1
|
Costábile A, Paredes G, Aversa-Marnai M, Lorenzo C, Pérez Etcheverry D, Castellano M, Quartiani I, Conijeski D, Perretta A, Villarino A, Ferreira AM, Silva-Álvarez V. Understanding the spleen response of Russian sturgeon (Acipenser gueldenstaedtii) dealing with chronic heat stress and Aeromonas hydrophila challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101352. [PMID: 39549417 DOI: 10.1016/j.cbd.2024.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024]
Abstract
Sturgeon aquaculture has grown in recent years, driven by increasing global demand for its highly valued products. Russian sturgeon (Acipenser gueldenstaedtii), recognised as one of the most valuable species for caviar production, is farmed in several warm-temperate regions. However, the substantial temperature increase due to global warming represents a challenge for developing sturgeon aquaculture. Previously we demonstrated that Russian sturgeon under chronic heat stress (CHS) exhibited a liver metabolic reprogramming to meet energy demands, weakening their innate defences and leading to increased mortality and economic losses. Here, we used RNA-seq technology to analyse regulated genes in the spleen of Russian sturgeons exposed to CHS and challenged with Aeromonas hydrophila. The assembly gave 253,415 unigenes, with 13.7 % having at least one reliable functional annotation. We found that CHS caused mild splenitis and upregulated genes related to protein folding, heat shock response, apoptosis and autophagy while downregulated genes associated with the cell cycle. The cell cycle arrest was maintained upon A. hydrophila challenge in heat-stressed fish, potentially inducing cell senescence. Surprisingly, immunoglobulin heavy and light chains were upregulated in the spleen of stressed sturgeons but not in those maintained at tolerable temperatures; however, no changes in IgM serum levels were observed in any condition. Our findings indicate that long-term exposure to non-tolerable temperatures induced a heat shock response and activated apoptosis and autophagy processes in the spleen. These mechanisms may enable the control of tissue damage and facilitate the recycling of cell components in a condition where the nutrient supply by the liver might be insufficient. Stressed sturgeons challenged with A. hydrophila maintain these mechanisms, which could culminate in cellular senescence.
Collapse
Affiliation(s)
- Alicia Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Gonzalo Paredes
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Marcio Aversa-Marnai
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Carmen Lorenzo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, CP 91000, Canelones, Uruguay
| | - Diana Pérez Etcheverry
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, CP 91000, Canelones, Uruguay
| | - Mauricio Castellano
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay; Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Ignacio Quartiani
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | | | - Alejandro Perretta
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| | - Valeria Silva-Álvarez
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
2
|
Freij K, Cleveland B, Biga P. Remodeling of the epigenetic landscape in rainbow trout, Oncorhynchus mykiss, offspring in response to maternal choline intake. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101348. [PMID: 39515277 DOI: 10.1016/j.cbd.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
This project focused on evaluating the effects of maternal dietary choline intake on global DNA methylation profiles and related transcriptional changes in rainbow trout offspring. Three experimental diets were formulated to test different levels of choline intake: (a) 2065 ppm choline (Low Choline, 0 % supplementation), (b) 5657 ppm choline (Medium Choline, 0.6 % supplementation), and (c) 9248 ppm choline (High Choline, 1.2 % choline supplementation). Six rainbow trout families were fed experimental diets beginning 18 months post-hatch until spawning; their offspring were fed a commercial diet. Reduced representation bisulfite sequencing (RRBS) was utilized to measure genome-wide methylation in offspring immediately after hatching. When comparing to the Medium Choline offspring, differential DNA methylation occurred more in the Low Choline offspring than High Choline, especially in genic features like promoters. The differentially methylated CpGs (q ≤ 0.01) were identified evenly between CpG islands and shores in the genome, mostly found in the introns of genes. Genes such as fabp2 and leap2B associated with protein binding, fatty acid binding, DNA binding, and response to bacteria were differentially methylated and detected as differentially regulated genes by previous RNA-seq analysis. Although these findings indicate that levels of dietary choline available in broodstock diets alter offspring DNA methylation;, most differentially expressed genes were not associated with differential DNA methylation, suggesting additional mechanisms playing a role in regulating gene expression in response to maternal choline intake.
Collapse
Affiliation(s)
- Khalid Freij
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA. https://twitter.com/@FreijKhalid
| | - Beth Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville, WV 25430, USA
| | - Peggy Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Ferreira A, Aversa-Marnai M, Villarino A, Silva-Álvarez V. Innate immune and chronic heat stress responses in sturgeons: Advances and insights from studies on Russian sturgeons. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100121. [PMID: 37964807 PMCID: PMC10641160 DOI: 10.1016/j.fsirep.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Chronic stress deteriorates the immune function of fish, thereby increasing their vulnerability to infections. However, the molecular and cellular mechanisms underlying stress-mediated immunosuppression and infection susceptibility in fish remain largely unknown. Understanding these mechanisms will contribute to improving fish welfare and their farm production. Herein, we review the challenges of sturgeon aquaculture in subtropical countries, where current climate change has giving rise to significant temperature increments during summer. This leads to the exposure of fish to stressful conditions during these months. Chronic heat stress deserves attention considering the rapid warming rate of the planet. It is already affecting wild fish populations, with disastrous consequences for sturgeons, which are one of the most endangered fish species in the world. In this context, we discuss the most recent advances through the studies on the effects of chronic heat stress on the innate immune components of sturgeons. To this end, we summarise the findings of studies focusing on the aquaculture of Russian sturgeons and observations made on other Acipenser species. Special attention is given to acute-phase proteins, as they might be valuable biomarkers of heat stress and infection, with applicability in monitoring the fish health status in farms.
Collapse
Affiliation(s)
- A.M. Ferreira
- Unidad Asociada de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - M. Aversa-Marnai
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - A. Villarino
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - V. Silva-Álvarez
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Penman RJ, Bugg W, Rost-Komiya B, Earhart ML, Brauner CJ. Slow heating rates increase thermal tolerance and alter mRNA HSP expression in juvenile white sturgeon (Acipenser transmontanus). J Therm Biol 2023; 115:103599. [PMID: 37413754 DOI: 10.1016/j.jtherbio.2023.103599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 07/08/2023]
Abstract
Freshwater fish such as white sturgeon (Acipenser transmontanus) are particularly vulnerable to the effects of anthropogenically induced global warming. Critical thermal maximum tests (CTmax) are often conducted to provide insight into the impacts of changing temperatures; however, little is known about how the rate of temperature increase in these assays affects thermal tolerance. To assess the effect of heating rate (0.3 °C/min, 0.03 °C/min, 0.003 °C/min) we measured thermal tolerance, somatic indices, and gill Hsp mRNA expression. Contrary to what has been observed in most other fish species, white sturgeon thermal tolerance was highest at the slowest heating rate of 0.003 °C/min (34.2 °C, and CTmax of 31.3 and 29.2 °C, for rates 0.03 and 0.3 °C/min, respectively) suggesting an ability to rapidly acclimate to slowly increasing temperatures. Hepatosomatic index decreased in all heating rates relative to control fish, indicative of the metabolic costs of thermal stress. At the transcriptional level, slower heating rates resulted in higher gill mRNA expression of Hsp90a, Hsp90b, and Hsp70. Hsp70 mRNA expression was increased in all heating rates relative to controls, whereas expression of Hsp90a and Hsp90b mRNA only increased in the two slower trials. Together these data indicate that white sturgeon have a very plastic thermal response, which is likely energetically costly to induce. Acute temperature changes may be more detrimental to sturgeon as they struggle to acclimate to rapid changes in their environment, however under slower warming rates they demonstrate strong thermal plasticity to warming.
Collapse
Affiliation(s)
- Rachael J Penman
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - William Bugg
- Department of Biology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beatrice Rost-Komiya
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison L Earhart
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Penny FM, Bugg WS, Kieffer JD, Jeffries KM, Pavey SA. Atlantic sturgeon and shortnose sturgeon exhibit highly divergent transcriptomic responses to acute heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101058. [PMID: 36657229 DOI: 10.1016/j.cbd.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
In comparison to most modern teleost fishes, sturgeons generally display muted stress responses. While a muted stress response appears to be ubiquitous across sturgeon species, the mechanisms unpinning this muted response have not been fully described. The objective of this study was to determine the patterns of hematological and transcriptomic change in muscle tissue following an acute high temperature stress (critical thermal maxima; CTmax) in two locally co-occurring but evolutionarily distant sturgeon species (Atlantic and shortnose sturgeon). The most striking pattern found was that Atlantic sturgeon launched a vigorous transcriptomic response at CTmax, whereas shortnose sturgeon did not. In contrast, shortnose sturgeon have significantly higher cortisol than Atlantics at CTmax, reconfirming that shortnose have a less muted cortisol stress response. Atlantic sturgeon downregulated a number of processes, included RNA creation/processing, methylation and immune processes. Furthermore, a number of genes related to heat shock proteins were differentially expressed at CTmax in Atlantic sturgeon but none of these genes were significantly changed in shortnose sturgeon. We also note that the majority of differentially expressed genes of both species are undescribed and have no known orthologues. These results suggest that, while sturgeons as a whole may show muted stress responses, individual sturgeon species likely use different inducible strategies to cope with acute high temperature stress.
Collapse
Affiliation(s)
- F M Penny
- Department of Biological Sciences and Canadian Rivers Institute (CRI Genomics), University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| | - W S Bugg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - J D Kieffer
- Department of Biological Sciences (MADSAM Lab), University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - K M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - S A Pavey
- Department of Biological Sciences and Canadian Rivers Institute (CRI Genomics), University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| |
Collapse
|
6
|
Chen Y, Wu X, Lai J, Liu Y, Song M, Li F, Gong Q. Integrated biochemical, transcriptomic and metabolomic analyses provide insight into heat stress response in Yangtze sturgeon (Acipenser dabryanus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114366. [PMID: 36508793 DOI: 10.1016/j.ecoenv.2022.114366] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Temperature fluctuations caused by climate change and global warming pose a great threat to various species. Most fish are particularly vulnerable to elevated temperatures. Understanding the mechanism of high-temperature tolerance in fish can be beneficial for proposing effective strategies to help fish cope with global warming. In this study, we systematically studied the effects of high temperature on Acipenser dabryanus, an ancient living fossil and flagship species of the Yangtze River, at the histological, biochemical, transcriptomic and metabolomic levels. Intestinal and liver tissues from the control groups (18 °C) and acute heat stress groups (30 °C) of A. dabryanus were sampled for histological observation and liver tissues were assessed for transcriptomic and metabolomic profiling. Histopathological analysis showed that the intestine and liver tissues were damaged after heat stress. The plasma cortisol content and the levels of oxidative stress markers (catalase/glutathione reductase) and two aminotransferases (aspartate aminotransferase/alanine aminotransferase) increased significantly in response to acute heat stress. Transcriptomic and metabolomic methods showed 6707 upregulated and 4189 downregulated genes and 64 upregulated and 78 downregulated metabolites in the heat stress group. Heat shock protein (HSP) genes showed striking changes in expression under heat stress, with 21 genes belonging to the HSP30, HSP40, HSP60, HSP70 and HSP90 families significantly upregulated by short-term heat stress. The majority of genes associated with ubiquitin and various immune-related pathways were also markedly upregulated in the heat stress group. In addition, the combined analysis of metabolites and gene profiles suggested an enhancement of amino acid metabolism and glycometabolism and the suppression of fatty acid metabolism during heat stress, which could be a potential energy conservation strategy for A. dabryanus. To the best of our knowledge, the present study represents the first attempt to reveal the mechanisms of heat stress responses in A. dabryanus, which can provide insights into improved cultivation of fish in response to global warming.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
7
|
Thermal Stress Induces Metabolic Responses in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Animals (Basel) 2022; 12:ani12233395. [PMID: 36496916 PMCID: PMC9739747 DOI: 10.3390/ani12233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extreme fluctuations in water temperature lead to significant economic losses for the aquaculture industry. Cyprinus carpio var qingtianensis (locally called Qingtian paddy field carp), is a local variety commonly found in Zhejiang province, China. Unlike traditional aquaculture environments, the water temperature range between day and night in the rice field environment is much larger, and the high temperature in summer may exceed the growth threshold of fish because there is no manual intervention; therefore, the study of how the Qingtian paddy field carp (PF carp) adapts to high-temperature conditions can shed light how the species adapt to the rice field environment. To investigate the molecular mechanisms of this fish under thermal stress, the liver metabolomics of Qiangtian paddy field carp (PF carp) were analyzed. In this study, metabolomics was used to examine the metabolic reaction of PF carp (102 days old, 104.69 ± 3.08 g in weight, 14.65 ± 0.46 cm in length) at water temperatures of 28 °C (control group, CG), 34 °C (experimental group (EG) 34), and 38 °C (EG38). The results show that 175 expression profile metabolites (DEMs), including 115 upregulated and 60 downregulated metabolites, were found in the CG vs. EG34. A total of 354 DEMs were inspected in CG vs. EG38, with 85 metabolites downregulated and 269 metabolites upregulated. According to the pathway enrichment study, various pathways were altered by thermal stress, including those of lipid, amino-acid, and carbohydrate metabolism. Our study presents a potential metabolic profile for PF carp under thermal stress. It also demonstrates how the host responds to thermal stress on a metabolic and molecular level.
Collapse
|
8
|
Costábile A, Castellano M, Aversa-Marnai M, Quartiani I, Conijeski D, Perretta A, Villarino A, Silva-Álvarez V, Ferreira AM. A different transcriptional landscape sheds light on Russian sturgeon (Acipenser gueldenstaedtii) mechanisms to cope with bacterial infection and chronic heat stress. FISH & SHELLFISH IMMUNOLOGY 2022; 128:505-522. [PMID: 35985628 DOI: 10.1016/j.fsi.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Sturgeons are chondrostean fish of high economic value and critically endangered due to anthropogenic activities, which has led to sturgeon aquaculture development. Russian sturgeon (Acipenser gueldenstaedtii), the second most important species reared for caviar, is successfully farmed in subtropical countries, including Uruguay. However, during the Uruguayan summer, sturgeons face intolerable warmer temperatures that weaken their defences and favour infections by opportunistic pathogens, increasing fish mortality and farm economic losses. Since innate immunity is paramount in fish, for which the liver plays a key role, we used deep RNA sequencing to analyse differentially expressed genes in the liver of Russian sturgeons exposed to chronic heat stress and challenged with Aeromonas hydrophila. We assembled 149.615 unigenes in the Russian sturgeon liver transcriptome and found that metabolism and immune defence pathways are among the top five biological processes taking place in the liver. Chronic heat stress provoked profound effects on liver biological functions, up-regulating genes related to protein folding, heat shock response and lipid and protein metabolism to meet energy demands for coping with heat stress. Besides, long-term exposure to heat stress led to cell damage triggering liver inflammation and diminishing liver ability to mount an innate response to A. hydrophila challenge. Accordingly, the reprogramming of liver metabolism over an extended period had detrimental effects on fish health, resulting in weight loss and mortality, with the latter increasing after A. hydrophila challenge. To our knowledge, this is the first transcriptomic study describing how chronic heat-stressed sturgeons respond to a bacterial challenge, suggesting that liver metabolism alterations have a negative impact on the innate anti-bacterial response.
Collapse
Affiliation(s)
- Alicia Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Mauricio Castellano
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay; Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Marcio Aversa-Marnai
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Ignacio Quartiani
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | | | - Alejandro Perretta
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Valeria Silva-Álvarez
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
9
|
Wang Y, Jia X, Hsieh JCF, Monson MS, Zhang J, Shu D, Nie Q, Persia ME, Rothschild MF, Lamont SJ. Transcriptome Response of Liver and Muscle in Heat-Stressed Laying Hens. Genes (Basel) 2021; 12:genes12020255. [PMID: 33578825 PMCID: PMC7916550 DOI: 10.3390/genes12020255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to high ambient temperature has detrimental effects on poultry welfare and production. Although changes in gene expression due to heat exposure have been well described for broiler chickens, knowledge of the effects of heat on laying hens is still relatively limited. In this study, we profiled the transcriptome for pectoralis major muscle (n = 24) and liver (n = 24), during a 4-week cyclic heating experiment performed on layers in the early phase of egg production. Both heat-control and time-based contrasts were analyzed to determine differentially expressed genes (DEGs). Heat exposure induced different changes in gene expression for the two tissues, and we also observed changes in gene expression over time in the control animals suggesting that metabolic changes occurred during the transition from onset of lay to peak egg production. A total of 73 DEGs in liver were shared between the 3 h heat-control contrast, and the 4-week versus 3 h time contrast in the control group, suggesting a core set of genes that is responsible for maintenance of metabolic homeostasis regardless of the physiologic stressor (heat or commencing egg production). The identified DEGs improve our understanding of the layer’s response to stressors and may serve as targets for genetic selection in the future to improve resilience.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xinzheng Jia
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - John C. F. Hsieh
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Melissa S. Monson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Jibin Zhang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- Toni Stephenson Lymphoma Center, City of Hope, Duarte, CA 91010, USA
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Michael E. Persia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- Correspondence: ; Tel.: +1-515-294-4100
| |
Collapse
|