1
|
Ahmad W, Asaf S, Khan A, Al-Harrasi A, Al-Okaishi A, Khan AL. Complete chloroplast genome sequencing and comparative analysis of threatened dragon trees Dracaena serrulata and Dracaena cinnabari. Sci Rep 2022; 12:16787. [PMID: 36202844 PMCID: PMC9537188 DOI: 10.1038/s41598-022-20304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Dracaena (Asparagaceae family) tree is famous for producing "dragon blood"—a bioactive red-colored resin. Despite its long history of use in traditional medicine, little knowledge exists on the genomic architecture, phylogenetic position, or evolution. Hence, in this study, we sequenced the whole chloroplast (cp) genomes of D. serrulata and D. cinnabari and performed comparative genomics of nine genomes of the genus Dracaena. The results showed that the genome sizes range from 155,055 (D. elliptica) to 155,449 (D. cochinchinensis). The cp genomes of D. serrulata and D. cinnabari encode 131 genes, each including 85 and 84 protein-coding genes, respectively. However, the D. hokouensis had the highest number of genes (133), with 85 protein coding genes. Similarly, about 80 and 82 repeats were identified in the cp genomes of D. serrulata and D. cinnabari, respectively, while the highest repeats (103) were detected in the cp genome of D. terniflora. The number of simple sequence repeats (SSRs) was 176 and 159 in D. serrulata and D. cinnabari cp genomes, respectively. Furthermore, the comparative analysis of complete cp genomes revealed high sequence similarity. However, some sequence divergences were observed in accD, matK, rpl16, rpoC2, and ycf1 genes and some intergenic spacers. The phylogenomic analysis revealed that D. serrulata and D. cinnabari form a monophyletic clade, sister to the remaining Dracaena species sampled in this study, with high bootstrap values. In conclusion, this study provides valuable genetic information for studying the evolutionary relationships and population genetics of Dracaena, which is threatened in its conservation status.
Collapse
Affiliation(s)
- Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman.,Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Oman.
| | | | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA.
| |
Collapse
|
2
|
Singh NV, Patil PG, Sowjanya RP, Parashuram S, Natarajan P, Babu KD, Pal RK, Sharma J, Reddy UK. Chloroplast Genome Sequencing, Comparative Analysis, and Discovery of Unique Cytoplasmic Variants in Pomegranate ( Punica granatum L.). Front Genet 2021; 12:704075. [PMID: 34394192 PMCID: PMC8356083 DOI: 10.3389/fgene.2021.704075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
Here we report on comprehensive chloroplast (cp) genome analysis of 16 pomegranate (Punica granatum L.) genotypes representing commercial cultivars, ornamental and wild types, through large-scale sequencing and assembling using next-generation sequencing (NGS) technology. Comparative genome analysis revealed that the size of cp genomes varied from 158,593 bp (in wild, “1201” and “1181”) to 158,662 bp (cultivar, “Gul-e-Shah Red”) among the genotypes, with characteristic quadripartite structures separated by a pair of inverted repeats (IRs). The higher conservation for the total number of coding and non-coding genes (rRNA and tRNA) and their sizes, and IRs (IR-A and IR-B) were observed across all the cp genomes. Interestingly, high variations were observed in sizes of large single copy (LSC, 88,976 to 89,044 bp) and small single copy (SSC, 18,682 to 18,684 bp) regions. Although, the structural organization of newly assembled cp genomes were comparable to that of previously reported cp genomes of pomegranate (“Helow,” “Tunisia,” and “Bhagawa”), the striking differences were observed with the Lagerstroemia lines, viz., Lagerstroemia intermedia (NC_0346620) and Lagerstroemia speciosa (NC_031414), which clearly confirmed previous findings. Furthermore, phylogenetic analysis also revealed that members outside the genus Punica were clubbed into a separate clade. The contraction and expansion analysis revealed that the structural variations in IRs, LSC, and SSC have significantly accounted for the evolution of cp genomes of Punica and L. intermedia over the periods. Microsatellite survey across cp genomes resulted in the identification of a total of 233 to 234 SSRs, with majority of them being mono- (A/T or C/G, 164–165 numbers), followed by di- (AT/AT or AG/CT, 54), tri- (6), tetra- (8), and pentanucleotides (1). Furthermore, the comparative structural variant analyses across cp genomes resulted in the identification of many varietal specific SNP/indel markers. In summary, our study has offered a successful development of large-scale cp genomics resources to leverage future genetic, taxonomical, and phylogenetic studies in pomegranate.
Collapse
Affiliation(s)
| | | | - Roopa P Sowjanya
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, West Virginia, WV, United States
| | | | - Ram Krishna Pal
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, West Virginia, WV, United States
| |
Collapse
|
3
|
Doddaraju P, Kumar P, Dashyal MS, Girigowda M. Identification of suitable reference genes for expression studies in pomegranate under different biotic and abiotic stress conditions. Mol Biol Rep 2021; 48:3935-3943. [PMID: 34028653 DOI: 10.1007/s11033-021-06389-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Pomegranate (Punica granatum L.) is an important economic fruit crop, facing many biotic and abiotic challenges during cultivation. Several research programs are in progress to understand both biotic and abiotic stress factors and mitigate these challenges using gene expression studies based on the qPCR approach. However, research publications are not available yet to select the standard reference gene for normalizing target gene expression values in pomegranate. The most suitable candidate reference gene is required to ensure precise and reliable results for qPCR analysis. Eight candidate reference genes' stability was evaluated under different stress conditions using different algorithms such as ∆Ct, geNorm, BestKeeper, NormFinder, and RefFinder. The various algorithms revealed that EFA1 and 18S rRNA were common and most stable reference genes (RGs) under abiotic and wilt stress. Whereas comprehensive ranking by RefFinder showed GAPDH and CYPF were the most stable RGs under combined biotic (pooled samples of all biotic stress) and bacterial blight samples. For normalizing target gene expression under wilt, nematode, bacterial blight, and abiotic stress conditions both GAPDH and CYPFreference genes are adequate for qPCR. The above data provide comprehensive details for the selection of a candidate reference gene in various stresses in pomegranate.
Collapse
Affiliation(s)
- Pushpa Doddaraju
- Bio-Control Lab, Directorate of Research, University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - Pavan Kumar
- Bio-Control Lab, Directorate of Research, University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - Mahesh S Dashyal
- Bio-Control Lab, Directorate of Research, University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - Manjunath Girigowda
- Bio-Control Lab, Directorate of Research, University of Horticultural Sciences, Bagalkot, Karnataka, India.
| |
Collapse
|
4
|
Khan AL, Asaf S, Lubna, Al-Rawahi A, Al-Harrasi A. Decoding first complete chloroplast genome of toothbrush tree (Salvadora persica L.): insight into genome evolution, sequence divergence and phylogenetic relationship within Brassicales. BMC Genomics 2021; 22:312. [PMID: 33926374 PMCID: PMC8086069 DOI: 10.1186/s12864-021-07626-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salvadora persica L. (Toothbrush tree - Miswak; family-Salvadoraceae) grows in the arid-land ecosystem and possesses economic and medicinal importance. The species, genus and the family have no genomic datasets available specifically on chloroplast (cp) genomics and taxonomic evolution. Herein, we have sequenced the complete chloroplast genome of S. persica for the first time and compared it with 11 related specie's cp genomes from the order Brassicales. RESULTS The S. persica cp genome was 153,379 bp in length containing a sizeable single-copy region (LSC) of 83,818 bp which separated from the small single-copy region (SSC) of 17,683 bp by two inverted repeats (IRs) each 25,939 bp. Among these genomes, the largest cp genome size (160,600 bp) was found in M. oleifera, while in S. persica it was the smallest (153,379 bp). The cp genome of S. persica encoded 131 genes, including 37 tRNA genes, eight rRNA genes and 86 protein-coding genes. Besides, S. persica contains 27 forward, 36 tandem and 19 palindromic repeats. The S. persica cp genome had 154 SSRs with the highest number in the LSC region. Complete cp genome comparisons showed an overall high degree of sequence resemblance between S. persica and related cp genomes. Some divergence was observed in the intergenic spaces of other species. Phylogenomic analyses of 60 shared genes indicated that S. persica formed a single clade with A. tetracantha with high bootstrap values. The family Salvadoraceae is closely related to Capparaceae and Petadiplandraceae rather than to Bataceae and Koberliniacaea. CONCLUSION The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, genome evolution and future genetic diversity-related studies of S. persica in complex angiosperm families.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
5
|
Asaf S, Khan AL, Lubna, Khan A, Khan A, Khan G, Lee IJ, Al-Harrasi A. Expanded inverted repeat region with large scale inversion in the first complete plastid genome sequence of Plantago ovata. Sci Rep 2020; 10:3881. [PMID: 32127603 PMCID: PMC7054531 DOI: 10.1038/s41598-020-60803-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
Plantago ovata (Plantaginaceae) is an economically and medicinally important species, however, least is known about its genomics and evolution. Here, we report the first complete plastome genome of P. ovata and comparison with previously published genomes of related species from Plantaginaceae. The results revealed that P. ovata plastome size was 162,116 bp and that it had typical quadripartite structure containing a large single copy region of 82,084 bp and small single copy region of 5,272 bp. The genome has a markedly higher inverted repeat (IR) size of 37.4 kb, suggesting large-scale inversion of 13.8 kb within the expanded IR regions. In addition, the P. ovata plastome contains 149 different genes, including 43 tRNA, 8 rRNA, and 98 protein-coding genes. The analysis revealed 139 microsatellites, of which 71 were in the non-coding regions. Approximately 32 forward, 34 tandem, and 17 palindromic repeats were detected. The complete genome sequences, 72 shared genes, matK gene, and rbcL gene from related species generated the same phylogenetic signals, and phylogenetic analysis revealed that P. ovata formed a single clade with P. maritima and P. media. The divergence time estimation as employed in BEAST revealed that P. ovata diverged from P. maritima and P. media about 11.0 million years ago (Mya; 95% highest posterior density, 10.06-12.25 Mya). In conclusion, P. ovata had significant variation in the IR region, suggesting a more stable P. ovata plastome genome than that of other Plantaginaceae species.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Oldenburg, Germany
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
| |
Collapse
|