1
|
Bao S, Sun N, Li Y, Shu J, Xu J, Zhang Y, Qiu X. BRCA mutation status and pathological characterization of breast cancer in Zhoushan Islands, China. J Int Med Res 2024; 52:3000605231223426. [PMID: 38263931 PMCID: PMC10807394 DOI: 10.1177/03000605231223426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE To investigate BRCA1/2 gene mutations and their relationship with clinicopathological features in patients with breast cancer in Zhoushan Islands. METHODS High-throughput whole-exome gene sequencing was used to detect BRCA1/2 mutations in 776 breast cancer patients in Zhoushan Islands. RESULTS The BRCA1/2 mutation rate of breast cancer patients in Zhoushan Islands was 4.38% (34/776). BRCA1 mutations were significantly correlated with age, molecular type, and family history of breast and ovarian cancers. BRCA2 mutations were most commonly found in invasive lobular carcinoma. Moreover, the BRCA2 mutation rate of cancers with molecular type luminal B (receptor protein-tyrosine kinase [HER2]-negative) was also relatively high. CONCLUSION The rate of BRCA1/2 mutations in breast cancer patients from Zhoushan Islands is approximately 4.38%, and BRCA1 mutation is related to age, molecular type, and family history of breast and ovarian cancers.
Collapse
Affiliation(s)
- Shuhui Bao
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
- Department of Breast Surgery, Zhoushan Hospital, Zhejiang, China
| | - Nini Sun
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Yaling Li
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Jiaojie Shu
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Jing Xu
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Yong Zhang
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xia Qiu
- Surgery Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang, China
| |
Collapse
|
2
|
Khorshid Shamshiri A, Alidoust M, Hemmati Nokandei M, Pasdar A, Afzaljavan F. Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1729-1747. [PMID: 36639603 DOI: 10.1007/s12094-022-03071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mammography Density (MD) is a potential risk marker that is influenced by genetic polymorphisms and can subsequently modulate the risk of breast cancer. This qualitative systematic review summarizes the genes and biological pathways involved in breast density and discusses the potential clinical implications in view of the genetic risk profile for breast density. METHODS The terms related to "Common genetic variations" and "Breast density" were searched in Scopus, PubMed, and Web of Science databases. Gene pathways analysis and assessment of protein interactions were also performed. RESULTS Eighty-six studies including 111 genes, reported a significant association between mammographic density in different populations. ESR1, IGF1, IGFBP3, and ZNF365 were the most prevalent genes. Moreover, estrogen metabolism, signal transduction, and prolactin signaling pathways were significantly related to the associated genes. Mammography density was an associated phenotype, and eight out of 111 genes, including COMT, CYP19A1, CYP1B1, ESR1, IGF1, IGFBP1, IGFBP3, and LSP1, were modifiers of this trait. CONCLUSION Genes involved in developmental processes and the evolution of secondary sexual traits play an important role in determining mammographic density. Due to the effect of breast tissue density on the risk of breast cancer, these genes may also be associated with breast cancer risk.
Collapse
Affiliation(s)
- Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alidoust
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Hemmati Nokandei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Fahimeh Afzaljavan
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran.
| |
Collapse
|
3
|
Zhang Q, Fang Y, She C, Zheng R, Hong C, Chen C, Wu J. Diagnostic and prognostic significance of SLC50A1 expression in patients with primary early breast cancer. Exp Ther Med 2022; 24:616. [PMID: 36160901 PMCID: PMC9468843 DOI: 10.3892/etm.2022.11553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
There is a lack of validated biomarkers for the diagnosis of early breast cancer (EBC). The current study aimed to determine the diagnostic and prognostic value of solute carrier family 50 member 1 (SLC50A1) in patients with EBC. Therefore, 123 patients with EBC, 30 patients with benign breast disease (BBD) and 26 healthy controls (HCs) were recruited. The serum levels of SLC50A1 in paired sera of 40 postoperative patients were assessed by ELISA. Immunohistochemical staining for SLC50A1 was performed in surgical tissue derived from 83 patients with EBC and 30 patients with BBD. mRNA expression of SLC50A1 and its diagnostic and prognostic value in patients with EBC was evaluated using an RNA-sequencing database. The results showed that serum levels of SLC50A1 in patients with EBC were significantly higher compared with those in patients with BBD and HCs (both P<0.001). Additionally, receiver operating characteristic curve analysis revealed that the serum levels of SLC50A1 distinguished patients with EBC from patients with BBD and HCs with a sensitivity of 76.42% and specificity of 76.79% [area under the curve (AUC)=0.783; P<0.001]. The diagnostic value of SLC50A1 was significantly greater than that of carcinoembryonic (P<0.005) and carbohydrate antigen 15-3 (P<0.029). Furthermore, the number of SLC50A1 positive cells significantly increased in tissue of patients with EBC compared with patients with BBD (P<0.001). A positive association between serum levels of SLC50A1 and its expression in tissue samples was observed in patients with EBC (ρ=0.700; P<0.001). Additionally, bioinformatics analysis verified the diagnostic value of SLC50A1, with an AUC of 0.983 (P<0.001). Multivariate analysis demonstrated that SLC50A1 was an independent prognostic factor in patients with EBC with a hazard ratio of 1.917 (P=0.013). These findings indicated that SLC50A1 may be a potential diagnostic biomarker for primary EBC and that SLC50A1 upregulation may be associated with unfavorable prognosis in patients with EBC.
Collapse
Affiliation(s)
- Qunchen Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yutong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Chuanghong She
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Rongji Zheng
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Chaoqun Hong
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Chunfa Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Chunfa Chen or Dr Jundong Wu, The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Rao Ping Road, Shantou, Guangdong 515041, P.R. China
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Chunfa Chen or Dr Jundong Wu, The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Rao Ping Road, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
4
|
Gole L, Yeong J, Lim JCT, Ong KH, Han H, Thike AA, Poh YC, Yee S, Iqbal J, Hong W, Lee B, Yu W, Tan PH. Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients. Breast Cancer Res 2020; 22:42. [PMID: 32375854 PMCID: PMC7204022 DOI: 10.1186/s13058-020-01282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Stromal and collagen biology has a significant impact on tumorigenesis and metastasis. Collagen is a major structural extracellular matrix component in breast cancer, but its role in cancer progression is the subject of historical debate. Collagen may represent a protective layer that prevents cancer cell migration, while increased stromal collagen has been demonstrated to facilitate breast cancer metastasis. Methods Stromal remodeling is characterized by collagen fiber restructuring and realignment in stromal and tumoral areas. The patients in our study were diagnosed with triple-negative breast cancer in Singapore General Hospital from 2003 to 2015. We designed novel image processing and quantification pipelines to profile collagen structures using numerical imaging parameters. Our solution differentiated the collagen into two distinct modes: aggregated thick collagen (ATC) and dispersed thin collagen (DTC). Results Extracted parameters were significantly associated with bigger tumor size and DCIS association. Of numerical parameters, ATC collagen fiber density (CFD) and DTC collagen fiber length (CFL) were of significant prognostic value for disease-free survival and overall survival for the TNBC patient cohort. Using these two parameters, we built a predictive model to stratify the patients into four groups. Conclusions Our study provides a novel insight for the quantitation of collagen in the tumor microenvironment and will help predict clinical outcomes for TNBC patients. The identified collagen parameters, ATC CFD and DTC CFL, represent a new direction for clinical prognosis and precision medicine. We also compared our result with benign samples and DICS samples to get novel insight about the TNBC heterogeneity. The improved understanding of collagen compartment of TNBC may provide insights into novel targets for better patient stratification and treatment.
Collapse
Affiliation(s)
- Laurent Gole
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Joe Yeong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kok Haur Ong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Hao Han
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Pathology, National University Hospital, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Yong Cheng Poh
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Sidney Yee
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore.
| | - Weimiao Yu
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Diagnostics Tower, Singapore, 169856, Singapore.
| |
Collapse
|
5
|
Li Y, Zhou X, Liu J, Yin Y, Yuan X, Yang R, Wang Q, Ji J, He Q. Differentially expressed genes and key molecules of BRCA1/2-mutant breast cancer: evidence from bioinformatics analyses. PeerJ 2020; 8:e8403. [PMID: 31998560 PMCID: PMC6979404 DOI: 10.7717/peerj.8403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background BRCA1 and BRCA2 genes are currently proven to be closely related to high lifetime risks of breast cancer. To date, the closely related genes to BRCA1/2 mutations in breast cancer remains to be fully elucidated. This study aims to identify the gene expression profiles and interaction networks influenced by BRCA1/2 mutations, so as to reflect underlying disease mechanisms and provide new biomarkers for breast cancer diagnosis or prognosis. Methods Gene expression profiles from The Cancer Genome Atlas (TCGA) database were downloaded and combined with cBioPortal website to identify exact breast cancer patients with BRCA1/2 mutations. Gene set enrichment analysis (GSEA) was used to analyze some enriched pathways and biological processes associated BRCA mutations. For BRCA1/2-mutant breast cancer, wild-type breast cancer and corresponding normal tissues, three independent differentially expressed genes (DEGs) analysis were performed to validate potential hub genes with each other. Protein-protein interaction (PPI) networks, survival analysis and diagnostic value assessment helped identify key genes associated with BRCA1/2 mutations. Results The regulation process of cell cycle was significantly enriched in mutant group compared with wild-type group. A total of 294 genes were identified after analysis of DEGs between mutant patients and wild-type patients. Interestingly, by the other two comparisons, we identified 43 overlapping genes that not only significantly expressed in wild-type breast cancer patients relative to normal tissues, but more significantly expressed in BRCA1/2-mutant breast patients. Based on the STRING database and cytoscape software, we constructed a PPI network using 294 DEGs. Through topological analysis scores of the PPI network and 43 overlapping genes, we sought to select some genes, thereby using survival analysis and diagnostic value assessment to identify key genes pertaining to BRCA1/2-mutant breast cancer. CCNE1, NPBWR1, A2ML1, EXO1 and TTK displayed good prognostic/diagnostic value for breast cancer and BRCA1/2-mutant breast cancer. Conclusion Our research provides comprehensive and new insights for the identification of biomarkers connected with BRCA mutations, availing diagnosis and treatment of breast cancer and BRCA1/2-mutant breast cancer patients.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiali Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yin
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Laboratories, XIAN XD Group Hospital, Xi'an, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihua Yang
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi Wang
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Ji
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Huang CC, Chan SY, Lee WC, Chiang CJ, Lu TP, Cheng SHC. Development of a prediction model for breast cancer based on the national cancer registry in Taiwan. Breast Cancer Res 2019; 21:92. [PMID: 31409418 PMCID: PMC6691540 DOI: 10.1186/s13058-019-1172-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study aimed to develop a prognostic model to predict the breast cancer-specific survival and overall survival for breast cancer patients in Asia and to demonstrate a significant difference in clinical outcomes between Asian and non-Asian patients. METHODS We developed our prognostic models by applying a multivariate Cox proportional hazards model to Taiwan Cancer Registry (TCR) data. A data-splitting strategy was used for internal validation, and a multivariable fractional polynomial approach was adopted for prognostic continuous variables. Subjects who were Asian, black, or white in the US-based Surveillance, Epidemiology, and End Results (SEER) database were analyzed for external validation. Model discrimination and calibration were evaluated in both internal and external datasets. RESULTS In the internal validation, both training data and testing data calibrated well and generated good area under the ROC curves (AUC; 0.865 in training data and 0.846 in testing data). In the external validation, although the AUC values were larger than 0.85 in all populations, a lack of model calibration in non-Asian groups revealed that racial differences had a significant impact on the prediction of breast cancer mortality. For the calibration of breast cancer-specific mortality, P values < 0.001 at 1 year and 0.018 at 4 years in whites, and P values ≤ 0.001 at 1 and 2 years and 0.032 at 3 years in blacks, indicated that there were significant differences (P value < 0.05) between the predicted mortality and the observed mortality. Our model generally underestimated the mortality of the black population. In the white population, our model underestimated mortality at 1 year and overestimated it at 4 years. And in the Asian population, all P values > 0.05, indicating predicted mortality and actual mortality at 1 to 4 years were consistent. CONCLUSIONS We developed and validated a pioneering prognostic model that especially benefits breast cancer patients in Asia. This study can serve as an important reference for breast cancer prediction in the future.
Collapse
Affiliation(s)
- Ching-Chieh Huang
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Soa-Yu Chan
- Department of Computing and Information, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Skye Hung-Chun Cheng
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, No. 125, Lih-Der Road, Pei-Tou District, Taipei, Taiwan
| |
Collapse
|
7
|
Hung FH, Wang YA, Jian JW, Peng HP, Hsieh LL, Hung CF, Yang MM, Yang AS. Evaluating BRCA mutation risk predictive models in a Chinese cohort in Taiwan. Sci Rep 2019; 9:10229. [PMID: 31308460 PMCID: PMC6629692 DOI: 10.1038/s41598-019-46707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/03/2019] [Indexed: 12/02/2022] Open
Abstract
Accurate estimation of carrier probabilities of cancer susceptibility gene mutations is an important part of pre-test genetic counselling. Many predictive models are available but their applicability in the Asian population is uncertain. We evaluated the performance of five BRCA mutation risk predictive models in a Chinese cohort of 647 women, who underwent germline DNA sequencing of a cancer susceptibility gene panel. Using areas under the curve (AUCs) on receiver operating characteristics (ROC) curves as performance measures, the models did comparably well as in western cohorts (BOADICEA 0.75, BRCAPRO 0.73, Penn II 0.69, Myriad 0.68). For unaffected women with family history of breast or ovarian cancer (n = 144), BOADICEA, BRCAPRO, and Tyrer-Cuzick models had excellent performance (AUC 0.93, 0.92, and 0.92, respectively). For women with both personal and family history of breast or ovarian cancer (n = 241), all models performed fairly well (BOADICEA 0.79, BRCAPRO 0.79, Penn II 0.75, Myriad 0.70). For women with personal history of breast or ovarian cancer but no family history (n = 262), most models did poorly. Between the two well-performed models, BOADICEA underestimated mutation risks while BRCAPRO overestimated mutation risks (expected/observed ratio 0.67 and 2.34, respectively). Among 424 women with personal history of breast cancer and available tumor ER/PR/HER2 data, the predictive models performed better for women with triple negative breast cancer (AUC 0.74 to 0.80) than for women with luminal or HER2 overexpressed breast cancer (AUC 0.63 to 0.69). However, incorporating ER/PR/HER2 status into the BOADICEA model calculation did not improve its predictive accuracy.
Collapse
Affiliation(s)
- Fei-Hung Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yong Alison Wang
- Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan. .,National Yang Ming University School of Medicine, Taipei, Taiwan.
| | - Jhih-Wei Jian
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Pin Peng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Chen-Fang Hung
- Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan
| | - Max M Yang
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Wang YA, Jian JW, Hung CF, Peng HP, Yang CF, Cheng HCS, Yang AS. Germline breast cancer susceptibility gene mutations and breast cancer outcomes. BMC Cancer 2018; 18:315. [PMID: 29566657 PMCID: PMC5863855 DOI: 10.1186/s12885-018-4229-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
Background It is unclear whether germline breast cancer susceptibility gene mutations affect breast cancer related outcomes. We wanted to evaluate mutation patterns in 20 breast cancer susceptibility genes and correlate the mutations with clinical characteristics to determine the effects of these germline mutations on breast cancer prognosis. Methods The study cohort included 480 ethnic Chinese individuals in Taiwan with at least one of the six clinical risk factors for hereditary breast cancer: family history of breast or ovarian cancer, young age of onset for breast cancer, bilateral breast cancer, triple negative breast cancer, both breast and ovarian cancer, and male breast cancer. PCR-enriched amplicon-sequencing on a next generation sequencing platform was used to determine the germline DNA sequences of all exons and exon-flanking regions of the 20 genes. Protein-truncating variants were identified as pathogenic. Results We detected a 13.5% carrier rate of pathogenic germline mutations, with BRCA2 being the most prevalent and the non-BRCA genes accounting for 38.5% of the mutation carriers. BRCA mutation carriers were more likely to be diagnosed of breast cancer with lymph node involvement (66.7% vs 42.6%; P = 0.011), and had significantly worse breast cancer specific outcomes. The 5-year disease-free survival was 73.3% for BRCA mutation carriers and 91.1% for non-carriers (hazard ratio for recurrence or death 2.42, 95% CI 1.29–4.53; P = 0.013). After adjusting for clinical prognostic factors, BRCA mutation remained an independent poor prognostic factor for cancer recurrence or death (adjusted hazard ratio 3.04, 95% CI 1.40–6.58; P = 0.005). Non-BRCA gene mutation carriers did not exhibit any significant difference in cancer characteristics or outcomes compared to those without detected mutations. Among the risk factors for hereditary breast cancer, the odds of detecting a germline mutation increased significantly with having bilateral breast cancer (adjusted odds ratio 3.27, 95% CI 1.64–6.51; P = 0.0008) or having more than one risk factor (odds ratio 2.07, 95% CI 1.22–3.51; P = 0.007). Conclusions Without prior knowledge of the mutation status, BRCA mutation carriers had more advanced breast cancer on initial diagnosis and worse cancer-related outcomes. Optimal approach to breast cancer treatment for BRCA mutation carriers warrants further investigation. Electronic supplementary material The online version of this article (10.1186/s12885-018-4229-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Alison Wang
- Department of Internal Medicine, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan.
| | - Jhih-Wei Jian
- Genomic Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chen-Fang Hung
- Department of Research, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan
| | - Hung-Pin Peng
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Chun Skye Cheng
- Department of Research, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan.,Department of Radiation Oncology, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan
| | - An-Suei Yang
- Genomic Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Laitman Y, Feldman DM, Sklair-Levy M, Yosepovich A, Barshack-Nakar I, Brodsky M, Halshtok O, Shalmon A, Gotlieb M, Friedman E. Abnormal Findings Detected by Multi-modality Breast Imaging and Biopsy Results in a High-risk Clinic. Clin Breast Cancer 2018; 18:e695-e698. [PMID: 29292184 DOI: 10.1016/j.clbc.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND High-risk BRCA mutation carriers are offered a surveillance scheme aimed at early detection of breast cancer. Although the efficacy of this scheme in breast cancer detection is well-established, the rate of breast cancer diagnosis of radiologically suspicious lesions and the effect of this screening scheme on breast cancer grade and stage are less well-defined. PATIENTS AND METHODS Female BRCA1 and BRCA2 mutation carriers who were cancer-free at the beginning of follow-up at the Meirav High-risk Clinic, Sheba Medical Center, were eligible. Radiological imaging data (mammography, ultrasound, magnetic resonance imaging, Breast Imaging Reporting and Data System scores), and histopathologic data on breast biopsies were retrieved. RESULTS Overall, 1055 women participated in the study; 760 (72%) were Ashkenazim, 661 (62.6%) were BRCA1 mutation carriers, the mean age at first visit was 44.1 ± 11.8 years, and there was a mean follow-up of 6.2 years. All participants underwent 6641 breast imaging tests: 2613 magnetic resonance imagings, 2662 breast ultrasounds, and 1366 mammograms. Overall, 295 biopsies were performed on 254 women: 82 (27%) biopsies on 79 women were diagnosed with breast cancer, including ductal carcinoma in situ: invasive breast cancer was diagnosed in 58 (70.7%), of whom 36 (62% of invasive cancer) were grade 3, and all but 10 were stage 1 to 2. Benign findings were noted in 213 biopsies performed on 175 women, with fibrocystic disease (n = 134; 62.9%) or fibroadenoma (n = 60; 28.16%) most commonly diagnosed. CONCLUSIONS Adherence to a breast cancer surveillance scheme enables breast cancer detection at an early stage but at advanced grade. Most biopsies (72%) performed in this high-risk clinic are benign.
Collapse
Affiliation(s)
- Yael Laitman
- Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Miri Sklair-Levy
- Meirav High-risk Clinic, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ady Yosepovich
- Department of Pathology, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Breast Pathology Service, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Barshack-Nakar
- Department of Pathology, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Malka Brodsky
- Meirav High-risk Clinic, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Osnat Halshtok
- Meirav High-risk Clinic, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Anat Shalmon
- Meirav High-risk Clinic, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Michael Gotlieb
- Meirav High-risk Clinic, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eitan Friedman
- Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Meirav High-risk Clinic, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
10
|
Co M, Chiu R, Chiu TM, Chong YC, Lau S, Lee YH, To HM, Kwong A. Nipple-Sparing Mastectomy and Its Application on BRCA Gene Mutation Carrier. Clin Breast Cancer 2017; 17:581-584. [DOI: 10.1016/j.clbc.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 11/17/2022]
|
11
|
Xu Y, Yuan Q, Zhou J, Chang X, Wang K, Han J. Association of TOX3 polymorphisms with breast cancer: A meta-analysis. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Yeong J, Thike AA, Ikeda M, Lim JCT, Lee B, Nakamura S, Iqbal J, Tan PH. Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women. J Clin Pathol 2017; 71:161-167. [PMID: 28735300 DOI: 10.1136/jclinpath-2017-204495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Triple-negative breast cancers (TNBCs) are defined by their lack of oestrogen receptor, progesterone receptor and epidermal growth factor receptor 2. Although heterogeneous, the majority are aggressive and treatment options are limited. Caveolin acts as tumour suppressor or promoter depending on the cancer type. AIM In this study, we aimed to determine if the expression levels of the candidate biomarker caveolin-1 on stromal or tumour cells were associated with clinicopathological parameters and disease outcomes in TNBCs from an ethnically diverse cohort of Asian women. METHODS Tumour specimens from 699 women with TNBC were subjected to immunohistochemical analysis of the frequency and intensity of caveolin-1 expression in tumour and stromal cells. A subset of 141 tumour samples also underwent Nanostring measurement of CAV1 mRNA. Results were correlated with clinicopathological parameters and disease outcomes. RESULTS Expression of caveolin-1 in stromal cells was observed in 14.4% of TNBC cases. TNBCs of the basal-like phenotype (85% of samples) were significantly more likely to exhibit stromal cell caveolin-1 expression (p=0.028), as were those with a trabecular growth pattern (p=0.007). Lack of stromal caveolin-1 expression in both TNBCs and those with the basal-like phenotype was significantly associated with worse overall survival (p=0.009 and p=0.026, respectively): accordingly, increasing mRNA levels of CAV1 in TNBC samples predicted better overall survival. Caveolin-1 expression on TNBC tumour cells was not associated with clinical outcome. CONCLUSION Stromal, but not tumoural, caveolin-1 expression is significantly associated with survival in Asian women with TNBC.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore
| | - Murasaki Ikeda
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | | | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
13
|
Attri KS, Murthy D, Singh PK. Racial disparity in metabolic regulation of cancer. Front Biosci (Landmark Ed) 2017; 22:1221-1246. [PMID: 28199202 DOI: 10.2741/4543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic mutations and metabolic reprogramming are two key hallmarks of cancer, required for proliferation, invasion, and metastasis of the disease. While genetic mutations, whether inherited or acquired, are critical for the initiation of tumor development, metabolic reprogramming is an effector mechanism imperative for adaptational transition during the progression of cancer. Recent findings in the literature emphasize the significance of molecular cross-talk between these two cellular processes in regulating signaling and differentiation of cancer cells. Genome-wide sequencing analyses of cancer genomes have highlighted the association of various genic mutations in predicting cancer risk and survival. Oncogenic mutational frequency is heterogeneously distributed among various cancer types in different populations, resulting in varying susceptibility to cancer risk. In this review, we explore and discuss the role of genetic mutations in metabolic enzymes and metabolic oncoregulators to stratify cancer risk in persons of different racial backgrounds.
Collapse
Affiliation(s)
- Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA,
| |
Collapse
|
14
|
Anwar SL, Haryono SJ, Aryandono T, Datasena IGB. Screening of BRCA1/2 Mutations Using Direct Sequencing in Indonesian Familial Breast Cancer Cases. Asian Pac J Cancer Prev 2017; 17:1987-91. [PMID: 27221885 DOI: 10.7314/apjcp.2016.17.4.1987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer has emerged as the most prevalent cancer among women worldwide, including in Indonesia. The contribution of genes associated with high-risk breast-ovarian cancers, BRCA1 and BRCA2, in the Indonesian population is relatively unknown. We have characterized family history of patients with moderate- to high-risk of breast cancer predisposition in 26 unrelated cases from Indonesia for BRCA1/2 mutation analyses using direct sequencing. Known deleterious mutations were not found in either BRCA1 or BRCA2 genes. Seven variants in BRCA2 were documented in 10 of 26 patients (38%). All variants were categorized as unclassified (VUSs). Two synonymous variants, c.3623A>G and c.4035T>C, were found in 5 patients. One variant, c4600T>C, was found in a 38 year old woman with a family history of breast cancer. We have found 4 novel variants in BRCA2 gene including c.6718C>G, c.3281A>G, c.10176C>G, and c4490T>C in 4 unrelated patients, all of them having a positive family history of breast cancer. In accordance to other studies in Asian population, our study showed more frequent variants in BRCA2 compared to BRCA1. Further studies involving larger numbers of hereditary breast cancer patients are required to reveal contribution of BRCA1/2 mutations and/or other predisposing genes among familial breast cancer patients in Indonesia.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta, Indonesia E-mail :
| | | | | | | |
Collapse
|
15
|
Atshemyan S, Chavushyan A, Berberian N, Sahakyan A, Zakharyan R, Arakelyan A. Characterization of BRCA1/2 mutations in patients with family history of breast cancer in Armenia. F1000Res 2017; 6:29. [PMID: 28357044 PMCID: PMC5357036 DOI: 10.12688/f1000research.10434.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background. Breast cancer is one of the most common cancers in women worldwide. The germline mutations of the BRCA1 and BRCA2 genes are the most significant and well characterized genetic risk factors for hereditary breast cancer. Intensive research in the last decades has demonstrated that the incidence of mutations varies widely among different populations. In this study we attempted to perform a pilot study for identification and characterization of mutations in BRCA1 and BRCA2 genes among Armenian patients with family history of breast cancer and their healthy relatives. Methods. We performed targeted exome sequencing for BRCA1 and BRCA2 genes in 6 patients and their healthy relatives. After alignment of short reads to the reference genome, germline single nucleotide variation and indel discovery was performed using GATK software. Functional implications of identified variants were assessed using ENSEMBL Variant Effect Predictor tool. Results. In total, 39 single nucleotide variations and 4 indels were identified, from which 15 SNPs and 3 indels were novel. No known pathogenic mutations were identified, but 2 SNPs causing missense amino acid mutations had significantly increased frequencies in the study group compared to the 1000 Genome populations. Conclusions. Our results demonstrate the importance of screening of BRCA1 and BRCA2 gene variants in the Armenian population in order to identity specifics of mutation spectrum and frequencies and enable accurate risk assessment of hereditary breast cancers.
Collapse
Affiliation(s)
- Sofi Atshemyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Andranik Chavushyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia
| | | | - Arthur Sahakyan
- ARTMED Medical Rehabilitation Center (CJSC), Yerevan, Armenia
| | - Roksana Zakharyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Arsen Arakelyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia
| |
Collapse
|
16
|
Zuo WJ, Jiang YZ, Wang YJ, Xu XE, Hu X, Liu GY, Wu J, Di GH, Yu KD, Shao ZM. Dual Characteristics of Novel HER2 Kinase Domain Mutations in Response to HER2-Targeted Therapies in Human Breast Cancer. Clin Cancer Res 2016; 22:4859-4869. [DOI: 10.1158/1078-0432.ccr-15-3036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
|
17
|
Yao L, Sun J, Zhang J, He Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. Breast cancer risk in Chinese women with BRCA1 or BRCA2 mutations. Breast Cancer Res Treat 2016; 156:441-445. [DOI: 10.1007/s10549-016-3766-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
|
18
|
Kwong A, Shin VY, Ho JCW, Kang E, Nakamura S, Teo SH, Lee ASG, Sng JH, Ginsburg OM, Kurian AW, Weitzel JN, Siu MT, Law FBF, Chan TL, Narod SA, Ford JM, Ma ESK, Kim SW. Comprehensive spectrum of BRCA1 and BRCA2 deleterious mutations in breast cancer in Asian countries. J Med Genet 2015; 53:15-23. [PMID: 26187060 DOI: 10.1136/jmedgenet-2015-103132] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
Approximately 5%-10% of breast cancers are due to genetic predisposition caused by germline mutations; the most commonly tested genes are BRCA1 and BRCA2 mutations. Some mutations are unique to one family and others are recurrent; the spectrum of BRCA1/BRCA2 mutations varies depending on the geographical origins, populations or ethnic groups. In this review, we compiled data from 11 participating Asian countries (Bangladesh, Mainland China, Hong Kong SAR, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Thailand and Vietnam), and from ethnic Asians residing in Canada and the USA. We have additionally conducted a literature review to include other Asian countries mainly in Central and Western Asia. We present the current pathogenic mutation spectrum of BRCA1/BRCA2 genes in patients with breast cancer in various Asian populations. Understanding BRCA1/BRCA2 mutations in Asians will help provide better risk assessment and clinical management of breast cancer.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, Hong Kong Departments of Medicine (Oncology) and Genetics, Stanford University School of Medicine, Stanford, California, USA Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Vivian Y Shin
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - John C W Ho
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Eunyoung Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seigo Nakamura
- Department of Surgery, Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia Faculty of Medicine, University Malaya Cancer Research Institute, University Malaya, Subang Jaya, Malaysia
| | - Ann S G Lee
- Division of Medical Sciences, National Cancer Centre, Singapore, Singapore Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Office of Clinical & Academic Faculty Affairs, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jen-Hwei Sng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ophira M Ginsburg
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Allison W Kurian
- Departments of Medicine (Oncology) and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey N Weitzel
- Division of Clinical Cancer Genetics, City of Hope National Medical Center, Duarte, California, USA
| | - Man-Ting Siu
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Fian B F Law
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, Hong Kong Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, Hong Kong Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Steven A Narod
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - James M Ford
- Departments of Medicine (Oncology) and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Edmond S K Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, Hong Kong Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Sung-Won Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
19
|
Wei X, Zhang E, Wang C, Gu D, Shen L, Wang M, Xu Z, Gong W, Tang C, Gao J, Chen J, Zhang Z. A MAP3k1 SNP predicts survival of gastric cancer in a Chinese population. PLoS One 2014; 9:e96083. [PMID: 24759887 PMCID: PMC3997500 DOI: 10.1371/journal.pone.0096083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Genome-wide association studies (GWAS) have demonstrated that the single nucleotide polymorphism (SNP) MAP3K1 rs889312 is a genetic susceptibility marker significantly associated with a risk of hormone-related tumors such as breast cancer. Considering steroid hormone-mediated signaling pathways have an important role in the progression of gastric cancer, we hypothesized that MAP3K1 rs889312 may be associated with survival outcomes in gastric cancer. The purpose of this study was to test this hypothesis. METHODS We genotyped MAP3K1 rs889312 using TaqMan in 884 gastric cancer patients who received subtotal or total gastrectomy. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between MAP3K1 rs889312 genotypes and survival outcomes of gastric cancer. RESULTS Our findings reveal that the rs889312 heterozygous AC genotype was significantly associated with an increased rate of mortality among patients with diffuse-type gastric cancer (log-rank P = 0.028 for AC versus AA/CC, hazard ratio [HR] = 1.32, 95% confidence interval [CI] = 1.03-1.69), compared to those carrying the homozygous variant genotypes (AA/CC). Additionally, univariate and multivariate Cox regression analysis demonstrate that rs889312 polymorphism was an independent risk factor for poor survival in these patients. CONCLUSIONS In conclusion, we demonstrate that MAP3K1 rs889312 is closely correlated with outcome among diffuse-type gastric cancer. This raises the possibility for rs889312 polymorphisms to be used as an independent indicator for predicting the prognosis of diffuse-type gastric cancer within the Chinese population.
Collapse
Affiliation(s)
- Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Enke Zhang
- Central Laboratory, Shanxi People’s Hospital, Xi’an, Shanxi Province, China
| | - Chun Wang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lili Shen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, Yixing, Jiangsu Province, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinglong Gao
- Central Laboratory, Shanxi People’s Hospital, Xi’an, Shanxi Province, China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail: (JC); (ZZ)
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail: (JC); (ZZ)
| |
Collapse
|
20
|
|