1
|
Sun X, Li J, Dong P, Li L, Gu Z, Yuan J. Antioxidant and anti-apoptotic properties of heme oxygenase-1 in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110348. [PMID: 40254088 DOI: 10.1016/j.fsi.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/30/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Heme oxygenase-1 (HO-1), which is significantly induced in response to oxidative stress, plays a crucial role in mitigating oxidative damage. However, the function of HO-1 in crayfish remains unknown. In this study, HO-1 in Procambarus clarkii (PcHO-1) was identified, and its functional domain was conserved across different species based on sequence alignment and structural prediction. Through RT-qPCR analysis, PcHO-1 showed the highest expression level in the hepatopancreas. Under the stimulation of Aeromonas hydrophila or glufosinate ammonium (GLA), the crayfish showed oxidative stress damage, whereas the expression levels of PcHO-1 were increased. Knocking down of PcHO-1 with RNA interference significantly reduced the antioxidant capacity of crayfish compared to the control group under A. hydrophila or GLA stimulation. Furthermore, the expression level of PcHO-1 increased after induction with CoPPIX, which increased the antioxidant level of crayfish and reduced the apoptosis. These findings indicated that PcHO-1 manifests the antioxidant and anti-apoptotic capacity, thereby aiding in the repairing of damage caused by A. hydrophila or GLA in P. clarkii.
Collapse
Affiliation(s)
- Xingye Sun
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China
| | - Jiahao Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Peixiang Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, China; Hubei Engineering Research Centre for Aquatic Animal Diseases Control and Prevention, Wuhan, China.
| |
Collapse
|
2
|
Mukherjee S, Bhattacharya R, Sarkar O, Islam S, Biswas SR, Chattopadhyay A. Gut microbiota perturbation and subsequent oxidative stress in gut and kidney tissues of zebrafish after individual and combined exposure to inorganic arsenic and fluoride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177519. [PMID: 39577582 DOI: 10.1016/j.scitotenv.2024.177519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
Chronic exposure to inorganic arsenic (iAs) and fluoride (F) affect gut health and potentially damage organs. The present study investigates the interplay between gut bacteria and oxidative stress (measured by MDA level, GSH level, catalase activity, Nrf2 translocation and expression) in zebrafish exposed to F (NaF 15 ppm) and As (As2O3 50 ppb) alone or in combination. Combined exposure to As and F reduced gut bacterial alteration and imposed less oxidative stress compared to F- exposure alone. V3-V4 metagenomic sequencing revealed Pseudomonas, Aeromonas and Plesiomonas genera dominated in As or F treated groups while As+F treated group was enriched in beneficial Lactococcus and Streptococcus genera. Functional KEGG analysis demonstrated treatment-specific changes in bacterial metabolism, host organismal systems, human diseases, as well as cellular processes of microbial community were significantly affected. When Aeromonas sp. isolated from F-treated fish gut, tagged with GFP-vector and fed (~3.2 × 106 CFU/mL) to untreated fish, induced oxidative stress in gut and kidney. Gut bacteria were found to both increase and mitigate iAs or F-toxicity, whereas As+F treatment promoted a protective response. Correlation analysis between gut microbial community at genus level and oxidative stress parameters of gut and kidney, showed Aeromonas and Plesiomonas genera are strongly correlated with oxidative stress (r = 0.5-0.9, p˂0.05). This study identifies microbiome biomarkers of iAs and F toxicity on gut-kidney axis.
Collapse
Affiliation(s)
- Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | | | |
Collapse
|
3
|
Adineh H, Yousefi M, Al Sulivany BSA, Ahmadifar E, Farhangi M, Hoseini SM. Effects of Dietary Yeast, Saccharomyces cerevisiae, and Costmary, Tanacetum balsamita, Essential Oil on Growth Performance, Digestive Enzymes, Biochemical Parameters, and Disease Resistance in Nile Tilapia, Oreochromis niloticus. AQUACULTURE NUTRITION 2024; 2024:1388002. [PMID: 39555512 PMCID: PMC11371445 DOI: 10.1155/2024/1388002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/07/2024] [Accepted: 07/31/2024] [Indexed: 11/19/2024]
Abstract
The present study assessed the effects of dietary yeast, Saccharomyces cerevisiae, and costmary, Tanacetum balsamita, essential oil on growth performance, biochemical parameters, and disease resistance of Nile tilapia, Oreochromis niloticus. Four diets containing 1 g/kg yeast (Sc), 0.1 g/kg costmary essential oil (Tb), 1 g/kg yeast + 0.1 g/kg costmary essential oil (Sc + Tb), and without Sc and Tb (control) were formulated and fed (2.5% per day) to triplicate groups of fish (average: 9.8 g; SD : 0.12) for 8 weeks. Each replicate was a 70-L tank, stocked with 25 fish. Then, the fish were intraperitoneally challenged by Aeromonas hydrophila, and blood samples were taken from the fish before and 12 hr postinfection. All experimental groups showed significantly higher growth performance and feed efficiency, compared to the control, and the highest values were related to Sc + Tb treatment (P < 0.001). Sc group showed significant elevations in the intestinal amylase, lipase, and protease activities, but Tb group showed only elevation in lipase activity. The highest amylase (P=0.026), lipase (P=0.036), and protease (P=0.009) activities were observed in Sc + Tb treatment. The postchallenge survival of Sc (70.0%), Tb (73.3%), and Sc + Tb (76.6%) treatments were significantly (P=0.038) higher than the control (56.6%). Bacterial challenge significantly increased plasma cortisol, glucose, malondialdehyde, glutathione peroxidase, and superoxide dismutase, but decreased lysozyme, alternative complement, albumin, globulin, and catalase (P < 0.001). The Tb treatment showed improvements in plasma antioxidant, immunological, and biochemical parameters, compared to the Sc treatment. The Sc + Tb treatment showed the highest albumin, globulin, lysozyme, total immunoglobulin, alternative complement, glutathione peroxidase, and superoxide dismutase, but the lowest cortisol, glucose, malondialdehyde, and catalase, before/after the challenge (P < 0.001). In conclusion, dietary Sc + Tb supplementation positively affects growth performance, antioxidant, and immunological responses, thereby augments resistance of Nile tilapia to A. hydrophila infection.
Collapse
Affiliation(s)
- Hossein Adineh
- Department of FisheriesFaculty of Agriculture and Natural ResourcesGonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Morteza Yousefi
- Department of Veterinary MedicineRUDN University, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | | | - Ehsan Ahmadifar
- Department of FisheriesFaculty of Natural ResourcesUniversity of Zabol, Zabol, Iran
| | - Mohammad Farhangi
- Department of FisheriesFaculty of Agriculture and Natural ResourcesGonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research CenterIranian Fisheries Sciences Research InstituteAgricultural ResearchEducation and Extension Organization, Gorgan, Iran
| |
Collapse
|
4
|
Feng J, Huang Y, Huang M, Li X, Amoah K, Huang Y, Jian J. The immune function of heme oxygenase-1 (HO-1) from Nile tilapia (Oreochromis niloticus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109703. [PMID: 38878912 DOI: 10.1016/j.fsi.2024.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Heme oxygenase-1 (HO-1), an inducible rate-limiting metabolic enzyme, exerts critical immunomodulatory functions by potential anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Although accumulative studies have focused on the immune functions of HO-1 in mammals, the roles in fish are poorly understood, and the reports on involvement in the defensive and immune response are very limited. In this study, On-HO-1 gene from Oreochromis niloticus was successfully cloned and identified, which contained an open reading frame (ORF) of 816 bp and coded for a protein of 271 amino acids. The On-HO-1 protein phylogenetically shared a high homology with HO-1 in other teleost fish (76.10%-98.89 %) and a lowly homology with HO-1 in mammals (38.98%-41.55 %). The expression levels of On-HO-1 were highest in the liver of healthy tilapias and sharply induced by Streptococcus agalactiae or Aeromonas hydrophila. Besides, On-HO-1 overexpression significantly increased non-specific immunological parameters in serum during bacterial infection, including LZM, SOD, CAT, ACP, and AKP. It also exerted anti-inflammatory and anti-apoptotic effects in response to the immune response of the infection with S. agalactiae or A. hydrophila by upregulating anti-inflammatory factors (IL-10, TGF-β), autophagy factors (ATG6, ATG8) and immune-related pathway factors (P65, P38), and down-regulating pro-inflammatory factors (IL-1β, IL-6, TNF-α), apoptotic factors (Caspase3, Caspase9), pyroptosis factor (Caspase1), and inflammasome (NLRP3). These results suggested that On-HO-1 involved in immunomodulatory functions and host defense in Nile tilapia.
Collapse
Affiliation(s)
- Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Meiling Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Xing Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Kwaku Amoah
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yu Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
5
|
Zhao Y, Liu Y, Wu J, Kong D, Zhao S, Li G, Li W. Swamp eel aldehyde reductase is involved in response to nitrosative stress via regulating NO/GSH levels. JOURNAL OF FISH BIOLOGY 2023; 103:529-543. [PMID: 37266950 DOI: 10.1111/jfb.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Aldehyde reductase (ALR) plays key roles in the detoxification of toxic aldehyde. In this study, the authors cloned the swamp eel ALR gene using rapid amplification of cDNA ends-PCR (RACE-PCR). The recombinant protein (rALR) was expressed in Escherichia coli and purified using a Ni2+ -NTA chelating column. The rALR protein exhibited efficient reductive activity towards several aldehydes, ketones and S-nitrosoglutathione (GSNO). A spot assay suggested that the recombinant E. coli strain expressing rALR showed better resistance to formaldehyde, sodium nitrite and GSNO stress, suggesting that swamp eel ALR is crucial for redox homeostasis in vivo. Consequently, the authors investigated the effect of rALR on the oxidative parameters of the liver in swamp eels challenged with Aeromonas hydrophila. The hepatic glutathione (GSH) content significantly increased, and the hepatic NO content and levels of reactive oxygen species and reactive nitrogen species significantly decreased when rALR was administered. In addition, the mRNA expression of hepatic Alr, HO1 and Nrf2 was significantly upregulated, whereas the expression levels of NF-κB, IL-1β and NOS1 were significantly downregulated in the rALR-administered group. Collectively, these results suggest that ALR is involved in the response to nitrosative stress by regulating GSH/NO levels in the swamp eel.
Collapse
Affiliation(s)
- Yuhe Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Yang Liu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Jianfen Wu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Dan Kong
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Sifan Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Guopan Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Li H, Song X, Liu W, Zhang Y, Guan H, Wu J, Yu S, Xue W. Revealing the antibacterial power of hydrogen-releasing PdH nanohydride against drug resistant Staphylococcus aureus: an in-depth mechanism study. J Mater Chem B 2023; 11:1495-1505. [PMID: 36655922 DOI: 10.1039/d2tb02068h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Currently, multidrug resistant (MDR) bacterial infections are a great threat to public health, and the development of novel strategies for high efficiency combatting of MDR bacteria is in urgent demand. Hydrogen (H2) is a small gas with a high reducing ability, and plenty of recent studies have demonstrated its therapeutic effect on many diseases. However, the antibacterial effectiveness and mechanism of H2 against MDR bacteria are still unknown. In the present work, using PdH nanohydride with a temperature responsive H2-releasing property as the H2 source, we demonstrated that H2 was not only able to inhibit the growth of normal Staphylococcus aureus (S. aureus), but could also effectively eliminate single drug resistant S. aureus (CRSA) and multidrug resistant S. aureus (MRSA), as well as the biofilms formed by those bacteria. Moreover, an in-depth mechanism regarding the anti-antibiotic-resistance activity of H2 was elucidated by us, in which H2 exerted its antibacterial effect by firstly causing severe membrane damage, followed by boosting generation of intracellular ROS, which subsequently triggered DNA damage and finally led to bacterial death. The proposed mechanism was further verified by genomic analysis, where a cluster of genes related to bacterial membrane integrity, biofilm formation, metabolism and DNA functions was significantly perturbed by the released H2. In particular, H2 boosted intracellular ROS generation by destroying the redox homeostasis of bacterial metabolism. More importantly, we revealed that H2 was able to alleviate the antibiotic resistance of CRSA and MRSA by significantly down-regulating the expression of many drug-resistant genes, e.g. the norG gene of CRSA, and fmtA, gpsB, sarA and marR genes of MRSA, as well as reducing the minimal inhibitory concentration (MIC) of ciprofloxacin/ampicillin against CRSA/MRSA. The findings in our work suggested that H2 therapy is a promising tool for combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Xiling Song
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wenkang Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yu Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Heyuan Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Junlin Wu
- Institute of microbiology, Guangdong Academy of sciences, Guangzhou 510632, China.
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Wu JF, Wei XP, Li JY, Sun WX. Recombinant Expression and Characterization of an Arginine Deiminase from Pseudomonas sp. LJY. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
NRF-2/HO-1 Pathway-Mediated SHOX2 Activation Is a Key Switch for Heart Rate Acceleration by Yixin-Fumai Granules. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8488269. [PMID: 36199421 PMCID: PMC9529460 DOI: 10.1155/2022/8488269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Population aging has led to increased sick sinus syndrome (SSS) incidence; however, no effective and safe medical therapy has been reported thus far. Yixin-Fumai granules (YXFMs), a Chinese medicine granule designed for bradyarrhythmia treatment, can effectively increase SSS patients' heart rate. Senescence-induced sinoatrial node (SAN) degeneration is an important part of SSS pathogenesis, and older people often show high levels of oxidative stress; reactive oxygen species (ROS) accumulation in the SAN causes abnormal SAN pacing or conduction functions. The current study observed the protective effects of YXFMs on senescent SAN and explored the relationship between the NRF-2/HO-1 pathway, SHOX2, and T-type calcium channels. We selected naturally senescent C57BL/6 mice with bradycardia to simulate SSS; electrocardiography, Masson's trichrome staining, and DHE staining were used to assess SAN function and tissue damage. Immunofluorescence staining and Western blotting were used to assay related proteins. In vitro, we treated human-induced pluripotent stem cell-derived atrial myocytes (hiPSC-AMs) and mouse atrial myocyte-derived cell line HL-1 with D-galactose to simulate senescent SAN-pacemaker cells. CardioExcyte96 was used to evaluate the pulsatile function of the hiPSC-AMs, and the mechanism was verified by DCFH-DA, immunofluorescence staining, RT-qPCR, and Western blotting. The results demonstrated that YXFMs effectively inhibited senescence-induced SAN hypofunction, and this effect possibly originated from scavenging of ROS and promotion of NRF-2, SHOX2, and T-type calcium channel expression. In vitro experiment results indicated that ML385, si-SHOX2, LDN193189, and Mibefradil reversed YXFMs' effects. Moreover, we, for the first time, found that ROS accumulation may hinder SHOX2 expression; YXFMs can activate SHOX2 through the NRF-2/HO-1 pathway-mediated ROS scavenging and then regulate CACNA1G through the SHOX2/BMP4/GATA4/NKX2-5 axis, improve T-type calcium channel function, and ameliorate the SAN dysfunction. Finally, through network pharmacology and molecular docking, we screened for the most stable YXFMs compound that docks to NRF-2, laying the foundation for future studies.
Collapse
|
9
|
Xu H, Miao XM, Wang WB, Wang G, Li Y. Transcriptome analysis reveals the early resistance of zebrafish larvae to oxidative stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1075-1089. [PMID: 35838812 DOI: 10.1007/s10695-022-01100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress is one of most common environmental stresses encountered by fish, especially during their fragile larval stage. More and more studies are aimed at understanding the antioxidant defense mechanism of fish larvae. Herein we characterized the early resistance of zebrafish larvae to oxidative stress and investigated the underlying transcriptional regulations using RNA-seq. We found that pre-exposure of zebrafish larvae to 2 mM H2O2 for 1 or 3 h significantly improved their survival under higher doses of H2O2 (3 mM), suggesting the antioxidant defenses of zebrafish larvae were rapidly built under pre-exposure of H2O2. Comparative transcriptome analysis showed that 310 (185 up and 125 down) and 512 (331 up and 181 down) differentially expressed genes were generated after 1 and 3 h of pre-exposure, respectively. KEGG enrichment analysis revealed that protein processing in endoplasmic reticulum is a highly enriched pathway; multiple genes (e.g., hsp70.1, hsp70.2, and hsp90aa1.2) encoding heat shock proteins in this pathway were sharply upregulated presumably to correct protein misfolding and maintaining the cellular normal functions during oxidative stress. More importantly, the Keap1/Nrf2 system-mediated detoxification enzyme system was significantly activated, which regulates the upregulation of target genes (e.g., gstp1, gsr, and prdx1) to scavenger reactive oxygen species, thereby defending against apoptosis. In addition, the MAPK, as a transmitter of stress signals, was activated, which may play an important role in activating antioxidant system in the early stages of oxidative stress. Altogether, these findings demonstrate that zebrafish larvae rapidly establish resistance to oxidative stress, and this involves changes in protein processing, stress signal transmission, and the activation of detoxification pathways.
Collapse
Affiliation(s)
- Hao Xu
- College of Fisheries, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiao-Min Miao
- College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Wen-Bo Wang
- College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Guo Wang
- College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yun Li
- College of Fisheries, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Liu R, Qi Y, Feng H, Niu Y, Zhang F, Yang G, Shan S. Fish-specific Toll-like receptor 14 (TLR14) from Asian swamp eel (Monopterus albus) is involved in immune response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:313-323. [PMID: 35421574 DOI: 10.1016/j.fsi.2022.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) that play a critical role in innate immune responses against pathogens. In the present study, a fish-specific TLR14 was identified and characterized from Monopterus albus (named MaTLR14), which consisted of a 2658 bp open reading frame encoding a protein of 885 amino acids. Phylogenetic analysis revealed that MaTLR14 belong to the TLR1 subfamily and shared the highest similarity to Paralichthys olivaceus TLR14. Immunohistochemistry assay showed that MaTLR14 mainly located in intestinal epithelial cells of hindgut. Immunofluorescence revealed that MaTLR14 largely localized to the intracellular region and partially co-localized with cell membrane of HeLa cells. The expression levels of MaTLR14 were upregulated in the liver, spleen, foregut and hindgut post infection with Aeromonas hydrophila. When stimulated with LPS and Flagellin, the MaTLR14 expression was elevated in isolated peripheral blood leukocytes. Further studies showed that recombinant MaTLR14-LRR could bind to both the gram-negative and gram-positive bacteria and cause agglutination. Subsequently, the signaling pathway of MaTLR14 was investigated. Confocal microscopy and co-immunoprecipitation assay demonstrated that MaTLR14 recruited MyD88 as adaptor. When overexpressed, MaTLR14 augmented the expression of TRAF6 and phosphorylation of ERK and p65, activated NF-κB and AP-1 and elicited the expression of il-6 and tnf-α. Collectively, MaTLR14 plays an important role in the microorganism recognition and signaling transduction.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Yue Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Hanxiao Feng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Yan Niu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
11
|
Yang L, Zheng S, Kong D, Xiang S, Wu J, Wan N, Sun W, Li W. Characterization, expression, and function analysis of AKR1A1 gene from yellow catfish (Tachysurus fulvidraco). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:285-302. [PMID: 35113310 DOI: 10.1007/s10695-022-01048-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Aldehyde reductase (AKR1A1) is a carbonyl detoxification protein in toxic aldehyde removal. In the present study, the full-length cDNA of yellow catfish AKR1A1 (TfAKR1A1) was cloned. As expected, yellow catfish AKR1A1 showed similarities with that of other species. Subsequently, prokaryotic expression vector was constructed and recombinant TfAKR1A1 (rTfAKR1A1) was successfully induced and purified. rTfAKR1A1 exhibited reductive activity to many aldehydes and ketones. To determine whether TfAKR1A1 could confer stress tolerance in vitro, the viability of control and TfAKR1A1 expression E. coli under abiotic stress was compared by spot assay. Results showed that the recombinant strain had better stress resistance under cadmium, hydrogen peroxide, and DL-glyceraldehyde stress. Then, effects of an intraperitoneal injection of rTfAKR1A1 protein on cadmium-induced oxidative stress were evaluated. Results displayed that TfAKR1A1 and Nrf2 expression levels were significantly decreased, CAT and SOD expression levels were significantly increased, BCL-2 and IL-10 expression levels were significantly increased, and caspase3a, NF-κB, and IL-1β expression levels were significantly decreased in protein-injection group. Furthermore, oxidative stress indexes in livers under different protein injection doses were examined by ELISA. Results showed that CAT, SOD, and GSH-Px activities were upregulated, ROS and T-AOC contents were also improved, while MDA content was significantly decreased both in lower and middle dose injection groups. Finally, liver pathological section analysis was performed. Results displayed that liver injury degree in protein-injected groups was lower than that of PBS group under cadmium stress. These results suggested that TfAKR1A1 played important roles in response to cadmium stress in yellow catfish.
Collapse
Affiliation(s)
- Long Yang
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China
| | - Shuting Zheng
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China
| | - Dan Kong
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China
| | - Shenghan Xiang
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China
| | - Jianfen Wu
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China
| | - Neng Wan
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China
| | - Wenxiu Sun
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou, Hubei Province, 434025, People's Republic of China.
| |
Collapse
|