1
|
Yan H, Du J, Li S, Lei C, Zhu T, Han L, Song H. Chronic heat stress is capable of reducing the growth performance, causing damage to the liver structure, and altering the liver glucose metabolism and lipid metabolism in largemouth bass (Micropterus salmoides L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:24. [PMID: 39666229 DOI: 10.1007/s10695-024-01416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024]
Abstract
High temperatures cause abnormal energy metabolism and inhibit the growth of fish in aquaculture. However, the mechanism of energy metabolism under chronic heat stress is still unknown. In this study, largemouth bass (Micropterus salmoides, LMB) was treated with 25℃, 29℃, and 33℃ for 8 weeks. Then, the growth performance, liver tissue damage, serum lipid indicator, hepatic glycogen, and triglyceride levels were analyzed. The growth data showed that the 33℃ group had a lower weight gain rate (WGR), specific growth rate (SGR), feeding rate (FR), and higher feed conversion rate (FCR) in comparison with those in the 25℃ and 29℃ groups. However, there were no significant differences between the 25℃ and 29℃ groups. The most severe damage to liver tissue was observed in the 33℃ group, characterized by cellular vacuolation and marginalization of cell nuclei. The levels of triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in the serum were decreased with the rising temperatures. However, the hepatic triglyceride levels were increased, with a decrease in hepatic glycogen levels. Compared with the 25℃ group, the expressions of gluconeogenesis pathway-related genes (phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pase)) and glucose transport pathway-related gene (glucose transporter 2 (Gltu2)) were down-regulated in the 33℃ group. In contrast, the expression of the glycolysis pathway-related gene (pyruvate kinase (Pk)) was up-regulated. In addition, the expressions of fatty acid β oxidation pathway-related genes (peroxisome proliferator-activated receptor-Alpha (Pparα) and carnitine palmityl transferase 1 (Cpt1)), adipogenesis pathway-related genes (peroxisome proliferator-activated receptor-Gamma (Pparγ), fatty acid synthase (Fas), acetyl-CoA carboxylase (Acc)), and lipolysis pathway-related genes (adipose triglyceride lipase (Agtl) and hormone-sensitive lipase (Hsl)) were down-regulated under chronic heat stress. In conclusion, our results indicated that enhancement of the glycolysis pathway and inhibition of the gluconeogenesis pathway and lipid metabolism contribute to coping with chronic heat stress for LMB. Our study provides useful information for alleviating the heat stress response of LMB through nutritional regulation in the future.
Collapse
Affiliation(s)
- Hanwei Yan
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinxing Du
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Shengjie Li
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Caixia Lei
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Tao Zhu
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Linqiang Han
- Guangdong Liangshi Aquatic Seed Industry Co., Ltd, Foshan, 528100, China
| | - Hongmei Song
- Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.
| |
Collapse
|
2
|
U N, R C T, R KR, Mahalingam G. Glucose transporters and their energy homeostasis function in various organs. VITAMINS AND HORMONES 2024; 128:1-47. [PMID: 40097247 DOI: 10.1016/bs.vh.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Glucose transporters (GLUTs) belong to a membrane-protein family that essentially participates in easing the transportation and absorption of glucose molecules throughout the cellular membranes. From the brain to the eyes, each section delves into the intricate mechanisms of glucose uptake and utilization, shedding light on the unique adaptations and regulatory pathways in different anatomical structures. Beginning with the brain, known for its high energy demands, the chapter explicates the specialized GLUT expression patterns crucial for neuronal function and synaptic transmission. Moving to metabolic powerhouses like the liver, muscles, and adipose tissue, it elucidates the dynamic interplay of GLUT isoforms in energy storage, mobilization, and insulin responsiveness. Furthermore, the chapter navigates through the kidneys, lungs, skin, and reproductive organs, unveiling the diverse roles of GLUTs in renal glucose reabsorption, pulmonary-epithelial transportation, skin barrier associated functions, and gonadal development. It also explores the significance of placental GLUTs in fatal nutrient supply and the implications of cardiac GLUTs in myocardial energy metabolism. Additionally, it examines the intricate regulation of GLUTs at key barriers like the BBB (Blood-Brain Barrier) and placenta, as well as in endocrine glands such as the pancreas, adrenal medulla and thyroid. Moreover, it further elucidates the less-explored territories of GLUT expression in the bones, gastrointestinal tract, and ocular tissues like the retina, unraveling their implications in immune function, bone metabolism, intestinal glucose-sensing, and retinal physiology.
Collapse
Affiliation(s)
- Nithya U
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Theijeswini R C
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Karthick Raja R
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gayathri Mahalingam
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Xie S, Xu J, Chen L, Qi Y, Yang H, Tan B. Single-Cell Transcriptomic Analysis Revealed the Cell Population Changes and Cell-Cell Communication in the Liver of a Carnivorous Fish in Response to High-Carbohydrate Diet. J Nutr 2024; 154:2381-2395. [PMID: 38945299 DOI: 10.1016/j.tjnut.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Carnivorous fish have a low carbohydrate utilization ability, and the physiologic and molecular basis of glucose intolerance has not been fully illustrated. OBJECTIVES This study aimed to use largemouth bass as a model to investigate the possible mechanism of glucose intolerance in carnivorous fish with the help of single-nuclei RNA sequencing (snRNA-seq). METHODS Two diets were formulated, a low-carbohydrate (LC) diet and a high-carbohydrate (HC) diet. The feeding trial lasted for 6 wk, and then, growth performance, biochemical parameters, liver histology, and snRNA-seq were performed. RESULTS Growth performance of fish was not affected by the HC diet, while liver glucolipid metabolism disorder and liver injury were observed. A total of 13,247 and 12,848 cells from the liver derived from 2 groups were isolated and sequenced, and 7 major liver cell types were annotated by the marker genes. Hepatocytes and cholangiocytes were lower and hepatic stellate cells (HSCs) and immune cells were higher in the HC group than those in the LC group. Reclustering analysis identified 7 subtypes of hepatocytes and immune cells, respectively. The HSCs showed more cell communication with other cell types, and periportal hepatocytes showed more cell communication with other hepatocyte subtypes. Cell-cell communication mainly focused on cell junction-related signaling pathways. Uncovered by the pseudotime analysis, midzonal hepatocytes were differentiated into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitor. Cell junction and liver fibrosis-related genes were highly expressed in the HC group. HC diet induced the activation of HSCs and, therefore, led to the liver fibrosis of largemouth bass. CONCLUSIONS HC diet induces liver glucolipid metabolism disorder and liver injury of largemouth bass. The increase and activation of HSCs might be the main reason for the liver injury. In adaption to HC diet, midzonal hepatocytes differentiates into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitors.
Collapse
Affiliation(s)
- Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang, China.
| | - Jia Xu
- Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Liutong Chen
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Yu Qi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Huijun Yang
- Guangzhou Chengyi Aquaculture, Guangzhou, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China.
| |
Collapse
|
4
|
Xie Y, Shao X, Zhang P, Zhang H, Yu J, Yao X, Fu Y, Wei J, Wu C. High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass ( Micropterus salmoides). Metabolites 2024; 14:236. [PMID: 38668364 PMCID: PMC11051861 DOI: 10.3390/metabo14040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3-D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass.
Collapse
Affiliation(s)
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| | | | | | | | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| |
Collapse
|
5
|
Zhang Y, Qin C, Wang J, Yang L, Yan X, Zhi S, Nie G. Phosphofructokinase family genes in grass carp: Molecular identification and tissue-specific expression in response to glucose, insulin and glucagon. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110898. [PMID: 37673204 DOI: 10.1016/j.cbpb.2023.110898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
It is widely acknowledged that glucose serves as the primary energy source for organisms. However, fish exhibit persistent postprandial hyperglycemia and are thought to have low glucose tolerance. Glycolysis serves as the ubiquitous pathway for glucose catabolism, with phosphofructokinase (PFK) acting as a crucial rate-limiting enzyme in this process and playing an indispensable role. PFK is classified into three isoforms based on their major expression sites, i.e., PFKM (skeletal muscle type), PFKL (liver type) and PFKP (platelet type). In this study, grass carp (Ctenopharyngodon idella) was used as animal model and the open reading frame (ORF) sequences of six PFK genetic isoforms of grass carp were cloned. Real-time PCR was used to detect its tissue distribution, and expression changes in oral glucose tolerance test (OGTT), insulin and glucagon injection experiments. The results showed that the ORF of pfkla, pfklb, pfkma, pfkmb, pfkpa and pfkpb genes was 2343, 2340, 2355, 2331, 2364 and 2349 bp in length, respectively. The results of tissue distribution showed that pfkla and pfklb, homologous to mammalian pfkl, exhibited low expression levels in the liver of grass carp, but were expressed at the highest level in the brain. Muscle-type pfkma and pfkmb mRNA were found to be highly expressed in both red and white muscle, with pfkmb also exhibiting high expression levels in the heart, while platelet type pfkpa and pfkpb showed high mRNA abundances in the brain and heart. Oral glucose administration stimulated pfkma and pfkmb mRNA expression in the red muscle, and up-regulated pfklb mRNA levels in the liver at 3 h post treatment, but it suppressed liver-type and platelet-type PFK genes expression in the brain. The expression of pfkmb in white muscle and pfkmb and pfkpb in heart were promoted by insulin, whereas the expression of pfkla and pfkpb in the brain, pfkma and pfkmb in the red muscle, pfkma in the white muscle, and pfklb in the liver was suppressed by insulin. As for glucagon, it inhibited pfkma and pfkmb mRNA expression in the red muscle, as well as pfklb in the liver, but it up-regulated PFK genes expression in most tissues detected, such as brain (pfklb, pfkpa and pfkpb), white muscle (pfkma and pfkmb), liver (pfkla) and heart (pfkmb and pfkpb). Our results suggest that PFK family genes have different or even opposite expression patterns in response to glucose, insulin and glucagon stimulation in various tissues of grass carp, which may contribute to glucose intolerance in fish.
Collapse
Affiliation(s)
- Yingxin Zhang
- College of Life Science, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| | - Junli Wang
- College of Life Science, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Liping Yang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Shaoyang Zhi
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| |
Collapse
|
6
|
Dai T, Zhang X, Li M, Tao X, Jin M, Sun P, Zhou Q, Jiao L. Dietary vitamin K 3 activates mitophagy, improves antioxidant capacity, immunity and affects glucose metabolism in Litopenaeus vannamei. Food Funct 2022; 13:6362-6372. [PMID: 35612417 DOI: 10.1039/d2fo00865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An 8-week feeding experiment was conducted to appraise the influence of dietary vitamin K3 on the growth performance, antioxidant capacities, immune responses, mitophagy and glucose metabolism in Litopenaeus vannamei. Six diets containing graded dietary vitamin K3 (0.40(control), 9.97, 20.29, 39.06, 79.81 and 156.02 mg kg-1 of vitamin K3, respectively) levels were formulated. A total of 900 shrimp with 0.90 g initial weight were randomly assigned to six diets with three replications. Our results revealed that diets supplemented with 9.97-156.02 mg kg-1 vitamin K3 didn't affect the growth performance in L. vannamei. In general, compared with the control group, 39.06 mg kg-1 vitamin K3 group significantly increased (P < 0.05) the total antioxidative capacity, and the activities of catalase, glutathione, nitric oxide synthase, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. 39.06 mg kg-1 vitamin K3 group significantly decreased (P < 0.05) the malondialdehyde in serum and hepatopancreas. The mRNA levels of antioxidant and immune related genes were increased synchronously (P < 0.05). In addition, 39.06 mg kg-1 vitamin K3 group increased glycogen content and levels of mitophagy (pink1, ampkα, parkin, lc3, atg13, atg12) genes. Expression levels of glucose transport related gene (glut1), glycolysis related genes (hk, pfk), glycogen synthesis related genes (gsk-3β, gys), insulin-like peptides (ILPs)/AKT/PI3K pathway related genes (insr, irsl, akt, pi3k, pdpk1) were increased in the hepatopancreas of 39.06 mg kg-1 vitamin K3 group. In conclusion, the present results indicated that although dietary supplementing vitamin K3 had no influence on the growth performance, 39.06 mg kg-1 vitamin K3 could activate ampkα/pink1/parkin mediated mitophagy, improve antioxidant capacity and immune response. Moreover, vitamin K3 could trigger ILPs/AKT/PI3K signaling pathways and influence glucose metabolism in L. vannamei. This finding would help to advance the field of vitamin K3 nutrition and guide the development of future crustacean feeds.
Collapse
Affiliation(s)
- Tianmeng Dai
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xin Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Ming Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
7
|
Castillo-Collado ADC, Frías-Quintana CA, Morales-Garcia V, Alvarez-Villagomez CS, Asencio-Alcudia G, Peña-Marín ES, Martínez-Bautista G, Jiménez-Martinez LD, Álvarez-González CA. Characterization and expression of the gene glucose transporter 2 (GLUT2) in embryonic, larval and adult Bay snook Petenia splendida (Cichliformes: Cichlidae). NEOTROPICAL ICHTHYOLOGY 2022. [DOI: 10.1590/1982-0224-2021-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Bay snook (Petenia splendida) is a carnivorous cichlid species with excellent economic value in Southeast Mexico. Although this species presents an excellent potential for commercial aquaculture, the information about its nutritional, physiological, and reproductive metabolic pathways is meager. The current study focuses on the expression of glucose transporter 2 (glut2) in embryos and larvae at 5, 10, 15-, 20-, 25-, and 30-days post-hatch (dph) and in the liver, intestine, kidney, muscle, heart, testicle, gill, stomach, pancreas, and brain of adult fish. The partial sequence of glut2 was obtained, and specific qPCR primers were designed. In embryos, the expression was lower compared to larvae at 5, 15, and 20 dph. The highest expression in larvae occurred at 20 dph and the lowest at 25 and 30 dph. Maximum expression levels in adults occurred in the liver and intestine. Our results show that glut2 is expressed differentially across tissues of adult bay snook, and it fluctuates during larval development.
Collapse
|
8
|
Herkenhoff ME, Bovolenta LA, Broedel O, Dos Santos LD, de Oliveira AC, Chuffa LGA, Ribeiro ADO, Lupi LA, Dias MAD, Hilsdorf AWS, Frohme M, Pinhal D. Variant expression signatures of microRNAs and protein related to growth in a crossbreed between two strains of Nile tilapia (Oreochromis niloticus). Genomics 2021; 113:4303-4312. [PMID: 34774982 DOI: 10.1016/j.ygeno.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds. We characterized the microRNA transcriptome by high throughput sequencing (RNA-seq) and the proteome through mass spectrometry (ESI-Q-TOF-MS) and applied bioinformatics for the comparative analysis of such molecular data on the three strains. Crossbreed expressed a distinct set of miRNAs and proteins compared to the parents. They comprised several microRNAs regulate traits of economic interest. Proteomic profiles revealed differences between parental and crossbreed in expression of proteins associated with glycolisis. Distinctive miRNA and protein signatures contribute to the phenotype of crossbreed.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Lucilene D Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arthur C de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz G A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Amanda de O Ribeiro
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz A Lupi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Marco A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Alexandre W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil.
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Liang H, Ge X, Ren M, Zhang L, Xia D, Ke J, Pan L. Molecular characterization and nutritional regulation of sodium-dependent glucose cotransporter 1 (Sglt1) in blunt snout bream (Megalobrama amblycephala). Sci Rep 2021; 11:13962. [PMID: 34234240 PMCID: PMC8263726 DOI: 10.1038/s41598-021-93534-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Fish has poor utilization capacity for glucose metabolism. The possible reasons are related to the core regulatory elements of glucose metabolism: transport proteins. Studies on the species and functions of Sglt1 in aquatic animals are scarce, therefore further studies are needed. In this study, the full length of blunt snout bream (Megalobrama amblycephala) sglt1 (Masglt1) was 2965 bp including 5′-UTR region of 168 bp and a 3′-UTR region of 820 bp. Masglt1 have a highest sequence homology in Cypriniformes fish. MaSglt1 protein was identified as a transmembrane protein with 14 α-helix structures locating plasma membrane by the methods of predicted tertiary structure and immunohistochemical staining. MaSglt1 protein has a hollow channel forms which could be specifically coupled with two Na+ ions to recognize glucose and carry out transmembrane transport. High sglt1 mRNA was found in the intestine and kidney. The mRNA levels of intestinal sglt1 had a positive correlation with dietary starch levels at 3 h after feeding, and the mRNA was significantly higher than that at 24 h, however, the mRNA levels of renal sglt1 presented results opposite to those of intestinal sglt1. The mRNA levels of renal sglt1 had a positive correlation with dietary starch levels at 24 h after feeding, and the expression was significantly higher than that at 3 h. These results confirmed that Masglt11 was mainly found in the intestine and kidney and was located in the cell membrane, playing a role in glucose homeostasis.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Mingchun Ren
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, 610093, China. .,Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China.
| | - Dong Xia
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ji Ke
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
10
|
Aslam M, Syed NIH, Jahan S. Effect of Caralluma tuberculata on regulation of carbohydrate metabolizing genes in alloxan-induced rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113897. [PMID: 33567306 DOI: 10.1016/j.jep.2021.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caralluma tuberculata (C. tuberculata) has traditionally been used in Pakistan and other parts of the world as a folk treatment for diabetes mellitus. A few studies indicated its antihyperglycemic effect, however, the mystery remained unfolded as how did it modify the pathophysiological condition. AIM OF STUDY Hence, this study aimed to explore underlying mechanism(s) for its hypoglycemic activity at biochemical and molecular levels. MATERIALS AND METHODS Methanol extract (ME) of C. tuberculata as well as its hexane (HF) and aqueous (AF) fractions were explored for their effect on total glycogen in liver and skeletal muscle of alloxan-induced rats by spectroscopy. Moreover, the expression of genes related to hepatic carbohydrate metabolizing enzymes was quantified. At molecular level, mRNA expression of glucose transporter 2 (GLUT-2), glycogen synthase (GS), glucokinase (GK), hexokinase 1 (HK-1), pyruvate kinase (PK), glucose 6 phosphate dehydrogenase (G-6-PDH), pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G-6-Pase) was determined by using quantitative real time polymerase chain reaction (qRT-PCR) after administration of ME (350 mg), HF(3 mg), AF (10 mg) and metformin (500 mg). The doses were administered twice daily according to per kg of body weight. RESULTS A significant reduction in hepatic and skeletal muscle glycogen content was exhibited. The data of qRT-PCR revealed that gene's expression of GLUT-2 was significantly decreased after treatment with ME and HF, whilst it was unaltered by AF, however, a significant decrease was observed in genes corresponding to GS, GK and HK-1 after treatment with ME. Similarly, there was a significant decrease in expression of genes corresponding to GS, GK and HK-1 following treatment with HF. Surprisingly, post-treatment with AF didn't modify the gene's expression of GS and GK, whilst it caused a profound decrease in expression of HK-1 gene. Contrarily, the expression of gene related to PK was significantly up-regulated post-administration with ME, HF and AF. The expression levels of G-6-PDH, however, remained unaltered after treatment with the experimental extract and fractions of the plant. In addition, HF and AF did not cause any modification in PEPCK, whereas ME caused a significant down-regulation of the gene. Treatment with all the extract and fractions of the plant caused a substantial decrease in the gene's expression of PC, while there was a significant increase in the expression of gene related to G-6-Pase. CONCLUSION The three experimental extract and fractions caused a substantial decrease in glycogen content in liver and skeletal muscle tissues. The analysis by qRT-PCR showed that glucose transport via GLUT-2 was profoundly declined by ME and HF. The expression of genes related to various metabolic pathways involved in metabolism of carbohydrate in hepatocytes revealed explicitly that the ME, HF and AF decreased the phenomena of glycogenesis and gluconeogenesis. Contrarily, all the extract and fractions of the plant activated glycogenolysis and glycolysis but did not modify the pentose phosphate shunt pathway.
Collapse
Affiliation(s)
- Maria Aslam
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Old Campus, Lahore, 54000, Pakistan.
| | - Nawazish-I-Husain Syed
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Old Campus, Lahore, 54000, Pakistan.
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
11
|
Liang H, Maulu S, Ji K, Ge X, Ren M, Mi H. Functional Characterization of Facilitative Glucose Transporter 4 With a Delay Responding to Plasma Glucose Level in Blunt Snout Bream ( Megalobrama amblycephala). Front Physiol 2020; 11:582785. [PMID: 33178047 PMCID: PMC7593788 DOI: 10.3389/fphys.2020.582785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Facilitative glucose transporter 4 (GLUT4) plays a central role in mediating insulin function to increase glucose uptake in glucose metabolism homeostasis. In this study, the function and localization of GLUT4 in blunt snout bream (Megalobrama amblycephala) were first investigated, and then, the response measured as carbohydrate level, was analyzed. The results showed that the cDNA sequence of GLUT4 in blunt snout bream (MaGLUT4, GenBank accession no: MT447093) was 2868 bp in length, and the corresponding mRNA contained a 5'-UTR region of 513 bp and a 3'-UTR region of 837 bp. MaGLUT4 had an open reading frame of 1518 bp and was encoded by 505 amino acids. Its theoretical isoelectric point and molecular weight was 6.41 and 55.47 kDa, respectively. A comparison of these characteristics with BLASTP results from the NCBI database showed that MaGLUT4 had the highest homology with Cypriniformes fish, with MaGLUT4 and GLUT4 of other Cypriniformes clustered in the phylogenetic tree with other GLUT1-4 amino acid sequences. Compared with the results from the homo_sapiens and mus_musculus data sets, some mutations were observed in the GLUT4 amino acid sequence of these aquatic animals, including an FQQI mutation to FQQL, LL mutation to MM, and TELEY mutation to TELDY. MaGLUT4 was constitutively expressed in the muscle, intestine, and liver, with the highest mRNA level observed in muscle. Furthermore, the predicted tertiary structure and results of immunohistochemical staining showed that MaGLUT4 was a transmembrane protein primarily located in the plasma membrane, where it accounts for 60.9% of the total expressed, according to an analysis of subcellular localization. Blood glucose level peaked within 1 h, and the insulin level peaked at 6 h, while the mRNA and protein levels of GLUT4 showed an upward trend with an increase in feeding time and decreased sharply after 12 h. These results confirmed that MaGLUT4 was mainly distributed in muscles and crosses the cell membrane. The changes in the insulin, mRNA, and protein levels of MaGUT4 lagged far behind changes in blood glucose levels. This delay in insulin level changes and GLUT4 activation might be the important reasons for glucose intolerance of this fish species.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Sahya Maulu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xianping Ge
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Mingchun Ren
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Haifeng Mi
- Tongwei Co., Ltd., Chengdu, China.,Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, China
| |
Collapse
|
12
|
Deng D, Yan X, Zhao W, Qin C, Yang G, Nie G. Glucose transporter 2 in common carp (Cyprinus carpio L.): molecular cloning, tissue expression, and the responsiveness to glucose, insulin, and glucagon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1207-1218. [PMID: 32212006 DOI: 10.1007/s10695-020-00782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Glucose transporter 2 (glut2) has been studied in mammals, aves, and several fish, while the comparative studies of glut2 in common carp are still lacking. In this study, glut2 was firstly isolated and characterized from the liver of common carp. The full-length cDNA of glut2 was 2351 bp with an open reading frame (ORF) of 1512 bp, encoding 503 amino acids. Alignment of glut2 amino acid sequences from different species revealed that common carp glut2 showed higher sequence identity with teleosts, and lower homology with mammals and amphibians. Tissue distribution demonstrated that glut2 mRNA level was mainly expressed in liver, foregut, and midgut. To investigate the actions of glut2 on glucose metabolism, the level of glut2 mRNA was detected after intraperitoneal injection of glucose, human insulin and glucagon (100 ng/g), respectively. Following glucose administration, glut2 gene expression was significantly upregulated at 3 h in the foregut. However, no change was found in hepatic glut2 mRNA level, indicating that glut2 may have a role in intestinal glucose uptake rather than in the liver. Following insulin treatment, the expression of glut2 was markedly downregulated at 3 h and 6 h in the liver, and at 3 h in the foregut, respectively. Furthermore, glut2 mRNA expression was unaffected by glucagon injection in the liver and foregut. These results suggested that the expression of glut2 regulated by pancreatic hormones was different. Taken together, our studies firstly revealed the structure of the glut2 gene and its potential functions in glucose metabolism of common carp.
Collapse
Affiliation(s)
- Dapeng Deng
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Wenli Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
13
|
Wang X, Yang XL, Liu KC, Sheng WL, Xia Q, Wang RC, Chen XQ, Zhang Y. Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1025-1038. [PMID: 31993854 DOI: 10.1007/s10695-020-00769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Type 1 diabetes is characterized by an increase in blood glucose levels resulting from damage to β cells in pancreatic islets and the consequent absolute insufficiency of insulin. Animal models of type 1 diabetes were usually established using drugs toxic to β cells, such as streptozotocin (STZ). To assess the application of zebrafish larvae in diabetes research, we explore the effects of STZ on pancreatic islets and glucose metabolism in zebrafish larvae. STZ was microinjected into the pericardial cavity of zebrafish larvae on alternate days for three times. At 2 days after the whole series of STZ injection (12 dpf), free-glucose level in larvae tissue shows a significant increase, and the fluorescence signal in immunohistochemistry, which indicates the insulin expression, was significantly weaker compared with the solution-injected control. Obvious apoptosis signals were also observed in the location of pancreatic islet, and insulin content decreased to be undetectable in STZ-injected larvae. Gene expression level of ins decreased to half of the solution injection control and that of casp3a was upregulated by 2.20-fold. Expression level of glut2 and gck decreased to 0.312-fold and 0.093-fold, respectively. pck1 was upregulated by 2.533-fold in STZ-injected larvae. By tracking detection, we found the free-glucose level in STZ-injected larvae gradually approached the level of the solution injection control and the insulin content recovered at 6 days post-STZ injection (16 dpf). Consistent with the change of the glucose level, the regeneration rate of the caudal fin in the STZ-injected group decreased initially, but recovered and accelerated gradually finally at 8 days post-amputation (20 dpf). These results indicate the generation of a transient hyperglycemia model due to β-cell apoptosis caused by STZ, which is abated by the vigorous regeneration ability of β cells in zebrafish larvae.
Collapse
Affiliation(s)
- Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Xue-Liang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Wen-Long Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Rong-Chun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Xi-Qiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China.
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China.
| |
Collapse
|
14
|
The characteristics of glucose homoeostasis in grass carp and Chinese longsnout catfish after oral starch administration: a comparative study between herbivorous and carnivorous species of fish. Br J Nutr 2020; 123:627-641. [PMID: 31813383 DOI: 10.1017/s0007114519003234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An oral starch administration trial was used to evaluate glucose homoeostasis in grass carp (Ctenopharyngodon idella) and Chinese longsnout catfish (Leiocassis longirostris Günther). Fish were administered with 3 g of a water and starch mixture (with 3:2 ratio) per 100 g body weight after fasting for 48 h. Fish were sampled at 0, 1, 3, 6, 12, 24 and 48 h after oral starch administration. In grass carp, plasma levels of glucose peaked at 3 h but returned to baseline at 6 h. However, in Chinese longsnout catfish, plasma glucose levels peaked at 6 h and returned to baseline at 48 h. The activity of intestinal amylase was increased in grass carp at 1 and 3 h, but no significant change in Chinese longsnout catfish was observed. The activity of hepatic glucose-6-phosphatase fell significantly in grass carp but change was not evident in Chinese longsnout catfish. The expression levels and enzymic activity of hepatic pyruvate kinase increased in grass carp, but no significant changes were observed in the Chinese longsnout catfish. Glycogen synthase (gys) and glycogen phosphorylase (gp) were induced in grass carp. However, there was no significant change in gys and a clear down-regulation of gp in Chinese longsnout catfish. In brief, compared with Chinese longsnout catfish, grass carp exhibited a rapid increase and faster clearance rate of plasma glucose. This effect was closely related to significantly enhanced levels of digestion, glycolysis, glycogen metabolism and glucose-induced lipogenesis in grass carp, as well as the inhibition of gluconeogenesis.
Collapse
|
15
|
Marandel L, Plagnes-Juan E, Marchand M, Callet T, Dias K, Terrier F, Père S, Vernier L, Panserat S, Rétaux S. Nutritional regulation of glucose metabolism-related genes in the emerging teleost model Mexican tetra surface fish: a first exploration. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191853. [PMID: 32257342 PMCID: PMC7062055 DOI: 10.1098/rsos.191853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
Astyanax mexicanus has gained importance as a laboratory model organism for evolutionary biology. However, little is known about its intermediary metabolism, and feeding regimes remain variable between laboratories holding this species. We thus aimed to evaluate the intermediary metabolism response to nutritional status and to low (NC) or high (HC) carbohydrate diets in various organs of the surface-dwelling form of the species. As expected, glycaemia increased after feeding. Fish fed the HC diet had higher glycaemia than fish fed the NC diet, but without displaying hyperglycaemia, suggesting that carbohydrates are efficiently used as an energy source. At molecular level, only fasn (Fatty Acid Synthase) transcripts increased in tissues after refeeding, suggesting an activation of lipogenesis. On the other hand, we monitored only moderate changes in glucose-related transcripts. Most changes observed were related to the nutritional status, but not to the NC versus HC diet. Such a metabolic pattern is suggestive of an omnivorous-related metabolism, and this species, at least at adult stage, may adapt to a fish meal-substituted diet with high carbohydrate content and low protein supply. Investigation to identify molecular actors explaining the efficient use of such a diet should be pursued to deepen our knowledge on this species.
Collapse
Affiliation(s)
- Lucie Marandel
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Michael Marchand
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Therese Callet
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Karine Dias
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Stéphane Père
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Louise Vernier
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| | - Stephane Panserat
- INRAE, Université de Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, 64310 Saint-Pée-sur-Nivelle, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Zhao W, Qin C, Yang G, Yan X, Meng X, Yang L, Lu R, Deng D, Niu M, Nie G. Expression of glut2 in response to glucose load, insulin and glucagon in grass carp (Ctenophcuyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2019; 239:110351. [PMID: 31518684 DOI: 10.1016/j.cbpb.2019.110351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Generally, fish are thought to have a limited ability to utilize carbohydrate. Postprandial blood glucose is cleared sluggishly in fish, resulting in prolonged hyperglycemia. Facilitative glucose transporters (GLUTs) play an important role in glucose utilization. In the present study, the expression levels of glut2 in different tissues were detected in grass carp. Furthermore, the effects of oral glucose administration on glut2 mRNA expression in the liver, intestine and kidney were investigated, and we also evaluated the response of glut2 mRNA to insulin and glucagon in the primary hepatocytes of grass carp. The expression level of glut2 mRNA was highest in the liver, followed by the intestine and kidney, but lower in other tissues. The result of glucose tolerance test (GTT) showed that serum glucose reached the highest level at 3 h after GTT and recovered to the basic level at 6 h. The glut2 mRNA in the intestine was up-regulated at 1 h after GTT. However, the glut2 mRNA expression in the liver of grass carp was unchanged after GTT for 1, 3, 6 h, and even decreased at 12 h after GTT. In addition, the expression of glut2 mRNA in the primary hepatocytes was enhanced by insulin and glucagon at 3 h post treatment. These results suggested that glut2 expression in the liver of grass carp was sensitive to insulin and glucagon, but not blood glucose. The up-regulation of glut2 by these hormones might be involved in the bi-directional transportation of glucose in the liver.
Collapse
Affiliation(s)
- Wenli Zhao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Chaobin Qin
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| | - Guokun Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiao Yan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiaolin Meng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Liping Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Ronghua Lu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Dapeng Deng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Mingming Niu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Guoxing Nie
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| |
Collapse
|
17
|
López-González C, Juárez-Colunga S, Morales-Elías NC, Tiessen A. Exploring regulatory networks in plants: transcription factors of starch metabolism. PeerJ 2019; 7:e6841. [PMID: 31328026 PMCID: PMC6625501 DOI: 10.7717/peerj.6841] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Biological networks are complex (non-linear), redundant (cyclic) and compartmentalized at the subcellular level. Rational manipulation of plant metabolism may have failed due to inherent difficulties of a comprehensive understanding of regulatory loops. We first need to identify key factors controlling the regulatory loops of primary metabolism. The paradigms of plant networks are revised in order to highlight the differences between metabolic and transcriptional networks. Comparison between animal and plant transcription factors (TFs) reveal some important differences. Plant transcriptional networks function at a lower hierarchy compared to animal regulatory networks. Plant genomes contain more TFs than animal genomes, but plant proteins are smaller and have less domains as animal proteins which are often multifunctional. We briefly summarize mutant analysis and co-expression results pinpointing some TFs regulating starch enzymes in plants. Detailed information is provided about biochemical reactions, TFs and cis regulatory motifs involved in sucrose-starch metabolism, in both source and sink tissues. Examples about coordinated responses to hormones and environmental cues in different tissues and species are listed. Further advancements require combined data from single-cell transcriptomic and metabolomic approaches. Cell fractionation and subcellular inspection may provide valuable insights. We propose that shuffling of promoter elements might be a promising strategy to improve in the near future starch content, crop yield or food quality.
Collapse
Affiliation(s)
| | | | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, México.,Laboratorio Nacional PlanTECC, Irapuato, México
| |
Collapse
|
18
|
Fan H, Zhou Y, Wen H, Zhang X, Zhang K, Qi X, Xu P, Li Y. Genome-wide identification and characterization of glucose transporter (glut) genes in spotted sea bass (Lateolabrax maculatus) and their regulated hepatic expression during short-term starvation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:217-229. [PMID: 30913477 DOI: 10.1016/j.cbd.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/16/2022]
Abstract
The glucose transporters (GLUTs) are well known for their essential roles in moving the key metabolites, glucose, galactose, fructose and a number of other important substrates in and out of cells. In this study, we identified a total of 21 glut genes in spotted sea bass (Lateolabrax maculatus) through extensive data mining of existing genomic and transcriptomic databases. Glut genes of spotted sea bass were classified into three subfamilies (Class I, Class II and Class III) according to the phylogenetic analysis. Glut genes of spotted sea bass were distributed in 15 out of 24 chromosomes. Deduced gene structure analysis including the secondary structure and the three-dimensional structures, as well as the syntenic analysis further supported their annotations and orthologies. Expression profile in healthy tissues indicated that 9 of 21 glut genes were expressed in liver of spotted sea bass. During short-term starvation, the mRNA expression levels of 3 glut genes (glut2, glut5, and glut10) were significantly up-regulated in liver (P < 0.05), indicating their potential roles in sugar transport and consumption. These findings in our study will facilitate the further evolutionary characterization of glut genes in fish species and provide a theoretical basis for their functional study.
Collapse
Affiliation(s)
- Hongying Fan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yangyang Zhou
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Haishen Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xiaoyan Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Kaiqian Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Qi
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Peng Xu
- Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yun Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
19
|
Short CE, Driedzic WR. Species-specific low plasma glucose in fish is associated with relatively high tissue glucose content and is inversely correlated with cardiac glycogen content. J Comp Physiol B 2018; 188:809-819. [PMID: 30008136 DOI: 10.1007/s00360-018-1172-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
The relationship between plasma glucose concentration and intracellular glucose (liver, heart, brain, gill, gonad, intestine, kidney, spleen, white muscle) was determined in fish species with a range in plasma glucose (Atlantic cod, 5.06 mM; cunner, 3.8 mM; rainbow trout, 3.7 mM; lumpfish, 0.9 mM; short-horned sculpin, 0.6 mM; and winter flounder, 0.6 mM). The ratio of intracellular glucose/plasma glucose was always higher than one in liver for all species consistent with a diffusion gradient from the tissue to the plasma. In all other tissues in Atlantic cod, cunner, and rainbow trout the diffusion gradient was from the plasma to the intracellular space. In short-horned sculpin, the mean ratio in heart and white muscle exceeded one and in winter flounder the ratio was significantly greater than one at 5.97 and 2.92 for heart and muscle, respectively. The presence of an active glucose 6-phosphatase in white muscle could account for elevated amounts of free glucose. The white muscle of all species displayed phosphoenolpyruvate carboxykinase and in winter flounder the activity was as high in white muscle as in liver suggesting that gluconeogenesis may be associated with a relatively high-muscle glucose content. The glycogen content was highest in liver followed by heart with lower amounts in all other tissues. There was an inverse correlation between heart glycogen content and plasma glucose concentration when all species were included. It is contended that in species with low plasma glucose, heart glycogen is accumulated at a slow rate under normoxia, to be called upon under hypoxic conditions when the gradient for inward diffusion is unfavourable for high rates of glucose metabolism.
Collapse
Affiliation(s)
- Connie E Short
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - William R Driedzic
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|