1
|
Sanni A, Hakim MA, Goli M, Adeniyi M, Talih F, Lanuzza B, Kobeissy F, Plazzi G, Moresco M, Mondello S, Ferri R, Mechref Y. Serum N-Glycan Profiling of Patients with Narcolepsy Type 1 Using LC-MS/MS. ACS OMEGA 2024; 9:32628-32638. [PMID: 39100283 PMCID: PMC11292663 DOI: 10.1021/acsomega.4c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 08/06/2024]
Abstract
The neurological condition known as narcolepsy type 1 (NT1) is an uncommon condition marked by extreme daytime sleepiness, cataplexy, sleep paralysis, hallucinations, disrupted nocturnal sleep, and low or undetectable levels of orexin in the CSF fluid. NT1 has been hypothesized to be an immunological disorder; its treatment is currently only symptomatic, and misdiagnosis is not uncommon. This study compares the N-glycome of NT1 patients with healthy controls in search of potential glycan biomarkers using LC-MS/MS. A total of 121 candidate N-glycans were identified, 55 of which were isomeric N-glycan structures and 65 were not. Seventeen N-glycan biomarker candidates showed significant differences between the NT1 and control cohorts. All of the candidate glycan biomarkers were isomeric except HexNAc6Hex7Fuc0NeuAc1 (6701) and HexNAc6Hex7Fuc1NeuAc2 (6712). Therefore, with isomeric and nonisomeric structures, a total of 20 candidate N-glycan biomarkers are reported in this study, and interestingly, all are either sialylated or sialylated-fucosylated and upregulated in NT1 relative to the control. The distribution levels of all the identified N-glycans show that the sialylated glycan type is the most abundant in NT1 and is majorly disialylated, although the trisialylated subtype is three-fold higher in NT1 compared to the healthy control. The first isomers of HexNAc5Hex6Fuc0NeuAc3 (5603), HexNAc6Hex7Fuc0NeuAc2 (6702), and HexNAc6Hex7Fuc1NeuAc4 (6714) expressed a high level of fold changes (FC) of 1.62, 2.19, and 2.98, respectively. These results suggest a different N-glycome profile of NT1 and a relationship between sialylated glycan isomers in NT1 disease development or progression. The revelation of N-glycan expression alterations in this study may improve NT1 diagnostic methods, understanding of NT1 pathology, and the development of new targeted therapeutics.
Collapse
Affiliation(s)
- Akeem Sanni
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Md Abdul Hakim
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Mona Goli
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Moyinoluwa Adeniyi
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Farid Talih
- Department
of Psychiatry, Faculty of Medicine, American
University of Beirut, Beirut 1107 2020, Lebanon
| | - Bartolo Lanuzza
- Sleep
Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department
of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers
(CNMB), Neuroscience Institute, Morehouse
School of Medicine (MSM), Atlanta, Georgia 30310-1458, United States
| | - Giuseppe Plazzi
- IRCCS, Istituto
delle Scienze Neurologiche di Bologna, Bologna 40138, Italy
- Department
of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Monica Moresco
- IRCCS, Istituto
delle Scienze Neurologiche di Bologna, Bologna 40138, Italy
| | - Stefania Mondello
- Department
of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98122, Italy
| | - Raffaele Ferri
- Sleep
Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Yehia Mechref
- Chemistry
and Biochemistry Department, Texas Tech
University, Lubbock, Texas 79409, United States
| |
Collapse
|
2
|
Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol Adv 2021; 54:107831. [PMID: 34480988 DOI: 10.1016/j.biotechadv.2021.107831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian host cells for the commercial production of therapeutic proteins. Fed-batch culture is widely used to produce therapeutic proteins, including monoclonal antibodies, because of its operational simplicity and high product titer. Despite technical advances in the development of culture media and cell cultures, it is still challenging to maintain high productivity in fed-batch cultures while also ensuring good product quality. In this review, factors that affect the quality attributes of therapeutic proteins in recombinant CHO (rCHO) cell culture, such as glycosylation, charge variation, aggregation, and degradation, are summarized and categorized into three groups: culture environments, chemical additives, and host cell proteins accumulated in culture supernatants. Understanding the factors that influence the therapeutic protein quality in rCHO cell culture will facilitate the development of large-scale, high-yield fed-batch culture processes for the production of high-quality therapeutic proteins.
Collapse
|
3
|
Gutierrez Reyes CD, Jiang P, Donohoo K, Atashi M, Mechref YS. Glycomics and glycoproteomics: Approaches to address isomeric separation of glycans and glycopeptides. J Sep Sci 2020; 44:403-425. [PMID: 33090644 DOI: 10.1002/jssc.202000878] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022]
Abstract
Changes in the glycome of human proteins and cells are associated with the progression of multiple diseases such as Alzheimer's, diabetes mellitus, many types of cancer, and those caused by viruses. Consequently, several studies have shown essential modifications to the isomeric glycan moieties for diseases in different stages. However, the elucidation of extensive isomeric glycan profiles remains challenging because of the lack of analytical techniques with sufficient resolution power to separate all glycan and glycopeptide iso-forms. Therefore, the development of sensitive and accurate approaches for the characterization of all the isomeric forms of glycans and glycopeptides is essential to tracking the progression of pathology in glycoprotein-related diseases. This review describes the isomeric separation achievements reported in glycomics and glycoproteomics in the last decade. It focuses on the mass spectrometry-based analytical strategies, stationary phases, and derivatization techniques that have been developed to enhance the separation mechanisms in liquid chromatography systems and the detection capabilities of mass spectrometry systems.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia S Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
4
|
Torres M, Altamirano C, Dickson AJ. Process and metabolic engineering perspectives of lactate production in mammalian cell cultures. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Prabhu A, Gadre R, Gadgil M. Zinc supplementation decreases galactosylation of recombinant IgG in CHO cells. Appl Microbiol Biotechnol 2018; 102:5989-5999. [PMID: 29749563 DOI: 10.1007/s00253-018-9064-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
Trace element composition of culture medium can be altered to modulate glycoform of recombinant glycoproteins. In this study, we show that Zn2+ supplementation at or above 100 μM decreases galactosylation of recombinant IgG expressed in Chinese Hamster Ovary cells. This decrease in galactosylation is not due to reduced galactosyltransferase expression. This effect persists upon supplementation of galactose and uridine to the culture, indicating that it may not be due to reduced UDP-Gal availability. Measurements of galactosyltransferase activity in the cell lysate show that activity decreases with increasing Zn2+/Mn2+ ratio. This suggests that one possible explanation of the effect of Zn2+ may be reduced intracellular galactosyltransferase activity due to increase in Zn2+/Mn2+ ratio. Consistent with this, the decrease in galactosylation of IgG could be reversed by supplementation of Mn2+ (a cofactor of galactosyltransferase) which increases intracellular Mn2+ content. Measurement of total intracellular Zn2+ content, however, indicates no significant upregulation of total intracellular Zn2+ content and no significant downregulation of intracellular Mn2+ content with Zn2+ supplementation. One possible explanation could be that cellular detoxification response to higher extracellular Zn2+ concentration might lead to changes in intracellular distribution of Mn2+. In this case, Zn2+ supplementation would be expected to interfere with other known effects of Mn2+. Indeed, the previously reported increase in high mannose glycans upon Mn2+ supplementation in the absence of glucose is reversed by Zn2+ supplementation. This study also suggests the use of Mn2+ supplementation as a strategy to overcome the effect of lot-to-lot variability in trace element concentrations on galactosylation.
Collapse
Affiliation(s)
- Anuja Prabhu
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Ramchandra Gadre
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Mugdha Gadgil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
6
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
7
|
Advanced LC-MS Methods for N-Glycan Characterization. ADVANCES IN THE USE OF LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS) - INSTRUMENTATION DEVELOPMENTS AND APPLICATIONS 2018. [DOI: 10.1016/bs.coac.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Karengera E, Durocher Y, De Crescenzo G, Henry O. Combining metabolic and process engineering strategies to improve recombinant glycoprotein production and quality. Appl Microbiol Biotechnol 2017; 101:7837-7851. [PMID: 28924963 DOI: 10.1007/s00253-017-8513-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/15/2017] [Accepted: 09/02/2017] [Indexed: 11/28/2022]
Abstract
Increasing recombinant protein production while ensuring a high and consistent protein quality remains a challenge in mammalian cell culture process development. In this work, we combined a nutrient substitution approach with a metabolic engineering strategy that improves glucose utilization efficiency. This combination allowed us to tackle both lactate and ammonia accumulation and investigate on potential synergistic effects on protein production and quality. To this end, HEK293 cells overexpressing the pyruvate yeast carboxylase (PYC2) and their parental cells, both stably producing the therapeutic glycoprotein interferon α2b (IFNα2b), were cultured in media deprived of glutamine but containing chosen substitutes. Among the tested substitutes, pyruvate led to the best improvement in growth (integral of viable cell density) for both cell lines in batch cultures, whereas the culture of PYC2 cells without neither glutamine nor any substitute displayed surprisingly enhanced IFNα2b production. The drastic reduction in both lactate and ammonia in the cultures translated into extended high viability conditions and an increase in recombinant protein titer by up to 47% for the parental cells and the PYC2 cells. Product characterization performed by surface plasmon resonance biosensing using Sambucus nigra (SNA) lectin revealed that the increase in yield was however accompanied by a reduction in the degree of sialylation of the product. Supplementing cultures with glycosylation precursors and a cofactor were effective at counterbalancing the lack of glutamine and allowed improvement in IFNα2b quality as evaluated by lectin affinity. Our study provides a strategy to reconcile protein productivity and quality and highlights the advantages of PYC2-overexpressing cells in glutamine-free conditions.
Collapse
Affiliation(s)
- Eric Karengera
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Olivier Henry
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
9
|
Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 2016; 409:359-378. [PMID: 27888305 PMCID: PMC5203856 DOI: 10.1007/s00216-016-0073-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Reversed-phase chromatography is a method that is often used for glycan separation. For this, glycans are often derivatized with a hydrophobic tag to achieve retention on hydrophobic stationary phases. The separation and elution order of glycans in reversed-phase chromatography is highly dependent on the hydrophobicity of the tag and the contribution of the glycan itself to the retention. The contribution of the different monosaccharides to the retention strongly depends on the position and linkage, and isomer separation may be achieved. The influence of sialic acids and fucoses on the retention of glycans is still incompletely understood and deserves further study. Analysis of complex samples may come with incomplete separation of glycan species, thereby complicating reversed-phase chromatography with fluorescence or UV detection, whereas coupling with mass spectrometry detection allows the resolution of complex mixtures. Depending on the column properties, eluents, and run time, separation of isomeric and isobaric structures can be accomplished with reversed-phase chromatography. Alternatively, porous graphitized carbon chromatography and hydrophilic interaction liquid chromatography are also able to separate isomeric and isobaric structures, generally without the necessity of glycan labeling. Hydrophilic interaction liquid chromatography, porous graphitized carbon chromatography, and reversed-phase chromatography all serve different research purposes and thus can be used for different research questions. A great advantage of reversed-phase chromatography is its broad distribution as it is used in virtually every bioanalytical research laboratory, making it an attracting platform for glycan analysis. Glycan isomer separation by reversed phase liquid chromatography ![]()
Collapse
|
10
|
Liu XP, Huang D, Tan WS, Luo J, Chen Z. Overcoming nutrient limitations for cell-based production of influenza vaccine. Hum Vaccin Immunother 2016; 11:1685-8. [PMID: 26061797 DOI: 10.1080/21645515.2015.1044182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Metabolic analysis for medium optimization represents a very useful strategy in the process development of production of vaccines in cells. During influenza vaccine production, viruses hijack host cells and take advantage of host's metabolism. As a consequence, the nutritional demand of host cells should undergo a profound change, and usually more nutrients such as glucose and amino acids should be consumed. As such, the maintaining media used in virus production processes often cannot provide sufficient nutrients, and novel methods are urged to be established to address this severe issue of nutritional limitation. A detailed study on impacts of influenza virus on cell death and metabolism, with a profound analysis of nutritional requirements during virus production process, followed by a rational medium optimization is expected to be the most straightfoward and effective strategy. This would ensure a balanced and adequate nutritional supply, which should minimize cell death and improve both cell-specific virus yield and total influenza virus production. Such a metabolic analysis-based medium optimization would lay a solid foundation for the development of cell culture technology in influenza vaccine production.
Collapse
Affiliation(s)
- Xu-Ping Liu
- a State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology ; Shanghai , China
| | | | | | | | | |
Collapse
|
11
|
Glutamine substitution: the role it can play to enhance therapeutic protein production. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
13
|
Rational design of medium supplementation strategy for improved influenza viruses production based on analyzing nutritional requirements of MDCK Cells. Vaccine 2014; 32:7091-7. [DOI: 10.1016/j.vaccine.2014.10.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/25/2014] [Accepted: 10/27/2014] [Indexed: 11/22/2022]
|
14
|
Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. J Biotechnol 2014; 180:23-9. [DOI: 10.1016/j.jbiotec.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 11/16/2022]
|
15
|
Rouiller Y, Périlleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 2014; 30:571-83. [DOI: 10.1002/btpr.1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Yolande Rouiller
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Arnaud Périlleux
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Marie-Noëlle Vesin
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Matthieu Stettler
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Martin Jordan
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| |
Collapse
|
16
|
Smith DF, Cummings RD. Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 2013; 12:902-12. [PMID: 23412570 DOI: 10.1074/mcp.r112.027110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycan structures were defined historically using multiple methods to determine composition, sequence, linkage, and anomericity of component monosaccharides. Such approaches have been replaced by more sensitive MS methods to profile or predict glycan structures, but these methods are limited in their ability to completely define glycan structures. Glycan-binding proteins, including lectins and antibodies, have been found to have exquisite binding specificities that can provide information about glycan structures. Here, we show glycan-binding proteins can be used along with MS to help define glycan linkages and other determinants in unknown glycans printed as shotgun glycan microarrays.
Collapse
Affiliation(s)
- David F Smith
- Department of Biochemistry and Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
17
|
Rödig JV, Rapp E, Bohne J, Kampe M, Kaffka H, Bock A, Genzel Y, Reichl U. Impact of cultivation conditions onN-glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture. Biotechnol Bioeng 2013; 110:1691-703. [DOI: 10.1002/bit.24834] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/25/2012] [Accepted: 12/21/2012] [Indexed: 01/29/2023]
|
18
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Kim DY, Chaudhry MA, Kennard ML, Jardon MA, Braasch K, Dionne B, Butler M, Piret JM. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Biotechnol Prog 2012; 29:165-75. [DOI: 10.1002/btpr.1658] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/15/2012] [Indexed: 12/17/2022]
|
20
|
Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ETJ, Gerritsen J, van Berkel PHC. Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 2011; 108:1591-602. [PMID: 21328321 DOI: 10.1002/bit.23075] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/15/2010] [Accepted: 01/18/2011] [Indexed: 12/20/2022]
Abstract
Through process transfer and optimization for increased antibody production to 3 g/L for a GS-CHO cell line, an undesirable drop in antibody Fc galactosylation was observed. Uridine (U), manganese chloride (M), and galactose (G), constituents involved in the intracellular galactosylation process, were evaluated in 2-L bioreactors for their potential to specifically increase antibody galactosylation. These components were placed in the feed medium at proportionally increasing concentrations from 0 to 20 × UMG, where a 1× concentration of U was 1 mM, a 1× concentration of M was 0.002 mM, and a 1× concentration of G was 5 mM. Antibody galactosylation increased rapidly from 3% at 0× UMG up to 21% at 8× UMG and then more slowly to 23% at 20× UMG. The increase was primarily due to a shift from G0F to G1F, with minimal impact on other glycoforms or product quality attributes. Cell culture performance was largely not impacted by addition of up to 20× UMG except for suppression of glucose consumption and lactate production at 16 and 20× UMG and a slight drop in antibody concentration at 20× UMG. Higher accumulation of free galactose in the medium was observed at 8× UMG and above, coincident with achieving the plateau of maximal galactosylation. A concentration of 4× UMG resulted in achieving the target of 18% galactosylation at 2-L scale, a result that was reproduced in a 1,000-L run. Follow-up studies to evaluate the addition of each component individually up to 12× concentration revealed that the effect was synergistic; the combination of all three components gave a higher level of galactosylation than addition of the each effect independently. The approach was found generally useful since a second cell line responded similarly, with an increase in galactosylation from 5% to 29% from 0 to 8× UMG and no further increase or impact on culture performance up to 12× UMG. These results demonstrate a useful approach to provide exact and specific control of antibody galactosylation through manipulation of the concentrations of uridine, manganese chloride, and galactose in the cell culture medium.
Collapse
Affiliation(s)
- Michael J Gramer
- Genmab MN, Inc., 9450 Winnetka Ave N, Brooklyn Park, Minnesota 55445, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pabst M, Altmann F. Glycan analysis by modern instrumental methods. Proteomics 2011; 11:631-43. [PMID: 21241022 DOI: 10.1002/pmic.201000517] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/23/2022]
Abstract
The oligosaccharides attached to proteins or lipids are among the most challenging analytical tasks due to their complexity and variety. Knowing the genes and enzymes responsible for their biosynthesis, a large but not unlimited number of different structures and isomers of such glycans can be imagined. Understanding of the biological role of structural variations requires the ability to unambiguously determine the identity and quantity of all glycan species. Here, we examine, which analytical strategies - with a certain high-throughput potential - may come near this ideal. After an expose of the relevant techniques, we try to depict how analytical raw data are translated into structural assignments using retention times, mass and fragment spectra. A method's ability to discriminate between the many conceivable isomeric structures together with the time, effort and sample amount needed for that purpose is suggested as a criterion for the comparative assessment of approaches and their evolutionary stages.
Collapse
Affiliation(s)
- Martin Pabst
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | |
Collapse
|
22
|
Hansen R, Dickson AJ, Goodacre R, Stephens GM, Sellick CA. Rapid characterization of N-linked glycans from secreted and gel-purified monoclonal antibodies using MALDI-ToF mass spectrometry. Biotechnol Bioeng 2010; 107:902-8. [PMID: 20661906 DOI: 10.1002/bit.22879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recombinant monoclonal antibodies (MAbs) are increasingly being used for therapeutic use and correct glycosylation of these MAbs is essential for their correct function. Glycosylation profiles are host cell- and antibody class-dependent and can change over culture time and environmental conditions. Therefore, rapid monitoring of glycan addition/status is of great importance for process validity. We describe two workflows of generally applicability for glycan profiling of purified and gel-purified MAbs produced in NS0 and CHO cells, in which small-scale antibody purification and buffer exchange is combined with PNGase F glycan cleavage and graphite HyperCarb desalting. MALDI-ToF mass spectrometry is used for sensitive detection of glycan forms, with the ability to confirm glycan structures by selective ion fragmentation. Both workflows are rapid, technically simple and amenable to automation, and use in multi-well formats.
Collapse
Affiliation(s)
- Rasmus Hansen
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
23
|
Hong JK, Cho SM, Yoon SK. Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2010; 88:869-76. [DOI: 10.1007/s00253-010-2790-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|