1
|
Zhou L, Ji S, Xue R, Tian Z, Wei M, Yuan X, Sun J, Ji H. Comparative analysis of Scarb1 and Cd36 in grass carp (Ctenopharyngodon idellus): Implications for DHA uptake. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111025. [PMID: 39181181 DOI: 10.1016/j.cbpb.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The polyunsaturated fatty acid docosahexaenoic acid (DHA) significantly influences fish growth and lipid metabolism. Nevertheless, the specific mechanism by which DHA is transported and exerts its effects remains unclear. Scavenger receptor class B type I (SCARB1) is essential for maintaining cellular cholesterol levels and regulating the immune system in mammals, as well as facilitating the uptake of fatty acids (FAs). Another class B scavenger receptor, cluster-determinant 36 (CD36), is involved in promoting the uptake and transport of long-chain fatty acids. However, the molecular characteristics of the grass carp scarb1 gene have not yet been reported, and the potential role of Scarb1 and Cd36 in mediating DHA transport and metabolism remains uncertain. This study aimed to investigate the effects of Scarb1 and Cd36 on DHA transport. Initially, grass carp scarb1-1 and scarb1-2 were cloned. Predictions were made regarding their structural characteristics, including number and presence of transmembrane domains and glycosylation sites. Furthermore, gene structure analysis revealed that scarb1-1 has two additional exons in the 3'-region compared to scarb1-2. The multiple sequence alignment indicated that Scarb1 exhibits conserved motifs and amino acid residues across vertebrates. mRNA expression of scarb1-1 was the highest in the intestine, while scarb1-2 was highest expressed in adipose tissue, with both having lower expression levels in muscle tissue. Scarb1-1 was primarily localized on the cell membrane, whereas Scarb1-2 was found in both the cell membrane and cytoplasm. After overexpression of grass carp Scarb1-1, Scarb1-2, and Cd36 in HEK 293 T cells, DHA incubation showed that only Cd36 significantly increased cellular DHA relative content, suggesting a potential role of Cd36 in DHA transport. These findings will serve as a basis for further research on fatty acid transport in fish.
Collapse
Affiliation(s)
- Lu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhiqi Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangtong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Liang W, Zhou Z, Gao Q, Zhu Z, Zhu J, Lin J, Wen Y, Qian F, Wang L, Zhai Y, Lv J, Zhang H, Zhong F, Du H. Tumor-derived Prevotella intermedia aggravates gastric cancer by enhancing Perilipin 3 expression. Cancer Sci 2024; 115:1141-1153. [PMID: 38287724 PMCID: PMC11007001 DOI: 10.1111/cas.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
The indigenous microbial milieu within tumorous tissues exerts a pivotal influence on the genesis and advancement of gastric cancer (GC). This investigation scrutinizes the functions and molecular mechanisms attributed to Prevotella intermedia in the malignant evolution of GC. Isolation of P. intermedia from paired GC tissues was undertaken. Quantification of P. intermedia abundance in 102 tissues was accomplished using quantitative real-time PCR (qRT-PCR). Assessment of the biological effects of P. intermedia on GC cells was observed using culture medium supernatant. Furthermore, the protein profile of GC cells treated with tumor-derived P. intermedia was examined through label-free protein analysis. The functionality of perilipin 3 (PLIN3) was subsequently confirmed using shRNA. Our investigation revealed that the relative abundance of P. intermedia in tumor tissues significantly surpassed that of corresponding healthy tissues. The abundance of P. intermedia exhibited correlations with tumor differentiation (p = 0.006), perineural invasion (p = 0.004), omentum majus invasion (p = 0.040), and the survival duration of GC patients (p = 0.042). The supernatant derived from tumor-associated P. intermedia bolstered the proliferation, clone formation, migration, and invasion of GC cells. After indirect co-cultivation with tumor-derived P. intermedia, dysregulation of 34 proteins, including PLIN3, was discerned in GC cells. Knockdown of PLIN3 mitigated the malignancy instigated by P. intermedia in GC cells. Our findings posit that P. intermedia from the tumor microenvironment plays a substantial role in the malignant progression of GC via the modulation of PLIN3 expression. Moreover, the relative abundance of P. intermedia might serve as a potential biomarker for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Wei Liang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Zhengyang Zhou
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Qizhao Gao
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhichen Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jie Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jiayao Lin
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yicheng Wen
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Feinan Qian
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Liang Wang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yaxuan Zhai
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jingnan Lv
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haifang Zhang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Fengyun Zhong
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hong Du
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Adult Triploid Rainbow Trout Can Adapt to Various Dietary Lipid Levels by Coordinating Metabolism in Different Tissues. Metabolites 2023; 13:metabo13030396. [PMID: 36984836 PMCID: PMC10057997 DOI: 10.3390/metabo13030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Triploid rainbow trout can adapt to various dietary lipid levels; however, the mechanisms of systematic adaptation are not well understood. To investigate how adult triploid rainbow trout maintains lipid hemostasis under different exogenous lipid intake, a 77-day feeding trial was conducted. Diets with lipid contents of 20%, 25%, and 30% were formulated and fed to triploid rainbow trout with an initial weight of 3 ± 0.02 kg, and they were named L20, L25, and L30 group, respectively. Results showed that the condition factor, hepatosomatic index, liver color, and plasma triglyceride were comparable among three groups (p > 0.05), whereas the value of specific growth rate, viscerosomatic index, and liver glycogen content gradually increased with increasing dietary lipid level (p < 0.05). A significantly highest value of plasma glucose and nonesterified fatty acids were found in the L30 group (p < 0.05), whereas the significantly higher content of plasma total cholesterol, high-density lipoprotein–cholesterol, and low-density lipoprotein–cholesterol was found in the L25 group compared with those in L20 group (p < 0.05). As for lipid deposition, abdominal adipose tissue, and muscle were the main lipid storage place for triploid rainbow trout when tissues’ weight is taken into consideration. Overall quantitative PCR showed that the lipid transport and glycolysis were upregulated, and fatty acids oxidative was downregulated in liver when fish were fed low lipid diets. It meant that the liver was the primary lipid metabolizing organ to low lipid diet feeding, which could switch energy supply between glycolysis and fatty acids oxidation. Fish fed with a moderate dietary lipid level diet could increase lipid uptake and promote lipogenesis in muscle. Abdominal adipose tissue could efficiently uptake excess exogenous free fatty acid through upregulating fatty acid uptake and synthesis de novo and then storing it in the form of triglyceride. Excess lipid uptake is preferentially stored in abdominal adipose tissue through coordinated fatty acid uptake and fatty acid synthesis de novo as dietary lipid levels increased. In summary, triploid rainbow trout can adapt to various dietary lipid levels by coordinating metabolism in different tissues.
Collapse
|
4
|
Huang X, Bian C, Ji H, Ji S, Sun J. DHA induces adipocyte lipolysis through endoplasmic reticulum stress and the cAMP/PKA signaling pathway in grass carp (Ctenopharyngodon idella). ANIMAL NUTRITION 2022; 13:185-196. [PMID: 37123617 PMCID: PMC10131065 DOI: 10.1016/j.aninu.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 01/02/2023]
Abstract
Docosahexaenoic acid (DHA) is a biologically active fatty acid that reduces the accumulation of lipids. However, the molecular mechanism underlying this process, particularly in fish, is not well understood. Recent studies show that endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response, which has been revealed to play an essential role in lipid metabolism. In this study, we explored the effect of DHA on ER stress and investigated the potential molecular mechanisms underlying DHA-induced adipocyte lipolysis in grass carp (Ctenopharyngodon idella) both in vivo and in vitro. We found that DHA remarkably reduced the triglyceride content, increased the secretion of glycerol, promoted lipolysis in adipocytes and evoked ER stress, whereas inhibiting ER stress using 4-phenyl butyric acid (4-PBA) inhibited the effects of DHA (P < 0.05). These results implied that ER stress potentially participates in DHA-induced adipocyte lipolysis. Additionally, STF-083010, a specific inositol-requiring enzyme 1α (IRE1α)-inhibitor, attenuated the effects of DHA on lipolysis, demonstrating that IRE1α and X-box binding protein 1 potentially participate in DHA-induced lipolysis. DHA also activated the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway by increasing the level of cAMP and activating the PKA enzyme (P < 0.05). Nevertheless, H89, a PKA inhibitor, weakened DHA-induced lipolysis by inhibiting the cAMP/PKA signaling pathway. Furthermore, inhibiting ER stress using 4-PBA also inhibited lipolysis and alleviated DHA-induced activation of the cAMP/PKA signaling pathway, suggesting that ER stress may participate in DHA-induced lipolysis through the activation of the cAMP/PKA signaling pathway. Our data illustrate that DHA supplementation can be a promising nutritional strategy for ameliorating lipid accumulation in grass carp. The present study elucidated the molecular mechanism for DHA-induced lipolysis in grass carp adipocytes and emphasized the importance of ER stress and the cAMP/PKA pathway in DHA-induced lipolysis. These results deepen our understanding of ameliorating lipids deposition in freshwater fish by targeting DHA.
Collapse
|
5
|
Ji S, Sun J, Bian C, Huang X, Ji H. PKA/ATGL signaling pathway is involved in ER stress-mediated lipolysis in adipocytes of grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:683-691. [PMID: 35460470 DOI: 10.1007/s10695-021-01032-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
The relationship between endoplasmic reticulum stress (ER stress) and lipolysis in mammals has been widely studied, but it is relatively scarce in fish. The present study used grass carp Ctenopharyngodon idella as a model to investigate the effect of ER stress on lipolysis in adipocytes of fish. We found that ER stress evoked by tunicamycin (TM) treatment significantly induced lipolysis in adipocytes. Subsequently, in order to further investigate whether protein kinase A (PKA) is involved in ER stress-induced lipolysis, we treated adipocytes with PKA activator forskolin and inhibitor H89. The results showed that the mechanism was related to the activation of PKA, especially the catalytic subunit PRKACBa. Notably, we also found that PKA regulates lipolysis by targeting mRNA level and protein and enzyme activities of adipotriglyceride lipase (ATGL). Taken together, our findings suggest that PKA/ATGL signaling pathway is involved in ER stress-mediated lipolysis of grass carp adipocytes. It provides a theoretical basis for further study on the mechanism of lipolysis in fish and other vertebrates.
Collapse
Affiliation(s)
- Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
6
|
Bian C, Sun J, Huang X, Ji S, Ji H. Endoplasmic reticulum stress is involved in lipid accumulation induced by oleic acid in adipocytes of grass carp (Ctenopharyngodon idella): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:275-284. [PMID: 35091868 DOI: 10.1007/s10695-021-01031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
It has been extensively claimed that endoplasmic reticulum stress (ER stress) is related to lipid accumulation in mammals, but little is known in fish. This study aims at elucidating the role of ER stress in mediating lipid accumulation induced by monounsaturated oleic acid (OA) with a focus on the transcriptional level. We treated the adipocytes of grass carp with 200 μM and 400 μM OA, respectively, while the control group was treated with 2% bovine serum albumin (BSA). The results showed that cell viability was significantly improved, while 400 μM OA treatment promoted neutral lipid accumulation along with stimulating ER stress more obviously. Although lipolysis and fatty acid β-oxidation were activated simultaneously, the primary effect of OA seems to be promotion of lipid accumulation. To further explore whether ER stress affects lipid accumulation, 4-phenyl butyric acid (4-PBA), an effective inhibitor of ER stress, was used to pretreat the cells for 4 h. Unsurprisingly, it was found that the mRNA expressions of genes linked with ER stress were decreased. Intracellular triglyceride (TG) content was also decreased, which was in accordance with the mRNA expressions of adipogenic and lipogenic transcription factors as well as their target genes. Collectively, our data shows that ER stress may take part in OA-induced lipid accumulation in adipocytes via activating adipogenesis and lipogenesis. Based on this, strategies for protecting ER could be used to alleviate excessive accumulation of lipid in grass carp adipose tissue.
Collapse
Affiliation(s)
- Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
7
|
Wilson MH, Ekker SC, Farber SA. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. eLife 2021; 10:e66393. [PMID: 34387191 PMCID: PMC8460263 DOI: 10.7554/elife.66393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.
Collapse
Affiliation(s)
- Meredith H Wilson
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Steven A Farber
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
- Johns Hopkins University Department of BiologyBaltimoreUnited States
| |
Collapse
|