, as well as the phenotypic spectrum when multiple pathogenic variants are present.
Collapse
Affiliation(s)
- Stephanie A Cohen
- Cancer Genetics Risk Assessment Program, St. Vincent Health Indianapolis, IN, USA
| | | | - Ryan Bisson
- Cancer Genetics Center, UF Health Cancer Center-Orlando Health Orlando, FL, USA
| |
Collapse
|
11
|
Abstract
The hereditary colorectal cancer syndromes comprise a heterogeneous group of conditions with varying cancer risks, gastrointestinal polyp types, nonmalignant findings, and inheritance patterns. Although each one is unique in its own right, these syndromes often have overlapping features, making diagnoses difficult in select cases. Obtaining accurate polyp history (histologic type, number, location, and age of onset), cancer history (location, type, and age of onset), and other nonmalignant features is imperative in determining the likely disease diagnosis and thereby the appropriate genetic tests for precise diagnosis in a timely fashion. This process often necessitates collaboration among surgical oncology team members and genetic counselors.
Collapse
Affiliation(s)
- Kory Jasperson
- Department of Internal Medicine, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Room 1166, Salt Lake City, UT 84112, USA.
| | - Randall W Burt
- Department of Internal Medicine, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
13
|
de Miranda NFCC, Hes FJ, van Wezel T, Morreau H. Role of the microenvironment in the tumourigenesis of microsatellite unstable and MUTYH-associated polyposis colorectal cancers. Mutagenesis 2012; 27:247-53. [DOI: 10.1093/mutage/ger077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
14
|
Poulsen MLM, Bisgaard ML. MUTYH Associated Polyposis (MAP). Curr Genomics 2011; 9:420-35. [PMID: 19506731 PMCID: PMC2691665 DOI: 10.2174/138920208785699562] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/28/2008] [Accepted: 05/04/2008] [Indexed: 01/04/2023] Open
Abstract
MUTYH Associated Polyposis (MAP), a Polyposis predisposition caused by biallelic mutations in the Base Excision Repair (BER) gene MUTYH, confers a marked risk of colorectal cancer (CRC). The MAP phenotype is difficult to distinguish from other hereditary CRC syndromes. Especially from Familial Adenomatous Polyposis (FAP) and to a lesser extend Lynch Syndrome, which are caused by germline mutations in the APC and Mismatch Repair (MMR) genes, respectively. Here we review research findings regarding MUTYH interactions, genotypic and phenotypic characteristics of MAP, as well as surveillance and treatment of the disease. The applied papers, published between 1/1 2002- 1/2 2008, were found through PubMed. The exact role of MUTYH in CRC tumorgenesis is still uncertain, although MAP tumors show distinct molecular features, including somatic G:C>T:A transversions in the APC gene. Furthermore, cooperation between the BER and the MMR systems exists, as MUTYH interacts with MMR gene-products. Possibly, monoallelic defects in both pathways are of significance to CRC development. Specific MUTYH variants are found to be characteristic in distinct ethnic populations, which could facilitate future genetic screening. Knowledge concerning functional consequences of many MUTYH germline mutations remains sparse. Most thoroughly investigated are the two most common MUTYH variants, Y179C and G396D, both generating dysfunctional gene products. Phenotypic features of MAP include: development of 10-100 colorectal adenomas, debuting at 46-47 years, often CRC at time of clinical diagnosis, and in some, development of extracolonic manifestations.
Collapse
Affiliation(s)
- M L M Poulsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
15
|
Nielsen M, Morreau H, Vasen HFA, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol 2010; 79:1-16. [PMID: 20663686 DOI: 10.1016/j.critrevonc.2010.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 12/13/2022] Open
Abstract
The human mutY homologue (MUTYH) gene is responsible for inheritable polyposis and colorectal cancer. This review discusses the molecular genetic aspects of the MUTYH gene and protein, the clinical impact of mono- and biallelic MUTYH mutations and histological aspects of the MUTYH tumors. Furthermore, the relationship between MUTYH and the mismatch repair genes in colorectal cancer (CRC) families is examined. Finally, the role of other base excision repair genes in polyposis and CRC patients is discussed.
Collapse
Affiliation(s)
- Maartje Nielsen
- Department Clinical Genetics, Leiden University Medical Centre, Albinusdreef, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Giráldez MD, Balaguer F, Caldés T, Sanchez-de-Abajo A, Gómez-Fernández N, Ruiz-Ponte C, Muñoz J, Garre P, Gonzalo V, Moreira L, Ocaña T, Clofent J, Carracedo A, Andreu M, Jover R, Llor X, Castells A, Castellví-Bel S. Association of MUTYH and MSH6 germline mutations in colorectal cancer patients. Fam Cancer 2009; 8:525-31. [PMID: 19685280 DOI: 10.1007/s10689-009-9282-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/03/2009] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) risk associated with germline monoallelic MUTYH mutations remains controversial, although a slightly increased risk for this disease has been suggested. MUTYH and MSH6 proteins act in cooperation during the DNA repair process. Based on this interaction, it was hypothesized that the combination of heterozygote germline mutations in both genes could result in an increased CRC risk. To further clarify the interaction between MUTYH and MSH6, we analyzed the prevalence of MSH6 mutations in a cohort of CRC patients and controls previously tested for MUTYH mutations: CRC patients with and without a monoallelic MUTYH mutation (group I, n = 26; group II, n = 50, respectively), and healthy carriers with a monoallelic MUTYH mutation (group III, n = 21). In group I, we found three patients (11.5%) with MSH6 mutations, a missense mutation (p.R635G), a change in the 3'UTR region (c.*4098A > C) and a nonsense mutation (p.Q982X). In group II and III, no mutations were detected. In CRC patients, MSH6 mutations were more frequently found in MUTYH mutation carriers than in noncarriers (11.5% vs. 0%, P = 0.037). CRC patients carrying monoallelic MUTYH mutations harbor more frequently concomitant MSH6 mutations than patients without them, thus suggesting that both genes could act cooperatively and confer together an increased CRC risk.
Collapse
Affiliation(s)
- María Dolores Giráldez
- Gastroenterology Department, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Catalonia, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Analysis of families with Lynch syndrome complicated by advanced serrated neoplasia: the importance of pathology review and pedigree analysis. Fam Cancer 2009; 8:313-23. [PMID: 19241144 DOI: 10.1007/s10689-009-9238-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/15/2009] [Indexed: 12/16/2022]
Abstract
The identification of Lynch syndrome has been greatly assisted by the advent of tumour immunohistochemistry (IHC) for mismatch repair (MMR) proteins, and by the recognition of the role of acquired somatic BRAF mutation in sporadic MMR-deficient colorectal cancer (CRC). However, somatic BRAF mutation may also be present in the tumours in families with a predisposition to develop serrated polyps in the colorectum. In a subgroup of affected members in these families, CRCs emerge which demonstrate clear evidence of MMR deficiency with absent MLH1 staining and high-level microsatellite instability (MSI). This may result in these families being erroneously classified as Lynch syndrome, or conversely, an individual is considered "sporadic" due to the presence of a somatic BRAF mutation in a tumour. In this report, we describe two Lynch syndrome families who demonstrated several such inconsistencies. In one family, IHC deficiency of both MSH2 and MLH1 was demonstrated in tumours from different affected family members, presenting a confusing diagnostic picture. In the second family, MLH1 loss was observed in the lesions of both MLH1 mutation carriers and those who showed normal MLH1 germline sequence. Both families had Lynch syndrome complicated by an independently segregating serrated neoplasia phenotype, suggesting that in families such as these, tumour and germline studies of several key members, rather than of a single proband, are indicated to clarify the spectrum of risk.
Collapse
|
18
|
Uhrhammer N, Bignon YJ. Report of a family segregating mutations in both the APC and MSH2 genes: juvenile onset of colorectal cancer in a double heterozygote. Int J Colorectal Dis 2008; 23:1131-5. [PMID: 18629513 DOI: 10.1007/s00384-008-0526-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Mutations in DNA mismatch repair genes are associated with high risk of digestive malignancies [hereditary non-polyposis colorectal cancer (HNPCC); Lynch syndrome]; mutations of APC and MYH are associated with classic and attenuated familial adenomatous polyposis (FAP). Although the early onset of tumors in both syndromes is characteristic of their genetic origin, pediatric malignancies remain rare. Certain reports have found familial colorectal cancer (CRC) occurring in very young patients associated with mutations in more than one gene. MATERIALS AND METHOD A family corresponding to the Amsterdam criteria for HNPCC, including two cases of colorectal cancer before the age of 25 years, was analyzed for mutations in the MSH2 genes by sequencing. Because polyposis was observed in a patient who developed CRC at age 16, the APC gene was also sequenced. RESULTS A truncating mutation in the MSH2 gene, c.258_259delTG, was carried by patients developing cancer of the colon (two patients), uterus, kidney, bladder, and/or small intestine at ages 16, 24, 43, 44, 45, and 57, respectively. A patient with CRC at age 16 was found to carry the APC c.3183_3187del5 mutation as well as the MSH2 mutation, and it is inferred that her father, deceased of CRC at age 24, was also a double heterozygote. INTERPRETATION These results confirm that vigilance is required when interpreting molecular results for families with very young patients, as more than one gene may contribute to the genetic risk. Cancer screening measures must also be adapted to the earlier and more penetrant risk to double heterozygotes.
Collapse
Affiliation(s)
- N Uhrhammer
- Laboratoire Diagnostic Génétique et Moléculaire, Centre Jean Perrin, 58 rue Montalembert, 63011 Clermont-Ferrand, France
| | | |
Collapse
|
19
|
Working through a diagnostic challenge: colonic polyposis, Amsterdam criteria, and a mismatch repair mutation. Fam Cancer 2008; 7:281-5. [PMID: 18176851 DOI: 10.1007/s10689-007-9179-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 12/21/2007] [Indexed: 01/23/2023]
Abstract
The two most common causes of hereditary colorectal cancer are Lynch syndrome and familial adenomatous polyposis (FAP). The phenotype of Lynch syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is differentiated in part from FAP by the lack of profuse colonic polyposis. Here we describe a proband who presented with greater than 50 adenomatous colonic polyps prior to developing cancer of the colon and urinary bladder, and a family history that fulfills the Amsterdam criteria. Germline analyses of APC and MYH in the proband did not reveal any mutations. Comprehensive analysis of the mismatch repair genes associated with Lynch syndrome revealed a germline hMSH6 missense mutation 2314C>T (arg772trp) and normal sequencing for hMSH2 and hMLH1. We outline evidence supporting the pathogenicity of the identified hMSH6 mutation (arg772trp) and suggest possible etiologies for the unexplained colonic adenomatous polyposis.
Collapse
|