1
|
Toscani MA, Pigozzi MI, Papeschi AG, Bressa MJ. Histone H3 Methylation and Autosomal vs. Sex Chromosome Segregation During Male Meiosis in Heteroptera. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heteropteran insects exhibit a remarkable diversity of meiotic processes, including coexistence of different chromosomes types with different behavior during the first meiotic division, non-chiasmatic segregation, and inverted meiosis. Because of this diversity they represent suitable models to study fundamental questions about the mechanisms of chromosome behavior during cell division. All heteropteran species possess holokinetic chromosomes and in most of them the autosomal chromosomes synapse, recombine, and undergoe pre-reductional meiosis. In contrast, the sex chromosomes are achiasmatic, behave as univalents at metaphase I and present an inverted or post-reductional meiosis. An exception to this typical behavior is found in Pachylis argentinus, where both the autosomes and the X-chromosome divide reductionally at anaphase I and then divide equationally at anaphase II. In the present report, we analyzed the distribution of histones H3K9me2 and H3K9me3 in P. argentinus and in five species that have simple and multiple sex chromosome systems with typical chromosome segregation, Belostoma elegans, B. oxyurum, Holhymenia rubiginosa, Phthia picta, and Oncopeltus unifasciatellus. We found that H3K9me3 is a marker for sex-chromosomes from early prophase I to the end of the first division in all the species. H3K9me2 also marks the sex chromosomes since early prophase but shows different dynamics at metaphase I depending on the sex-chromosome segregation: it is lost in species with equationally dividing sex chromosomes but remains on one end of the X chromosome of P. argentinus, where chromatids migrate together at anaphase I. It is proposed that the loss of H3K9me2 from the sex chromosomes observed at metaphase I may be part of a set of epigenetic signals that lead to the reductional or equational division of autosomes and sex chromosomes observed in most Heteroptera. The present observations suggest that the histone modifications analyzed here evolved in Heteroptera as markers for asynaptic and achiasmatic sex chromosomes during meiosis to allow the distinction from the chiasmatic autosomal chromosomes.
Collapse
|
2
|
Dionisio JF, da Cruz Baldissera JN, Tiepo AN, Fernandes JAM, Sosa-Gómez DR, da Rosa R. New cytogenetic data for three species of Pentatomidae (Heteroptera): Dichelops melacanthus (Dallas, 1851), Loxa viridis (Palisot de Beauvois, 1805), and Edessa collaris (Dallas, 1851). COMPARATIVE CYTOGENETICS 2020; 14:577-588. [PMID: 33244356 PMCID: PMC7686203 DOI: 10.3897/compcytogen.v14i4.56743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we present new cytogenetic data for three species of the family Pentatomidae: Dichelops melacanthus (Dallas, 1851), Loxa viridis (Palisot de Beauvois, 1805), and Edessa collaris (Dallas, 1851). All studied species presented holocentric chromosomes and inverted meiosis for the sex chromosomes. D. melacanthus has 2n = 12 (10A + XY); L. viridis showed 2n = 14 (12A + XY); and E. collaris showed 2n = 14 (12A + XY). C-banding was performed for the first time in these species and revealed terminal and interstitial heterochromatic regions on the autosomes; DAPI/CMA3 staining showed different fluorescent patterns. In all species, fluorescence in situ hybridization (FISH) with 18S rDNA probe identified signals on one autosomal bivalent, this being the first report of FISH application in the species D. melacanthus and L. viridis. The results obtained add to those already existing in the literature, enabling a better understanding of the meiotic behavior of these insects.
Collapse
Affiliation(s)
- Jaqueline Fernanda Dionisio
- Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, Caixa Postal 10.011, 86057-970, Londrina, PR, BrazilUniversidade Estadual de LondrinaLondrinaBrazil
| | - Joana Neres da Cruz Baldissera
- Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, Caixa Postal 10.011, 86057-970, Londrina, PR, BrazilUniversidade Estadual de LondrinaLondrinaBrazil
| | - Angélica Nunes Tiepo
- Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, Caixa Postal 10.011, 86057-970, Londrina, PR, BrazilUniversidade Estadual de LondrinaLondrinaBrazil
| | - José Antônio Marin Fernandes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Universidade Federal do Pará, 66075-110; PA, BrazilUniversidade Federal do ParáParáBrazil
| | - Daniel Ricardo Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária/Centro Nacional de Pesquisa de Soja (EMBRAPA/CNPSO), Rodovia Carlos João Strass, 86001-970, Distrito de Warta, Londrina, PR, BrazilCentro Nacional de Pesquisa de SojaLondrinaBrazil
| | - Renata da Rosa
- Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, Caixa Postal 10.011, 86057-970, Londrina, PR, BrazilUniversidade Estadual de LondrinaLondrinaBrazil
| |
Collapse
|
3
|
de Souza-Firmino TS, Alevi KCC, Itoyama MM. Chromosomal divergence and evolutionary inferences in Pentatomomorpha infraorder (Hemiptera, Heteroptera) based on the chromosomal location of ribosomal genes. PLoS One 2020; 15:e0228631. [PMID: 32017800 PMCID: PMC6999898 DOI: 10.1371/journal.pone.0228631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
With the objective of assisting in the understanding of the chromosome evolution of Pentatomomorpha and in the quest to understand how the genome organizes/reorganizes for the chromosomal position of the 45S rDNA in this infraorder, we analyzed 15 species (it has being 12 never studied before by FISH) of Pentatomomorpha with the probe of 18S rDNA. The mapping of the 45S gene in the Coreidae family demonstrated that the species presented markings on the autosomes, with the exception of Acanthocephala parensis and Leptoglossus gonagra that showed markers on m-chromosomes. Most species of the Pentatomidae family showed marking in the autosomes, except for two species that had 45S rDNA on X sex chromosome (Odmalea sp. and Graphosoma lineatum) and two that showed marking on the X and Y sex chromosomes. Species of the Pyrrhocoridae family showed 18S rDNA markers in autosomes, X chromosome as well as in Neo X. The Largidae and Scutelleridae families were represented by only one species that showed marking on the X sex chromosome and on a pair of autosomes, respectively. Based on this, we characterized the arrangement of 45S DNAr in the chromosomes of 12 new species of Heteroptera and discussed the main evolutionary events related to the genomic reorganization of these species during the events of chromosome and karyotype evolution in Pentatomomorpha infraorder.
Collapse
Affiliation(s)
- Tatiani Seni de Souza-Firmino
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Kaio Cesar Chaboli Alevi
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Araraquara, Araraquara, SP, Brazil
| | - Mary Massumi Itoyama
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| |
Collapse
|
4
|
Kaur H, Gaba K. Cytogenetic characterization of three species of Antilochus (Hemiptera: Heteroptera: Pyrrhocoridae). THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Angus RB, Jeangirard C, Stoianova D, Grozeva S, Kuznetsova VG. A chromosomal analysis of Nepa cinerea Linnaeus, 1758 and Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepidae). COMPARATIVE CYTOGENETICS 2017; 11:641-657. [PMID: 29114353 PMCID: PMC5672273 DOI: 10.3897/compcytogen.v11i4.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/13/2017] [Indexed: 05/31/2023]
Abstract
An account is given of the karyotypes and male meiosis of the Water Scorpion Nepa cinerea Linnaeus, 1758 and the Water Stick Insect Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepomorpha, Nepidae). A number of different approaches and techniques were tried: the employment of both male and female gonads and mid-guts as the sources of chromosomes, squash and air-drying methods for chromosome preparations, C-banding and fluorescence in situ hybridization (FISH) for chromosome study. We found that N. cinerea had a karyotype comprising 14 pairs of autosomes and a multiple sex chromosome system, which is X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀), whereas R. linearis had a karyotype comprising 19 pairs of autosomes and a multiple sex chromosome system X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀). In both N. cinerea and R. linearis, the autosomes formed chiasmate bivalents in spermatogenesis, and the sex chromosome univalents divided during the first meiotic division and segregated during the second one suggesting thus a post-reductional type of behaviour. These results confirm and amplify those of Steopoe (1925, 1927, 1931, 1932) but are inconsistent with those of other researchers. C-banding appeared helpful in pairing up the autosomes for karyotype assembly; however in R. linearis the chromosomes were much more uniform in size and general appearance than in N. cinerea. FISH for 18S ribosomal DNA (major rDNA) revealed hybridization signals on two of the five sex chromosomes in N. cinerea. In R. linearis, rDNA location was less obvious than in N. cinerea; however it is suggested to be similar. We have detected the presence of the canonical "insect" (TTAGG) n telomeric repeat in chromosomes of these species. This is the first application of C-banding and FISH in the family Nepidae.
Collapse
Affiliation(s)
- Robert B. Angus
- Department of Life Sciences (Insects), The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Constance Jeangirard
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Desislava Stoianova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel, Sofia 1000, Bulgaria
| | - Snejana Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel, Sofia 1000, Bulgaria
| | - Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Salanitro LB, Massaccesi AC, Urbisaglia S, Bressa MJ, Chirino MG. A karyotype comparison between two species of bordered plant bugs (Hemiptera, Heteroptera, Largidae) by conventional chromosome staining, C-banding and rDNA-FISH. COMPARATIVE CYTOGENETICS 2017; 11:239-248. [PMID: 28919962 PMCID: PMC5596986 DOI: 10.3897/compcytogen.v11i2.11683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/25/2017] [Indexed: 05/08/2023]
Abstract
A cytogenetic characterization, including heterochromatin content, and the analysis of the location of rDNA genes, was performed in Largus fasciatus Blanchard, 1843 and L. rufipennis Laporte, 1832. Mitotic and meiotic analyses revealed the same diploid chromosome number 2n = 12 + X0/XX (male/female). Heterochromatin content, very scarce in both species, revealed C-blocks at both ends of autosomes and X chromosome. The most remarkable cytological feature observed between both species was the different chromosome position of the NORs. This analysis allowed us to use the NORs as a cytological marker because two clusters of rDNA genes are located at one end of one pair of autosomes in L. fasciatus, whereas a single rDNA cluster is located at one terminal region of the X chromosome in L. rufipennis. Taking into account our results and previous data obtained in other heteropteran species, the conventional staining, chromosome bandings, and rDNA-FISH provide important chromosome markers for cytotaxonomy, karyotype evolution, and chromosome structure and organization studies.
Collapse
Affiliation(s)
- Lucila Belén Salanitro
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
| | - Anabella Cecilia Massaccesi
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
| | - Santiago Urbisaglia
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
| | - María José Bressa
- Grupo de Citogenética de Insectos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires (C1425FQB), Argentina
| | - Mónica Gabriela Chirino
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
- Grupo de Citogenética de Insectos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires (C1425FQB), Argentina
| |
Collapse
|
7
|
Bardella VB, Pita S, Vanzela ALL, Galvão C, Panzera F. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz 2016; 111:614-624. [PMID: 27759763 PMCID: PMC5066327 DOI: 10.1590/0074-02760160044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022] Open
Abstract
The subfamily Triatominae (Hemiptera, Reduviidae) includes 150 species of blood-sucking insects, vectors of Chagas disease or American trypanosomiasis. Karyotypic information reveals a striking stability in the number of autosomes. However, this group shows substantial variability in genome size, the amount and distribution of C-heterochromatin, and the chromosome positions of 45S rDNA clusters. Here, we analysed the karyotypes of 41 species from six different genera with C-fluorescence banding in order to evaluate the base-pair richness of heterochromatic regions. Our results show a high heterogeneity in the fluorescent staining of the heterochromatin in both autosomes and sex chromosomes, never reported before within an insect subfamily with holocentric chromosomes. This technique allows a clear discrimination of the heterochromatic regions classified as similar by C-banding, constituting a new chromosome marker with taxonomic and evolutionary significance. The diverse fluorescent patterns are likely due to the amplification of different repeated sequences, reflecting an unusual dynamic rearrangement in the genomes of this subfamily. Further, we discuss the evolution of these repeated sequences in both autosomes and sex chromosomes in species of Triatominae.
Collapse
Affiliation(s)
- Vanessa Bellini Bardella
- Universidade Estadual Paulista, Instituto de Biociências, Departamento
de Biologia, Rio Claro, SP, Brasil
| | - Sebastián Pita
- Universidad de la República, Facultad de Ciencias, Sección Genética
Evolutiva, Montevideo, Uruguay
| | - André Luis Laforga Vanzela
- Universidade Estadual de Londrina, Centro de Ciências Biológicas,
Departamento de Biologia Geral, Londrina, PR, Brasil
| | - Cleber Galvão
- Instituto Oswaldo Cruz, Laboratório Nacional e Internacional de
Referência em Taxonomia de Triatomíneos, Rio de Janeiro, RJ, Brasil
| | - Francisco Panzera
- Universidad de la República, Facultad de Ciencias, Sección Genética
Evolutiva, Montevideo, Uruguay
| |
Collapse
|
8
|
Chromosomal evolutionary dynamics of four multigene families in Coreidae and Pentatomidae (Heteroptera) true bugs. Mol Genet Genomics 2016; 291:1919-25. [DOI: 10.1007/s00438-016-1229-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
|
9
|
Sadílek D, Angus RB, Šťáhlavský F, Vilímová J. Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae). COMPARATIVE CYTOGENETICS 2016; 10:731-752. [PMID: 28123691 PMCID: PMC5240521 DOI: 10.3897/compcytogen.v10i4.10681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/30/2016] [Indexed: 05/14/2023]
Abstract
In the article we summarize the most common recent cytogenetic methods used in analysis of karyotypes in Heteroptera. We seek to show the pros and cons of the spreading method compared with the traditional squashing method. We discuss the suitability of gonad, midgut and embryo tissue in Cimex lectularius Linnaeus, 1758 chromosome research and production of figures of whole mitosis and meiosis, using the spreading method. The hotplate spreading technique has many advantages in comparison with the squashing technique. Chromosomal slides prepared from the testes tissue gave the best results, tissues of eggs and midgut epithelium are not suitable. Metaphase II is the only division phase in which sex chromosomes can be clearly distinguished. Chromosome number determination is easy during metaphase I and metaphase II. Spreading of gonad tissue is a suitable method for the cytogenetic analysis of holokinetic chromosomes of Cimex lectularius.
Collapse
Affiliation(s)
- David Sadílek
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Robert B. Angus
- Department of Life Sciences (Entomology), The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - František Šťáhlavský
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Jitka Vilímová
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| |
Collapse
|
10
|
Bansal N, Kaur H. C-Heterochromatin Distribution and Its Base Composition in Four Species of Mictini (Heteroptera, Coreidae, Coreinae). CYTOLOGIA 2015. [DOI: 10.1508/cytologia.80.405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nidhi Bansal
- Department of Zoology and Environmental Sciences, Punjabi University
| | - Harbhajan Kaur
- Department of Zoology and Environmental Sciences, Punjabi University
| |
Collapse
|
11
|
Bardella VB, Gil-Santana HR, Panzera F, Vanzela ALL. Karyotype diversity among predatory Reduviidae (Heteroptera). COMPARATIVE CYTOGENETICS 2014; 8:351-67. [PMID: 25610548 PMCID: PMC4296721 DOI: 10.3897/compcytogen.v8i4.8430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/20/2014] [Indexed: 05/28/2023]
Abstract
Species of infraorder Cimicomorpha of Heteroptera exhibit holokinetic chromosomes with inverted meiosis for sex chromosomes and high variation in chromosome number. The family Reduviidae, which belongs to this infraorder, is also recognized by high variability of heterochromatic bands and chromosome location of 18S rDNA loci. We studied here five species of Reduviidae (Harpactorinae) with predator habit, which are especially interesting because individuals are found solitary and dispersed in nature. These species showed striking variation in chromosome number (including sex chromosome systems), inter-chromosomal asymmetry, different number and chromosome location of 18S rDNA loci, dissimilar location and quantity of autosomal C-heterochromatin, and different types of repetitive DNA by fluorochrome banding, probably associated with occurrence of different chromosome rearrangements. Terminal chromosome location of C-heterochromatin seems to reinforce the model of equilocal dispersion of repetitive DNA families based in the "bouquet configuration".
Collapse
Affiliation(s)
- Vanessa Bellini Bardella
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, IBILCE/UNESP, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | | | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - André Luís Laforga Vanzela
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, 86051-990, Londrina, Paraná, Brazil
| |
Collapse
|
12
|
Poggio MG, Di Iorio O, Turienzo P, Papeschi AG, Bressa MJ. Heterochromatin characterization and ribosomal gene location in two monotypic genera of bloodsucker bugs (Cimicidae, Heteroptera) with holokinetic chromosomes and achiasmatic male meiosis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:788-93. [PMID: 25209098 DOI: 10.1017/s0007485314000650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Members of the family Cimicidae (Heteroptera: Cimicomorpha) are temporary bloodsuckers on birds and bats as primary hosts and humans as secondary hosts. Acanthocrios furnarii (2n=12=10+XY, male) and Psitticimex uritui (2n=31=28+X1X2Y, male) are two monotypic genera of the subfamily Haematosiphoninae, which have achiasmatic male meiosis of collochore type. Here, we examined chromatin organization and constitution of cimicid holokinetic chromosomes by determining the amount, composition and distribution of constitutive heterochromatin, and number and location of nucleolus organizer regions (NORs) in both species. Results showed that these two bloodsucker bugs possess high heterochromatin content and have an achiasmatic male meiosis, in which three regions can be differentiated in each autosomal bivalent: (i) terminal heterochromatic regions in repulsion; (ii) a central region, where the homologous chromosomes are located parallel but without contact between them; and (iii) small areas within the central region, where collochores are detected. Acanthocrios furnarii presented a single NOR on an autosomal pair, whereas P. uritui presented two NORs, one on an autosomal pair and the other on a sex chromosome. All NORs were found to be associated with CMA3 bright bands, indicating that the whole rDNA repeating unit is rich in G+C base pairs. Based on the variations in the diploid autosomal number, the presence of simple and multiple sex chromosome systems, and the number and location of 18S rDNA loci in the two Cimicidae species studied, we might infer that rDNA clusters and genome are highly dynamic among the representatives of this family.
Collapse
Affiliation(s)
- M G Poggio
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN),Universidad de Buenos Aires (UBA),Ciudad Autónoma de Buenos Aires,Argentina
| | - O Di Iorio
- Entomología. Departamento de Biodiversidad y Biología Experimental (DBBE),FCEyN, UBA,Ciudad Autónoma de Buenos Aires,Argentina
| | - P Turienzo
- Entomología. Departamento de Biodiversidad y Biología Experimental (DBBE),FCEyN, UBA,Ciudad Autónoma de Buenos Aires,Argentina
| | - A G Papeschi
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN),Universidad de Buenos Aires (UBA),Ciudad Autónoma de Buenos Aires,Argentina
| | - M J Bressa
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN),Universidad de Buenos Aires (UBA),Ciudad Autónoma de Buenos Aires,Argentina
| |
Collapse
|
13
|
Genetic architecture of contemporary adaptation to biotic invasions: quantitative trait locus mapping of beak reduction in soapberry bugs. G3-GENES GENOMES GENETICS 2014; 4:255-64. [PMID: 24347624 PMCID: PMC3931560 DOI: 10.1534/g3.113.008334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biological invasions can result in new selection pressures driven by the establishment of new biotic interactions. The response of exotic and native species to selection depends critically on the genetic architecture of ecologically relevant traits. In the Florida peninsula, the soapberry bug (Jadera haematoloma) has colonized the recently introduced Chinese flametree, Koelreuteria elegans, as a host plant. Driven by feeding efficiency, the populations associated with this new host have differentiated into a new bug ecomorph characterized by short beaks more appropriate for feeding on the flattened pods of the Chinese flametree. In this study, we have generated a three-generation pedigree from crossing the long-beaked and short-beaked ecomorphs to construct a de novo linkage map and to locate putative quantitative trait locus (QTL) controlling beak length and body size in J. haematoloma. Using amplified fragment-length polymorphism markers and a two-way pseudo-testcross design, we have produced two parental maps in six linkage groups, covering the known number of chromosomes. QTL analysis revealed one significant QTL for beak length on a maternal linkage group and the corresponding paternal linkage group. Three QTL were found for body size. Through single marker regression analysis, nine single markers that could not be placed on the map were also found to be significantly associated with one or both of the two traits. Interestingly, the most significant body size QTL co-localized with the beak length QTL, suggesting linkage disequilibrium or pleiotropic effects of related traits. Our results suggest an oligogenic control of beak length.
Collapse
|
14
|
Bardella V, Grazia J, Fernandes J, Vanzela A. High Diversity in CMA 3/DAPI-Banding Patterns in Heteropterans. Cytogenet Genome Res 2013; 142:46-53. [DOI: 10.1159/000355214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
|
15
|
Suman V, Kaur H. First report on C-banding, fluorochrome staining and NOR location in holocentric chromosomes of Elasmolomus (Aphanus) sordidus Fabricius, 1787 (Heteroptera, Rhyparochromidae). Zookeys 2013:283-91. [PMID: 24039525 PMCID: PMC3764527 DOI: 10.3897/zookeys.319.4265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/09/2013] [Indexed: 11/12/2022] Open
Abstract
In spite of various cytogenetic works on suborder Heteroptera, the chromosome organization, function and its evolution in this group is far from being fully understood. Cytologically, the family Rhyparochromidae constitutes a heterogeneous group differing in chromosome numbers. This family possesses XY sex mechanism in the majority of the species with few exceptions. In the present work, multiple banding techniques viz., C-banding, base-specific fluorochromes (DAPI/CMA3) and silver nitrate staining have been used to cytologically characterize the chromosomes of the seed plant pest Elasmolomus (Aphanus) sordidus Fabricius, 1787 having 2n=12=8A+2m+XY. One pair of the autosomes was large while three others were of almost equal size. At diplotene, C-banding technique revealed, that three autosomal bivalents show terminal constitutive heterochromatic bands while one medium sized bivalent was euchromatic. Microchromosomes (m-chromosomes) were positively heteropycnotic. After DAPI and CMA3 staining, all the autosomal bivalents showed equal fluorescence, except CMA3 positive signals, observed at both telomeric heterochromatic regions of one medium sized autosomal bivalent. Silver nitrate staining further revealed that this chromosome pair carries Nucleolar Organizer Regions (NORs) at the location of CMA3 positive signals. The X chromosome showed a thick C-band, positive to both DAPI /CMA3 while Y, otherwise C-negative, was weakly positive to DAPI and negative to CMA3, m-chromosomes were DAPI bright and CMA3 dull.
Collapse
Affiliation(s)
- Vikas Suman
- Department of Entomology, Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan 173 230, Himachal Pradesh, India
| | | |
Collapse
|
16
|
Gabriela CM, Papeschi AG, Bressa MJ. The significance of cytogenetics for the study of karyotype evolution and taxonomy of water bugs (Heteroptera, Belostomatidae) native to Argentina. COMPARATIVE CYTOGENETICS 2013; 7:111-29. [PMID: 24260694 PMCID: PMC3833753 DOI: 10.3897/compcytogen.v7i2.4462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/19/2013] [Indexed: 05/08/2023]
Abstract
Male meiosis behaviour and heterochromatin characterization of three big water bug species were studied. Belostoma dentatum (Mayr, 1863), Belostoma elongatum Montandon, 1908 and Belostoma gestroi Montandon, 1903 possess 2n = 26 + X1X2Y (male). In these species, male meiosis is similar to that previously observed in Belostoma Latreille, 1807. In general, autosomal bivalents show a single chiasma terminally located and divide reductionally at anaphase I. On the other hand, sex chromosomes are achiasmatic, behave as univalents and segregate their chromatids equationally at anaphase I. The analysis of heterochromatin distribution and composition revealed a C-positive block at the terminal region of all autosomes in Belostoma dentatum, a C-positive block at the terminal region and C-positive interstitial dots on all autosomes in Belostoma elongatum, and a little C-positive band at the terminal region of autosomes in Belostoma gestroi. A C-positive band on one bivalent was DAPI negative/CMA3 positive in the three species. The CMA3-bright band, enriched in GC base pairs, was coincident with a NOR detected by FISH. The results obtained support the hypothesis that all species of Belostoma with multiple sex chromosome systems preserve NORs in autosomal bivalents. The karyotype analyses allow the cytogenetic characterization and identification of these species belonging to a difficult taxonomic group. Besides, the cytogenetic characterization will be useful in discussions about evolutionary trends of the genome organization and karyotype evolution in this genus.
Collapse
Affiliation(s)
- Chirino Mónica Gabriela
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | - Alba Graciela Papeschi
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Bressa
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
17
|
Kaur H, Kaur R, Suman V. C-heterochromatin and its base composition in holokinetic chromosomes of two species of Heteroptera (Insecta: Hemiptera). THE NUCLEUS 2012. [DOI: 10.1007/s13237-012-0064-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Maryańska-Nadachowska A, Kuznetsova VG, Lachowska D, Drosopoulos S. Mediterranean species of the spittlebug genus Philaenus: modes of chromosome evolution. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:54. [PMID: 22963598 PMCID: PMC3476953 DOI: 10.1673/031.012.5401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/26/2011] [Indexed: 05/08/2023]
Abstract
The evolution of karyotypes and sex determination system of Philaenus Stål (Auchenorrhyncha: Aphrophoridae) species is studied here in detail. The most plausible scenario of chromosomal rearrangements accompanying phylogenetic differentiation in Philaenus is advanced. It is postulated that the ancestral karyotype of Philaenus was 2n = 24 + X0. Karyotype changes occurred several times independently in the genus. The karyotype of 2n = 22 + X0 (P. spumarius and P. tesselatus) originated from 2n = 24 + X0 by fusion between two autosomal pairs. The neo-XY system (P. arslani, P. loukasi, P. signatus, P. maghresignus, and P. tarifa) also originated from the 24 + X0 karyotype by means of independent fusions between autosomes and the original X chromosome. The neo-X(1)X(2)Y system (P. italosignus) evolved from the 2n = 22 + neo-XY karyotype by an additional fusion between the Y chromosome and one more autosomal pair. The neo-X(n)Y system of P. italosignus is the first reported case of an evolutionarily fixed multiple sex chromosome system in Auchenorrhyncha.
Collapse
Affiliation(s)
| | | | - Dorota Lachowska
- Department of Entomology, Institute of Zoology, Jagiellonian University, Poland
| | | |
Collapse
|
19
|
Kaur H, Bansal N. Meiotic Behavior of Chromosomes in Two Species of Coreinae (Coreidae: Heteroptera). CYTOLOGIA 2012. [DOI: 10.1508/cytologia.77.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Harbhajan Kaur
- Department of Zoology and Environmental Sciences, Punjabi University
| | - Nidhi Bansal
- Department of Zoology and Environmental Sciences, Punjabi University
| |
Collapse
|
20
|
Souza HV, Massumi Itoyama M. Comparative analysis of heteropyknotic chromatin and silver-stained material inPlatycarenus umbractulatus(Pentatomidae: Discocephalinae). INVERTEBR REPROD DEV 2011. [DOI: 10.1080/07924259.2010.548637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Poggio MG, Bressa MJ, Papeschi AG. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae). COMPARATIVE CYTOGENETICS 2011; 5:1-22. [PMID: 24260616 PMCID: PMC3833732 DOI: 10.3897/compcytogen.v5i1.1143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/16/2011] [Indexed: 05/12/2023]
Abstract
In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity.
Collapse
Affiliation(s)
- María Georgina Poggio
- />Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes 2160, C1428EGA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Bressa
- />Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes 2160, C1428EGA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alba Graciela Papeschi
- />Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes 2160, C1428EGA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Rebagliati PJ, Mola LM. Meiotic behavior and karyotypic variation in Acledra (Pentatomidae, Heteroptera). GENETICS AND MOLECULAR RESEARCH 2010; 9:739-749. [PMID: 20449806 DOI: 10.4238/vol9-2gmr763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acledra comprises 15 taxonomically identified species, most of which are crop pests. This is the first cytogenetic study of species of this genus. Acledra kinbergii and A. modesta showed the modal number of the Pentatomidae (2n = 14 = 12 + XY), while A. bonariensis had a reduced complement (2n = 12 = 10 + XY), with a markedly larger autosomal pair. Meiotic behavior follows the general pattern of the family; the autosomes divide pre-reductionally, the sex chromosomes are achiasmatic and divide post-reductionally, and at metaphase II the autosomes show a ring-shaped configuration with the pseudobivalent at the center. However, the configuration at metaphase I varies; A. modesta shows the typical arrangement (ring of bivalents with the sex chromosomes lying at its center). In A. kinbergii, the sex chromosomes are part of the ring or only the Y chromosome is at the center. In A. bonariensis, the ring arrangement is not well defined. There are also differences at the diffuse stage; chromatin strands of different width are observed in A. bonariensis and A. modesta, whereas bivalents do not entirely lose their identity in A. kinbergii. In A. bonariensis, the reduced complement may have originated from the fusion of the two larger non-homologous autosomes, which could characterize the ancestral karyotype of this genus. The presence of secondary constrictions in the larger pair of A. modesta and A. bonariensis may support this hypothesis. Since secondary constrictions are uncommon in the holokinetic chromosomes of heteropterans, their presence in these species may indicate that it is a plesiomorphic character of the genus.
Collapse
Affiliation(s)
- P J Rebagliati
- Departamento de Ecología Genética y Evolución, Laboratorio de Citogenética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | | |
Collapse
|
23
|
Toscani MA, Pigozzi MI, Bressa MJ, Papeschi AG. Synapsis with and without recombination in the male meiosis of the leaf-footed bug Holhymenia rubiginosa (Coreidae, Heteroptera). Genetica 2007; 132:173-8. [PMID: 17576524 DOI: 10.1007/s10709-007-9159-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
In organisms with chiasmatic meiosis two different relationships have been described between crossing over and synapsis: in one group of organisms synapsis depends on the initiation of meiotic recombination while in the other group it is independent of this initiation. These patterns have been observed mainly in organisms where all meiotic bivalents in the set have similar behaviors. In some heteropteran insects a pair of chromosomes named m chromosomes is known to behave differently from autosomes regarding synapsis and recombination. Here we used immunodetection of a synaptonemal complex component and acid-fixed squashes to investigate the conduct of the small m chromosome pair during the male meiosis in the coreid bug Holhymenia rubiginosa. We found that the m chromosomes form a synaptonemal complex during pachytene, but they are not attached by a chiasma in diakinesis. On the other hand, the autosomal bivalents synapse and recombine regularly. The co-existence of these variant chromosome behaviors during meiosis I add further evidence to the absence of unique patterns regarding the interdependence of synapsis and recombination.
Collapse
Affiliation(s)
- María Ayelén Toscani
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2620, Pabellón 2-piso 4, Buenos Aires C1428EHA, Argentina
| | | | | | | |
Collapse
|
24
|
de Souza HV, Arakaki RLM, Dias LN, Murakami AS, Costa LAA, de Campos Bicudo HEM, Itoyama MM. Cytogenetical Aspects of Testicular Cells in Economically Important Species of Coreidae Family (Heteroptera). CYTOLOGIA 2007. [DOI: 10.1508/cytologia.72.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hederson Vinicius de Souza
- Laboratório de Citogenética de Insetos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| | - Ricardo Luis Morisugi Arakaki
- Laboratório de Citogenética de Insetos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| | - Lidiane Nocente Dias
- Laboratório de Citogenética de Insetos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| | - Aline Sumitani Murakami
- Laboratório de Citogenética de Insetos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| | | | - Hermione Elly Melara de Campos Bicudo
- Laboratório de Citogenética de Insetos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| | - Mary Massumi Itoyama
- Laboratório de Citogenética de Insetos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| |
Collapse
|