1
|
Hu X, Fan Y, Mao C, Chen H, Wang Q. Application of transposon insertion site sequencing method in the exploration of gene function in microalgae. Front Microbiol 2023; 14:1111794. [PMID: 36819037 PMCID: PMC9936982 DOI: 10.3389/fmicb.2023.1111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Microalgae are a large group of organisms that can produce various useful substances through photosynthesis. Microalgae need to be genetically modified at the molecular level to become "Chassis Cells" for food, medicine, energy, and environmental protection and, consequently, obtain benefits from microalgae resources. Insertional mutagenesis of microalgae using transposons is a practical possibility for understanding the function of microalgae genes. Theoretical and technical support is provided in this manuscript for applying transposons to microalgae gene function by summarizing the sequencing method of transposon insertion sites.
Collapse
Affiliation(s)
- Xiaobing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China,School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China
| | - Yulong Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chengfeng Mao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China,Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China,*Correspondence: Qiang Wang, ✉
| |
Collapse
|
2
|
Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces. Appl Microbiol Biotechnol 2018; 102:6581-6592. [DOI: 10.1007/s00253-018-9103-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
|
3
|
Santos RERS, Silva GLA, Santos EV, Duncan SM, Mottram JC, Damasceno JD, Tosi LRO. A DiCre recombinase-based system for inducible expression in Leishmania major. Mol Biochem Parasitol 2017. [PMID: 28629935 DOI: 10.1016/j.molbiopara.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we present the establishment of an inducible system based on the dimerizable Cre recombinase (DiCre) for controlled gene expression in the protozoan parasite Leishmania. Rapamycin-induced DiCre activation promoted efficient flipping and expression of gene products in a time and dose-dependent manner. The DiCre flipping activity induced the expression of target genes from both integrated and episomal contexts broadening the applicability of the system. We validated the system by inducing the expression of both full length and truncated forms of the checkpoint protein Rad9, which revealed that the highly divergent C-terminal domain of Rad9 is necessary for proper subcellular localization. Thus, by establishing the DiCre-based inducible system we have created and validated a robust new tool for assessing gene function in Leishmania.
Collapse
Affiliation(s)
- Renato E R S Santos
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Gabriel L A Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Elaine V Santos
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Samuel M Duncan
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom
| | - Jeremy C Mottram
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Jeziel D Damasceno
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil.
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 2015; 31:539-555. [DOI: 10.1016/j.tig.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
|
5
|
Trubitsyna M, Grey H, Houston DR, Finnegan DJ, Richardson JM. Structural Basis for the Inverted Repeat Preferences of mariner Transposases. J Biol Chem 2015; 290:13531-40. [PMID: 25869132 PMCID: PMC4505599 DOI: 10.1074/jbc.m115.636704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3′ base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3′ end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.
Collapse
Affiliation(s)
| | - Heather Grey
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - Douglas R Houston
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | | | - Julia M Richardson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| |
Collapse
|
6
|
Damasceno JD, Beverley SM, Tosi LRO. A transposon-based tool for transformation and mutagenesis in trypanosomatid protozoa. Methods Mol Biol 2015; 1201:235-245. [PMID: 25388118 PMCID: PMC4287265 DOI: 10.1007/978-1-4939-1438-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of transposable elements to mobilize across genomes and affect the expression of genes makes them exceptional tools for genetic manipulation methodologies. Several transposon-based systems have been modified and incorporated into shuttle mutagenesis approaches in a variety of organisms. We have found that the Mos1 element, a DNA transposon from Drosophila mauritiana, is suitable and readily adaptable to a variety of strategies to the study of trypanosomatid parasitic protozoa. Trypanosomatids are the causative agents of a wide range of neglected diseases in underdeveloped regions of the globe. In this chapter we describe the basic elements and the available protocols for the in vitro use of Mos1 derivatives in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
7
|
Stoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, Bartholomeu DC, Lückemeyer DD, Bahia D, Loreto E, Prestes EB, Lima FM, Rodrigues-Luiz G, Vallejo GA, Filho JFDS, Schenkman S, Monteiro KM, Tyler KM, de Almeida LGP, Ortiz MF, Chiurillo MA, de Moraes MH, Cunha ODL, Mendonça-Neto R, Silva R, Teixeira SMR, Murta SMF, Sincero TCM, Mendes TADO, Urmenyi TP, Silva VG, DaRocha WD, Andersson B, Romanha ÁJ, Steindel M, de Vasconcelos ATR, Grisard EC. Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli. PLoS Negl Trop Dis 2014; 8:e3176. [PMID: 25233456 PMCID: PMC4169256 DOI: 10.1371/journal.pntd.0003176] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets. Comparative genomics is a powerful tool that affords detailed study of the genetic and evolutionary basis for aspects of lifecycles and pathologies caused by phylogenetically related pathogens. The reference genome sequences of three trypanosomatids, T. brucei, T. cruzi and L. major, and subsequent addition of multiple Leishmania and Trypanosoma genomes has provided data upon which large-scale investigations delineating the complex systems biology of these human parasites has been built. Here, we compare the annotated genome sequence of T. rangeli strain SC-58 to available genomic sequence and annotation data from related species. We provide analysis of gene content, genome architecture and key characteristics associated with the biology of this non-pathogenic trypanosome. Moreover, we report striking new genomic features of T. rangeli compared with its closest relative, T. cruzi, such as (1) considerably less amplification on the gene copy number within multigene virulence factor families such as MASPs, trans-sialidases and mucins; (2) a reduced repertoire of genes encoding anti-oxidant defense enzymes; and (3) the presence of vestigial orthologs of the RNAi machinery, which are insufficient to constitute a functional pathway. Overall, the genome of T. rangeli provides for a much better understanding of the identity, evolution, regulation and function of trypanosome virulence determinants for both mammalian host and insect vector.
Collapse
Affiliation(s)
- Patrícia Hermes Stoco
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| | - Glauber Wagner
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Diana Bahia
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Elgion Loreto
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Fábio Mitsuo Lima
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | | | | | - Sérgio Schenkman
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Kevin Morris Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, United Kingdom
| | | | - Mauro Freitas Ortiz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Miguel Angel Chiurillo
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | | | | | | | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Turán Peter Urmenyi
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Álvaro José Romanha
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| |
Collapse
|
8
|
Damasceno JD, Nunes VS, Tosi LRO. LmHus1 is required for the DNA damage response inLeishmania majorand forms a complex with an unusual Rad9 homologue. Mol Microbiol 2013; 90:1074-87. [DOI: 10.1111/mmi.12418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Jeziel D. Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 14049-900 Ribeirão Preto SP Brasil
| | - Vinicius S. Nunes
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 14049-900 Ribeirão Preto SP Brasil
| | - Luiz R. O. Tosi
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 14049-900 Ribeirão Preto SP Brasil
| |
Collapse
|
9
|
In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Appl Microbiol Biotechnol 2012; 97:351-9. [PMID: 23143534 DOI: 10.1007/s00253-012-4550-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.
Collapse
|
10
|
Abstract
Protist parasites cause important human and animal diseases, and because of their early divergence from other eukaryotes they possess structural and biochemical characteristics not found in other cells. The completion of the genome projects of most human protist parasites and the development of novel molecular tools for their study guarantee a rapid progress in understanding how they invade, modify and survive within their hosts. The ultimate goal of these studies will be the identification of targets for the design of drugs, diagnostics and vaccines. In addition, the accessibility of some of these parasites to multiple genetic manipulations has converted them into model systems in cell and molecular biology studies that could lead to the understanding of basic biological processes, as well as their evolution and pathogenesis. In the present chapter we discuss the biochemical and molecular peculiarities of these parasites and the molecular tools available for their study.
Collapse
|
11
|
Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem 2012; 4:1335-65. [DOI: 10.4155/fmc.12.68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infectious diseases caused by parasites continue to take a massive toll on human health in the poor regions of the world. Filling the anti-infective drug-discovery pipeline has never been as challenging as it is now. The organisms responsible for these diseases have interesting biology with many potential biochemical targets. Inhibition of metabolic enzymes has been established as an attractive strategy for anti-infectious drug development. In this field, dihydrofolate reductase (DHFR) is an important enzyme in nucleic and amino acid synthesis and an extensively studied drug target over the past 50 years. The challenges for novel DHFR inhibition-based chemotherapeutics for the treatment of infectious diseases are now focused on overcoming the resistance problem as well as cost–effectiveness. Each year, the large number of literature citations attest the continued popularity of DHFR. It becomes truly the ‘enzyme of choice for all seasons and almost all reasons’. Herein, we summarize the opportunities and challenges in developing novel lead based on this target.
Collapse
|
12
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
13
|
Abstract
Leishmania parasites cause a variety of devastating diseases in tropical areas around the world. Due to the lack of vaccines and limited availability of drugs, new therapeutic targets are urgently needed. A variety of genetic tools have been developed to investigate the complex biology of this parasite and its interactions with the host. One of the main techniques is the generation of knock-out parasites via targeted gene replacement, a process that takes advantage of the parasites ability to undergo homologous recombination. Studying the effect of gene deletions in vitro and in infectivity models in vivo allows understanding the function of a target gene and its potential as a therapeutic target. Other genetic manipulations available include episomal and chromosomal complementation and the generation of overproducer strains. However, there are also limitations, such as the lack of RNA interference machinery in most Leishmania species and limited options for inducible expression systems. The genomes of several Leishmania species have now been sequenced and will provide powerful resources in combination with the genetic tools that are available. The increasing knowledge of parasite biology and host parasite interactions derived from these studies will raise the number of potential therapeutic targets, which are sorely needed to combat leishmaniasis.
Collapse
|
14
|
Abstract
Draft genome sequences for Schistosoma japonicum and S. mansoni are now available. The schistosome genome encodes ∼13,000 protein-encoding genes for which the functions of few are well understood. Nonetheless, the new genes represent potential intervention targets, and molecular tools are being developed to determine their importance. Over the past 15 years, noteworthy progress has been achieved towards development of tools for gene manipulation and transgenesis of schistosomes. A brief history of genetic manipulation is presented, along with a review of the field with emphasis on reports of integration of transgenes into schistosome chromosomes.
Collapse
|
15
|
Fonager J, Franke-Fayard BMD, Adams JH, Ramesar J, Klop O, Khan SM, Janse CJ, Waters AP. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics 2011; 12:155. [PMID: 21418605 PMCID: PMC3073922 DOI: 10.1186/1471-2164-12-155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/20/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The genome of a number of species of malaria parasites (Plasmodium spp.) has been sequenced in the hope of identifying new drug and vaccine targets. However, almost one-half of predicted Plasmodium genes are annotated as hypothetical and are difficult to analyse in bulk due to the inefficiency of current reverse genetic methodologies for Plasmodium. Recently, it has been shown that the transposase piggyBac integrates at random into the genome of the human malaria parasite P. falciparum offering the possibility to develop forward genetic screens to analyse Plasmodium gene function. This study reports the development and application of the piggyBac transposition system for the rodent malaria parasite P. berghei and the evaluation of its potential as a tool in forward genetic studies. P. berghei is the most frequently used malaria parasite model in gene function analysis since phenotype screens throughout the complete Plasmodium life cycle are possible both in vitro and in vivo. RESULTS We demonstrate that piggyBac based gene inactivation and promoter-trapping is both easier and more efficient in P. berghei than in the human malaria parasite, P. falciparum. Random piggyBac-mediated insertion into genes was achieved after parasites were transfected with the piggyBac donor plasmid either when transposase was expressed either from a helper plasmid or a stably integrated gene in the genome. Characterization of more than 120 insertion sites demonstrated that more than 70 most likely affect gene expression classifying their protein products as non-essential for asexual blood stage development. The non-essential nature of two of these genes was confirmed by targeted gene deletion one of which encodes P41, an ortholog of a human malaria vaccine candidate. Importantly for future development of whole genome phenotypic screens the remobilization of the piggyBac element in parasites that stably express transposase was demonstrated. CONCLUSION These data demonstrate that piggyBac behaved as an efficient and random transposon in P. berghei. Remobilization of piggyBac element shows that with further development the piggyBac system can be an effective tool to generate random genome-wide mutation parasite libraries, for use in large-scale phenotype screens in vitro and in vivo.
Collapse
Affiliation(s)
- Jannik Fonager
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Blandine MD Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida USA
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Andrew P Waters
- Institute of, Infection, Immunity & Inflammation, School of Medical, Veterinary & Life Sciences, & Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Scotland, UK
| |
Collapse
|
16
|
Wheeler RJ, Gluenz E, Gull K. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 2010; 79:647-62. [PMID: 21255109 PMCID: PMC3166656 DOI: 10.1111/j.1365-2958.2010.07479.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell cycle is central to understanding fundamental biology of Leishmania, a group of human-infective protozoan parasites. Leishmania have two main life cycle morphologies: the intracellular amastigote in the mammalian host and the promastigote in the fly. We have produced the first comprehensive and quantitative description of a Leishmania promastigote cell cycle taking a morphometric approach to position any cell within the cell cycle based on its length and DNA content. We describe timings of cell cycle phases and rates of morphological changes; kinetoplast and nucleus S phase, division and position, cell body growth and morphology changes, flagellum growth and basal body duplication. We have shown that Leishmania mexicana undergoes large changes in morphology through the cell cycle and that the wide range of morphologies present in cultures during exponential growth represent different cell cycle stages. We also show promastigote flagellum growth occurs over multiple cell cycles. There are clear implications for the mechanisms of flagellum length regulation, life cycle stage differentiation and trypanosomatid division in general. This data set therefore provides a platform which will be of use for post-genomic analyses of Leishmania cell biology in relation to differentiation and infection.
Collapse
Affiliation(s)
- Richard J Wheeler
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|