1
|
Naya-Català F, Belenguer A, Montero D, Torrecillas S, Soriano B, Calduch-Giner J, Llorens C, Fontanillas R, Sarih S, Zamorano MJ, Izquierdo M, Pérez-Sánchez J. Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics 2023; 24:670. [PMID: 37936076 PMCID: PMC10631108 DOI: 10.1186/s12864-023-09759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Broodstock nutritional programming improves the offspring utilization of plant-based diets in gilthead sea bream through changes in hepatic metabolism. Attention was initially focused on fatty acid desaturases, but it can involve a wide range of processes that remain largely unexplored. How all this can be driven by a different genetic background is hardly underlined, and the present study aimed to assess how broodstock nutrition affects differentially the transcriptome and genome-wide DNA methylome of reference and genetically selected fish within the PROGENSA® selection program. RESULTS After the stimulus phase with a low fish oil diet, two offspring subsets of each genetic background received a control or a FUTURE-based diet. This highlighted a different hepatic transcriptome (RNA-seq) and genome-wide DNA methylation (MBD-seq) pattern depending on the genetic background. The number of differentially expressed transcripts following the challenge phase varied from 323 in reference fish to 2,009 in genetically selected fish. The number of discriminant transcripts, and associated enriched functions, were also markedly higher in selected fish. Moreover, correlation analysis depicted a hyper-methylated and down-regulated gene expression state in selected fish with the FUTURE diet, whereas the opposite pattern appeared in reference fish. After filtering for highly represented functions in selected fish, 115 epigenetic markers were retrieved in this group. Among them, lipid metabolism genes (23) were the most reactive following ordering by fold-change in expression, rendering a final list of 10 top markers with a key role on hepatic lipogenesis and fatty acid metabolism (cd36, pitpna, cidea, fasn, g6pd, lipt1, scd1a, acsbg2, acsl14, acsbg2). CONCLUSIONS Gene expression profiles and methylation signatures were dependent on genetic background in our experimental model. Such assumption affected the magnitude, but also the type and direction of change. Thus, the resulting epigenetic clock of reference fish might depict an older phenotype with a lower methylation for the epigenetically responsive genes with a negative methylation-expression pattern. Therefore, epigenetic markers will be specific of each genetic lineage, serving the broodstock programming in our selected fish to prevent and mitigate later in life the risk of hepatic steatosis through changes in hepatic lipogenesis and fatty acid metabolism.
Collapse
Affiliation(s)
- F Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - A Belenguer
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - B Soriano
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - J Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - C Llorens
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - R Fontanillas
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - S Sarih
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M J Zamorano
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - J Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain.
| |
Collapse
|
2
|
Li L, He S, Lin MH, Zhang YP, Kuhl H, Liang XF. Whole-genome resequencing and bisulfite sequencing provide new insights into the feeding habit domestication in mandarin fish ( Siniperca chuatsi). Front Genet 2023; 13:1088081. [PMID: 36712873 PMCID: PMC9878154 DOI: 10.3389/fgene.2022.1088081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mandarin fish (Siniperca chuatsi) is one of the most economically important fish in China. However, it has the peculiar feeding habit that it feeds solely on live prey fish since first-feeding, while refuses dead prey fish or artificial diets. After the specific training procedure, partial individuals could accept dead prey fish and artificial diets. The genetic basis of individual difference in artificial diet feeding habit is still unknown. In the present study, the resequencing was performed between 10 individuals which could be domesticated to accept artificial diets and 10 individuals which could not. Through the selective sweep analysis based on heterozygosity (Hp) and population differentiation coefficient (Fst), 57 candidate windows were identified as the putative selected regions for feeding habit domestication of mandarin fish, involved in 149 genes. These genes were related to memory, vision and olfaction function, which could be potential targets of molecular marker assistant breeding of artificial diet feeding trait. Beside of the DNA sequence, we also explored the potential role of DNA methylation in feeding habit domestication in mandarin fish. Whole-genome bisulfite sequencing was performed between the individuals which could be domesticated to accept artificial diets and those could not. 5,976 differentially methylated regions were identified, referring to 3,522 genes, such as the genes involved in cAMP signaling pathway. The DNA methylation changes of these genes might contribute to the adaption of artificial diets in mandarin fish. In conclusion, the putative selected regions and the differentially methylated regions were identified in the whole genome, providing new insights into the feeding habit domestication from live prey fish to artificial diets in mandarin fish. And the involved genes were identified as the candidate genes for molecular breeding of artificial diet utilization in mandarin fish.
Collapse
Affiliation(s)
- Ling Li
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Shan He
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Ming-Hui Lin
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Yan-Peng Zhang
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany,*Correspondence: Xu-Fang Liang, ; Heiner Kuhl,
| | - Xu-Fang Liang
- Chinese Perch Research Center, College of Fisheries, Huazhong Agricultural University, Wuhan, China,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China,*Correspondence: Xu-Fang Liang, ; Heiner Kuhl,
| |
Collapse
|
3
|
Wang N, Yang Q, Wang J, Shi R, Li M, Gao J, Xu W, Yang Y, Chen Y, Chen S. Integration of Transcriptome and Methylome Highlights the Roles of Cell Cycle and Hippo Signaling Pathway in Flatfish Sexual Size Dimorphism. Front Cell Dev Biol 2021; 9:743722. [PMID: 34926443 PMCID: PMC8675331 DOI: 10.3389/fcell.2021.743722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 01/14/2023] Open
Abstract
Sexual size dimorphism (SSD) is the difference in segments or body size between sexes prevalent in various species. Understanding the genetic architecture of SSD has remained a significant challenge owing to the complexity of growth mechanisms and the sexual influences among species. The Chinese tongue sole (Cynoglossus semilaevis), which exhibits a female-biased SSD and sex reversal from female to pseudomale, is an ideal model for exploring SSD mechanism at the molecular level. The present study aimed to integrate transcriptome and methylome analysis to unravel the genetic and epigenetic changes in female, male, and pseudomale C. semilaevis. The somatotropic and reproductive tissues (brain, liver, gonad, and muscle) transcriptomes were characterized by RNA-seq technology. Transcriptomic analysis unravelled numerous differentially expressed genes (DEGs) involved in cell growth and death-related pathways. The gonad and muscle methylomes were further employed for screening differentially methylated genes (DMGs). Relatively higher DNA methylation levels were observed in the male and pseudomale individuals. In detail, hypermethylation of the chromosome W was pronounced in the pseudomale group than in the female group. Furthermore, weighted gene co-expression network analysis showed that turquoise and brown modules positively and negatively correlated with the female-biased SSD, respectively. A combined analysis of the module genes and DMGs revealed the female-biased mRNA transcripts and hypomethylated levels in the upstream and downstream regions across the cell cycle-related genes. Moreover, the male and pseudomale-biased gene expression in the hippo signaling pathway were positively correlated with their hypermethylation levels in the gene body. These findings implied that the activation of the cell cycle and the inhibition of the hippo signaling pathway were implicated in C. semilaevis female-biased SSD. In addition, the dynamic expression pattern of the epigenetic regulatory factors, including dnmt1, dnmt3a, dnmt3b, and uhrf1, among the different sexes correspond with their distinct DNA methylation levels. Herein, we provide valuable clues for understanding female-biased SSD in C. semilaevis.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Qian Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jialin Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Rui Shi
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ming Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jin Gao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenteng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Yingming Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, China
| |
Collapse
|
4
|
Functional Analysis of Haplotypes in Bovine PSAP Gene and Their Relationship with Beef Cattle Production Traits. Animals (Basel) 2020; 11:ani11010049. [PMID: 33383762 PMCID: PMC7824473 DOI: 10.3390/ani11010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/19/2022] Open
Abstract
Simple Summary With the rapid development of information technology and molecular biotechnology, animal molecular breeding technology is playing an increasingly important role in beef cattle breeding. Prosaposin (PSAP) is involved in regulating the growth and development of animals, and it is reported that PSAP is an important marker-assisted selection (MAS) in cattle herd. The purpose of this study was to explore the novel variants in 3’ UTR of cattle PSAP and evaluate their effects on the morphological traits of four Chinese cattle breeds. In this study, 13 variants were identified in the PSAP 3’ UTR from 501 individuals belonging to four cattle breeds. In Nanyang cattle, the distribution of haplotypes was different from the other three breeds. Two groups of haplotypes had association with morphological traits by changing the secondary structures of PSAP 3’ UTR rather than the miR-184 target sites. This study not only expands the genetic variation spectrum of cattle PSAP but also contributes to MAS genetics and breeding of Chinese cattle breeds. Abstract The purpose of this study was to explore functional variants in the prosaposin (PSAP) three prime untranslated region (3’ UTR) and clarify the relationship between the variants and morphological traits. Through Sanger sequencing, 13 variations were identified in bovine PSAP in four Chinese cattle breeds, with six of them being loci in 3’ UTR. In particular, Nanyang (NY) cattle had a special genotype and haplotype distribution compared to the other three breeds. NY cattle with ACATG and GCGTG haplotypes had higher morphological traits than GTACA and GTACG haplotypes. The results of dual-luciferase reporter assay showed that ACATG and GCGTG haplotypes affected the morphological traits of NY cattle by altering the secondary structure of PSAP 3’ UTR rather than the miR-184 target sites. The findings of this study could be an evidence of a complex and varying mechanism between variants and animal morphological traits and could be used to complement candidate genes for molecular breeding.
Collapse
|
5
|
Simó-Mirabet P, Perera E, Calduch-Giner JA, Pérez-Sánchez J. Local DNA methylation helps to regulate muscle sirtuin 1 gene expression across seasons and advancing age in gilthead sea bream ( Sparus aurata). Front Zool 2020; 17:15. [PMID: 32467713 PMCID: PMC7227224 DOI: 10.1186/s12983-020-00361-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Sirtuins (SIRTs) are master regulators of metabolism, and their expression patterns in gilthead sea bream (GSB) reveal different tissue metabolic capabilities and changes in energy status. Since little is known about their transcriptional regulation, the aim of this work was to study for the first time in fish the effect of age and season on sirt gene expression, correlating expression patterns with local changes in DNA methylation in liver and white skeletal muscle (WSM). Methods Gene organization of the seven sirts was analyzed by BLAT searches in the IATS-CSIC genomic database (www.nutrigroup-iats.org/seabreamdb/). The presence of CpG islands (CGIs) was mapped by means of MethPrimer software. DNA methylation analyses were performed by bisulfite pyrosequencing. A PCR array was designed for the simultaneous gene expression profiling of sirts and related markers (cs, cpt1a, pgc1α, ucp1, and ucp3) in the liver and WSM of one- and three-year-old fish during winter and summer. Results The occurrence of CGIs was evidenced in the sirt1 and sirt3 promoters. This latter CGI remained hypomethylated regardless of tissue, age and season. Conversely, DNA methylation of sirt1 at certain CpG positions within the promoter varied with age and season in the WSM. Among them, changes at several SP1 binding sites were negatively correlated with the decrease in sirt1 expression in summer and in younger fish. Changes in sirt1 regulation match well with variations in feed intake and energy metabolism, as judged by the concurrent changes in the analyzed markers. This was supported by discriminant analyses, which identified sirt1 as a highly responsive element to age- and season-mediated changes in energy metabolism in WSM. Conclusions The gene organization of SIRTs is highly conserved in vertebrates. GSB sirt family members have CGI- and non-CGI promoters, and the presence of CGIs at the sirt1 promoter agrees with its ubiquitous expression. Gene expression analyses support that sirts, especially sirt1, are reliable markers of age- and season-dependent changes in energy metabolism. Correlation analyses suggest the involvement of DNA methylation in the regulation of sirt1 expression, but the low methylation levels suggest the contribution of other putative mechanisms in the transcriptional regulation of sirt1.
Collapse
Affiliation(s)
- Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| |
Collapse
|
6
|
Si Y, Wen H, Li Y, He F, Li J, Li S, He H. Liver transcriptome analysis reveals extensive transcriptional plasticity during acclimation to low salinity in Cynoglossus semilaevis. BMC Genomics 2018; 19:464. [PMID: 29914359 PMCID: PMC6006554 DOI: 10.1186/s12864-018-4825-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/24/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Salinity is an important abiotic stress that influences the physiological and metabolic activity, reproduction, growth and development of marine fish. It has been suggested that half-smooth tongue sole (Cynoglossus semilaevis), a euryhaline fish species, uses a large amount of energy to maintain osmotic pressure balance when exposed to fluctuations in salinity. To delineate the molecular response of C. semilaevis to different levels of salinity, we performed RNA-seq analysis of the liver to identify the genes and molecular and biological processes involved in responding to salinity changes. RESULTS The present study yielded 330.4 million clean reads, of which 83.9% were successfully mapped to the reference genome of C. semilaevis. One hundred twenty-eight differentially expressed genes (DEGs), including 43 up-regulated genes and 85 down-regulated genes, were identified. These DEGs were highly represented in metabolic pathways, steroid biosynthesis, terpenoid backbone biosynthesis, butanoate metabolism, glycerolipid metabolism and the 2-oxocarboxylic acid metabolism pathway. In addition, genes involved in metabolism, osmoregulation and ion transport, signal transduction, immune response and stress response, and cytoskeleton remodeling were affected during acclimation to low salinity. Genes acat2, fdps, hmgcr, hmgcs1, mvk, pmvk, ebp, lss, dhcr7, and dhcr24 were up-regulated and abat, ddc, acy1 were down-regulated in metabolic pathways. Genes aqp10 and slc6a6 were down-regulated in osmoregulation and ion transport. Genes abat, fdps, hmgcs1, mvk, pmvk and dhcr7 were first reported to be associated with salinity adaptation in teleosts. CONCLUSIONS Our results revealed that metabolic pathways, especially lipid metabolism were important for salinity adaptation. The candidate genes identified from this study provide a basis for further studies to investigate the molecular mechanism of salinity adaptation and transcriptional plasticity in marine fish.
Collapse
Affiliation(s)
- Yufeng Si
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Haishen Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China.
| | - Yun Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China.
| | - Feng He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Jifang Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Siping Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Huiwen He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Pang M, Tong J, Yu X, Fu B, Zhou Y. Molecular cloning, expression pattern of follistatin gene and association analysis with growth traits in bighead carp (Hypophthalmichthys nobilis). Comp Biochem Physiol B Biochem Mol Biol 2018; 218:44-53. [DOI: 10.1016/j.cbpb.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022]
|