1
|
Shah R, Nguyen TV, Marcora A, Ruffell A, Hulthen A, Pham K, Wijffels G, Paull C, Beale DJ. Exposure to polylactic acid induces oxidative stress and reduces the ceramide levels in larvae of greater wax moth (Galleria mellonella). ENVIRONMENTAL RESEARCH 2023; 220:115137. [PMID: 36563977 DOI: 10.1016/j.envres.2022.115137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plastic biodegradation by insects has made significant progress, opening up new avenues for the treatment of plastic waste. Wax moth larvae, for example, have attracted the attention of the scientific community because they are known to chew, ingest, and biodegrade natural polymer bee waxes. Despite this, we know very little about how these insects perform on manufactured plastics or how manufactured plastics affect insect metabolism. As a result, we studied the metabolism of greater wax moths (Galleria mellonella) fed on molasses-supplemented polylactic acid plastic (PLA) blocks. An analysis of the central carbon metabolism (CCM) metabolites was performed using liquid chromatography triple quadrupole mass spectrometry (LC-QQQ-MS), while an analysis of untargeted metabolites and lipids was conducted using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). In total, 169 targeted CCM metabolites, 222 untargeted polar metabolites, and 196 untargeted nonpolar lipids were identified within the insect samples. In contrast, compared to control larvae, PLA-fed larvae displayed significantly different levels of 97 CCM metabolites, 75 polar metabolites, and 57 lipids. Purine and pyrimidine metabolisms were affected by PLA feeding, as well as amino acid metabolism, carbohydrates, cofactors, vitamins, and related metabolisms. Additionally, PLA exposure disrupted insect energy metabolism and oxidative stress, among other metabolic disturbances. The larvae fed PLA have lower levels of several lipids, suggesting a reduction in lipid reserves, and ceramide levels are likely to have changed due to apoptosis and inflammation. The study indicates that G. mellonella larvae could ingest PLA but this process causes some metabolic stress for the host. Future studies of the molecular pathways of this biodegradation process might help to provide strategies for stress reduction that would speed up insect digestion of plastic.
Collapse
Affiliation(s)
- Rohan Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Thao V Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Anna Marcora
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Angela Ruffell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Andrew Hulthen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Khoa Pham
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton VIC 4067, Australia
| | - Gene Wijffels
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Cate Paull
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia.
| |
Collapse
|
2
|
Beale DJ, Shah RM, Marcora A, Hulthen A, Karpe AV, Pham K, Wijffels G, Paull C. Is there any biological insight (or respite) for insects exposed to plastics? Measuring the impact on an insects central carbon metabolism when exposed to a plastic feed substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154840. [PMID: 35367264 DOI: 10.1016/j.scitotenv.2022.154840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Insects used to treat organic waste streams and produce valuable protein products are increasingly exposed to plastic contaminated source material assimilating plastic carbon into organic biomass, which is pervasive and hazardous to organisms. Our understanding of this increased insect-plastic interaction remains limited and needs urgent scientific attention if plastic biodegradation and production rates of quality protein are to be improved. Herein, we investigated the biochemical impact of various plastics using three insect models. Black Soldier Fly (BSF), Mealworm (MW), and Wax Moth (WM) larva were each exposed to a plastic substrate (PET, PE, PS, Expanded PE, PP, and PLA) as the primary carbon source for five days to explore any positive metabolic benefits in terms of insect performance and plastic degradation potential. Central carbon metabolism (CCM) metabolites were analyzed via a targeted tMRM liquid chromatography triple quadrupole mass spectrometry (LC-QqQ-MS) method. Unique expressed pathways were observed for each insect model. When reared on PET, BSF larvae were found to have an elevated pyrimidine metabolism, while the purine metabolism pathway was strongly expressed on other plastics. BSF also exhibited a downregulated Vitamin B6 metabolism across all plastics, indicating a likely gut-symbiont breakdown. The MW and WM model insects were metabolically more active on PLA and expanded foam plastics. Further, WM exhibited an elevation in Vitamin B6 metabolism. This data suggests a positive insect-specific interaction towards certain plastic types that warrants further investigation. It is anticipated that through deeper insight into the metabolic impact and benefits afforded from certain plastics, an insect biotransformation pipeline can be established that links fit-for-purpose insect models to individual plastic types that address our growing plastic waste issue.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Anna Marcora
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Andrew Hulthen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Khoa Pham
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC 4067, Australia
| | - Gene Wijffels
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Cate Paull
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| |
Collapse
|
3
|
Hykollari A, Malzl D, Stanton R, Eckmair B, Paschinger K. Tissue-specific glycosylation in the honeybee: Analysis of the N-glycomes of Apis mellifera larvae and venom. Biochim Biophys Acta Gen Subj 2019; 1863:129409. [PMID: 31398379 DOI: 10.1016/j.bbagen.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous glycophylogenetic comparisons of dipteran and lepidopteran species revealed variations in the anionic and zwitterionic modifications of their N-glycans; therefore, we wished to explore whether species- and order-specific glycomic variations would extend to the hymenoptera, which include the honeybee Apis mellifera, an agriculturally- and allergologically-significant social species. METHODS In this study, we employed an off-line liquid chromatography/mass spectrometry approach, in combination with enzymatic and chemical treatments, to analyse the N-glycans of male honeybee larvae and honeybee venom in order to facilitate definition of isomeric structures. RESULTS The neutral larval N-glycome was dominated by oligomannosidic and paucimannosidic structures, while the neutral venom N-glycome displayed more processed hybrid and complex forms with antennal N-acetylgalactosamine, galactose and fucose residues including Lewis-like epitopes; the anionic pools from both larvae and venom contained a wide variety of glucuronylated, sulphated and phosphoethanolamine-modified N-glycans with up to three antennae. In comparison to honeybee royal jelly, there were more fucosylated and fewer Man4/5-based hybrid glycans in the larvae and venom samples as well as contrasting antennal lengths. CONCLUSIONS Combining the current data on venom and larvae with that we previously published on royal jelly, a total honeybee N-glycomic repertoire of some 150 compositions can be proposed in addition to the 20 previously identified on specific venom glycoproteins. SIGNIFICANCE Our data are indicative of tissue-specific modification of the core and antennal regions of N-glycans in Apis mellifera and reinforce the concept that insects are capable of extensive processing to result in rather complex anionic oligosaccharide structures.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Rhiannon Stanton
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Barbara Eckmair
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria
| | - Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria.
| |
Collapse
|
4
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
5
|
Guo H, Huang C, Jiang L, Cheng T, Feng T, Xia Q. Transcriptome analysis of the response of silkworm to drastic changes in ambient temperature. Appl Microbiol Biotechnol 2018; 102:10161-10170. [DOI: 10.1007/s00253-018-9387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
|
6
|
Hykollari A, Malzl D, Eckmair B, Vanbeselaere J, Scheidl P, Jin C, Karlsson NG, Wilson IBH, Paschinger K. Isomeric Separation and Recognition of Anionic and Zwitterionic N-glycans from Royal Jelly Glycoproteins. Mol Cell Proteomics 2018; 17:2177-2196. [PMID: 30104209 DOI: 10.1074/mcp.ra117.000462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/13/2018] [Indexed: 01/03/2023] Open
Abstract
Royal jelly has received attention because of its necessity for the development of queen honeybees as well as claims of benefits on human health; this product of the hypopharyngeal glands of worker bees contains a large number of proteins, some of which have been claimed to have various biological effects only in their glycosylated state. However, although there have been glycomic and glycoproteomic analyses in the past, none of the glycan structures previously defined would appear to have potential to trigger specific biological functions. In the current study, whole royal jelly as well as single protein bands were subject to off-line LC-MALDI-TOF MS glycomic analyses, complemented by permethylation, Western blotting and arraying data. Similarly to recent in-depth studies on other insect species, previously overlooked glucuronic acid termini, sulfation of mannose residues and core β-mannosylation of the N-glycans were found; additionally, a relatively rare zwitterionic modification with phosphoethanolamine is present, in contrast to the phosphorylcholine occurring in lepidopteran species. Indicative of tissue-specific remodelling of glycans in the Golgi apparatus of hypopharyngeal gland cells, only a low amount of fucosylated or paucimannosidic glycans were detected as compared with other insect samples or even bee venom. The unusual modifications of hybrid and multiantennary structures defined here may not only have a physiological role in honeybee development, but represent epitopes recognized by pentraxins with roles in animal innate immunity.
Collapse
Affiliation(s)
- Alba Hykollari
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Daniel Malzl
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Barbara Eckmair
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Jorick Vanbeselaere
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Patrick Scheidl
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Chunsheng Jin
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Niclas G Karlsson
- §Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Iain B H Wilson
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria;
| |
Collapse
|
7
|
Itoh K, Akimoto Y, Kondo S, Ichimiya T, Aoki K, Tiemeyer M, Nishihara S. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Dev Biol 2018; 436:108-124. [PMID: 29499182 DOI: 10.1016/j.ydbio.2018.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 01/27/2023]
Abstract
T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization, basement membrane formation, and NMJ arborization on larval muscles.
Collapse
Affiliation(s)
- Kazuyoshi Itoh
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
8
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
The underestimated N-glycomes of lepidopteran species. Biochim Biophys Acta Gen Subj 2017; 1861:699-714. [PMID: 28077298 DOI: 10.1016/j.bbagen.2017.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. METHODS Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. RESULTS We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. CONCLUSION The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. SIGNIFICANCE The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.
Collapse
|
10
|
Kurz S, Aoki K, Jin C, Karlsson NG, Tiemeyer M, Wilson IBH, Paschinger K. Targeted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects. J Proteomics 2015; 126:172-88. [PMID: 26047717 PMCID: PMC4523410 DOI: 10.1016/j.jprot.2015.05.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
Abstract
Mosquitoes are important vectors of parasitic and viral diseases with Anopheles gambiae transmitting malaria and Aedes aegypti spreading yellow and Dengue fevers. Using two different approaches (solid-phase extraction and reversed-phase or hydrophilic interaction HPLC fractionation followed by MALDI-TOF MS or permethylation followed by NSI-MS), we examined the N-glycans of both A. gambiae and A. aegypti larvae and demonstrate the presence of a range of paucimannosidic glycans as well as bi- and tri-antennary glycans, some of which are modified with fucose or with sulphate or glucuronic acid residues; the latter anionic modifications were also found on N-glycans of larvae from another dipteran species (Drosophila melanogaster). The sulphate groups are attached primarily to core α-mannose residues (especially the α1,6-linked mannose), whereas the glucuronic acid residues are linked to non-reducing β1,3-galactose. Also, O-glycans were found to possess glucuronic acid and sulphate as well as phosphoethanolamine modifications. The presence of sulphated and glucuronylated N-glycans is a novel feature in dipteran glycomes; these structures have the potential to act as additional anionic glycan ligands involved in parasite interactions with the vector host.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Centre, University of Georgia, Athens, GA 30602, USA
| | - Chunsheng Jin
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Michael Tiemeyer
- Complex Carbohydrate Research Centre, University of Georgia, Athens, GA 30602, USA
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria.
| | | |
Collapse
|