1
|
Yang Y, Li Y, Wang WD, He S, Yuan TF, Hu J, Peng DH. Altered N-linked glycosylation in depression: A pre-clinical study. J Affect Disord 2024; 359:333-341. [PMID: 38801920 DOI: 10.1016/j.jad.2024.05.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.
Collapse
Affiliation(s)
- Yao Yang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Di Wang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dai-Hui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Grijaldo-Alvarez SJB, Alvarez MRS, Schindler RL, Oloumi A, Hernandez N, Seales T, Angeles JGC, Nacario RC, Completo GC, Zivkovic AM, Bruce German J, Lebrilla CB. N-Glycan profile of the cell membrane as a probe for lipopolysaccharide-induced microglial neuroinflammation uncovers the effects of common fatty acid supplementation. Food Funct 2024; 15:8258-8273. [PMID: 39011570 PMCID: PMC11668514 DOI: 10.1039/d4fo01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Altered N-glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant N-glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the N-glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry. LPS changed N-glycosylation in the microglial glycocalyx altering high mannose and sialofucosylated N-glycans, suggesting the dysregulation of mannosidases, fucosyltransferases, and sialyltransferases. The results were consistent as we observed the restoration effect of the fatty acids, especially oleic acid, on the LPS-treated microglia, specifically on the high mannose and sialofucosylated glycoforms of translocon-associated proteins, SSRA and SSRB along with the cell surface proteins, CD63 and CD166. In addition, proteomic analysis and in silico modeling substantiated the potential of fatty acids in reverting the effects of LPS on microglial N-glycosylation. Our results showed that N-glycosylation is likely affected by diet by restoring alterations following LPS challenge, which may then influence the disease state.
Collapse
Affiliation(s)
- Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 95616, USA.
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | | | | | - Armin Oloumi
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Noah Hernandez
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Tristan Seales
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Jorge Gil C Angeles
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries and Forestry, University of the Philippines Los Baños, Philippines, 4031.
| | - Ruel C Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Gladys C Completo
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, 95616, USA.
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, 95616, USA.
| | | |
Collapse
|
3
|
Fastenau C, Bunce M, Keating M, Wickline J, Hopp SC, Bieniek KF. Distinct patterns of plaque and microglia glycosylation in Alzheimer's disease. Brain Pathol 2024; 34:e13267. [PMID: 38724175 PMCID: PMC11189777 DOI: 10.1111/bpa.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 06/23/2024] Open
Abstract
Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods. The present study aims to overcome these limitations with novel combinations of histologic techniques to characterize the sialylation landscape of O- and N-linked glycans in autopsy-confirmed AD post-mortem brain tissue. Sialylated glycans facilitate important cellular functions including cell-to-cell interaction, cell migration, cell adhesion, immune regulation, and membrane excitability. Previous studies have not investigated both N- and O-linked sialylated glycans in neurodegeneration. In this study, the location and distribution of sialylated glycans were evaluated in three brain regions (frontal cortex, hippocampus, and cerebellum) from 10 AD cases using quantitative digital pathology techniques. Notably, we found significantly greater N-sialylation of the Aβ plaque microenvironment compared with O-sialylation. Plaque-associated microglia displayed the most intense N-sialylation proximal to plaque pathology. Further analyses revealed distinct differences in the levels of N- and O-sialylation between cored and diffuse Aβ plaque morphologies. Interestingly, phosphorylated tau pathology led to a slight increase in N-sialylation and no influence of O-sialylation in these AD brains. Confirming our previous observations in mice with novel histologic approach, these findings support microglia sialylation appears to have a relationship with AD protein aggregates while providing potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Caitlyn Fastenau
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Madison Bunce
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Mallory Keating
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Jessica Wickline
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Sarah C. Hopp
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| |
Collapse
|
4
|
Giri RK. Molecular signatures in prion disease: altered death receptor pathways in a mouse model. J Transl Med 2024; 22:503. [PMID: 38802941 PMCID: PMC11129387 DOI: 10.1186/s12967-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Collapse
Affiliation(s)
- Ranjit Kumar Giri
- Molecular and Cellular Neuroscience Division, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
5
|
Hollander EE, Flock RE, McDevitt JC, Vostrejs WP, Campbell SL, Orlen MI, Kemp SB, Kahn BM, Wellen KE, Kim IK, Stanger BZ. N-glycosylation by Mgat5 imposes a targetable constraint on immune-mediated tumor clearance. JCI Insight 2024; 9:e178804. [PMID: 38912584 PMCID: PMC11383181 DOI: 10.1172/jci.insight.178804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of β1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.
Collapse
Affiliation(s)
- Erin E. Hollander
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jayne C. McDevitt
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William P. Vostrejs
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney L. Campbell
- Department of Medicine and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margo I. Orlen
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samantha B. Kemp
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin M. Kahn
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Wellen
- Department of Medicine and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Il-Kyu Kim
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Z. Stanger
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Sun Y, Wu T, Gu J. An emerging role of N-glycosylation in cancer chemoresistance. Carbohydr Res 2024; 539:109107. [PMID: 38613897 DOI: 10.1016/j.carres.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Chemoresistance poses a significant obstacle in the effective treatment of cancer, limiting the success of chemotherapy regimens. N-glycosylation, the most important post-translational modification (PTM), plays multifaceted roles in the intricate landscape of cancer progression, particularly drug resistance in cancer cells. This review explores the complex relationship between N-glycosylation and chemoresistance in cancer. Altered glycosylation patterns have been proven to impact drug efflux mechanisms in cancer cells, which can further influence the intracellular concentration of chemotherapy drugs. Moreover, N-glycosylation also plays a regulatory role in cell signaling pathways and apoptosis regulators, continuously affecting the stemness and survival of cancer cells under the selective pressure of chemotherapy. Additionally, the impact of the tumor microenvironment on glycosylation patterns adds complexity to this interplay. This review discusses current research findings, challenges, and future directions based on the roles of N-glycosylation in cancer chemoresistance, emphasizing the potential for targeted therapeutic interventions to enhance the effectiveness of chemotherapy and improve patient outcomes.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
7
|
Drzewicka K, Zasłona Z. Metabolism-driven glycosylation represents therapeutic opportunities in interstitial lung diseases. Front Immunol 2024; 15:1328781. [PMID: 38550597 PMCID: PMC10973144 DOI: 10.3389/fimmu.2024.1328781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.
Collapse
|
8
|
Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci 2024; 336:122303. [PMID: 38016576 DOI: 10.1016/j.lfs.2023.122303] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
A wide range of life-threatening conditions with complicated pathogenesis involves neurovascular disorders encompassing Neurovascular unit (NVU) damage. The pathophysiology of NVU is characterized by several features including tissue hypoxia, stimulation of inflammatory and angiogenic processes, and the initiation of intricate molecular interactions, collectively leading to an elevation in blood-brain barrier permeability, atherosclerosis and ultimately, neurovascular diseases. The presence of compelling data about the significant involvement of the glycosylation in the development of diseases has sparked a discussion on whether the abnormal glycosylation may serve as a causal factor for neurovascular disorders, rather than being just recruited as a secondary player in regulating the critical events during the development processes like embryo growth and angiogenesis. An essential tool for both developing new anti-ischemic therapies and understanding the processes of ischemic brain damage is undertaking pre-clinical studies of neurovascular disorders. Together with the post-translational modification of proteins, the modulation of glycosylation and its enzymes implicates itself in several abnormal activities which are known to accelerate neuronal vasculopathy. Despite the failure of the majority of glycosylation-based preclinical and clinical studies over the past years, there is a significant probability to provide neuroprotection utilizing modern and advanced approaches to target abnormal glycosylation activity at embryonic stages as well. This article focuses on a variety of experimental evidence to postulate the interconnection between glycosylation and vascular disorders along with possible treatment options.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | |
Collapse
|
9
|
Yamamoto R, Segawa R, Liu J, Isaji T, Gu J, Hiratsuka M, Hirasawa N. Effect of N-glycosylation on constitutive signal transduction by mutated cytokine receptor-like factor 2. Biochim Biophys Acta Gen Subj 2023; 1867:130465. [PMID: 37748663 DOI: 10.1016/j.bbagen.2023.130465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Cytokine receptor-like factor 2 (CRLF2) is a subunit of the receptor for thymic stromal lymphopoietin (TSLP). A somatic mutation (insEIM) in the transmembrane domains of CRLF2 has been identified in acute lymphocytic leukemia (ALL), and Glu-Ile-Met (EIM) CRLF2 induces constitutive activation of signals. However, the signaling mechanism remains unclear. METHODS HEK293 cells were transfected with expression vectors encoding wild-type (WT), insEIM CRLF2, or their mutants which N-glycosylation site was replaced with a glutamine. Cell surface expression of CRLF2 was assessed by flow cytometry. Total CRLF2 and phosphorylated signal transducer and activator of transcription 5 (STAT5) were detected by western blotting. RESULTS Three major species of CRLF2 (53-, 57- and 58-kDa) were identified. Deglycosylation analysis revealed that they were modified with complex-type and oligomannose-type glycans. The expression of both WT and EIM CRLF2 decreased in N-acetylglucosaminyltransferase (GnT)-I (MGAT1) knockout (KO) cells and slightly decreased in α1,6-fucosyltransferase (Fut8) KO cells compared to that in the control cells. In GnT-I or Fut8 KO cells, WT CRLF2 did not induce ligand-independent activation. Both WT and EIM CRLF2 contained four N-glycosylation sites. N55 of CRLF2 was required for the cell surface expression and activation by EIM CRLF2. CONCLUSIONS We found that N-glycosylation of CRLF2 plays crucial roles for its cell surface expression and signaling. However, N-glycan processing in the Golgi apparatus does not seem to be essential for ligand-independent activation of EIM CRLF2. GENERAL SIGNIFICANCE Our studies provide a crucial role of glycosylation in the cell surface expression of receptors.
Collapse
Affiliation(s)
- Rio Yamamoto
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
| |
Collapse
|
10
|
Clark IA, Vissel B. Autocrine positive feedback of tumor necrosis factor from activated microglia proposed to be of widespread relevance in chronic neurological disease. Pharmacol Res Perspect 2023; 11:e01136. [PMID: 37750203 PMCID: PMC10520644 DOI: 10.1002/prp2.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Over a decade's experience of post-stroke rehabilitation by administering the specific anti-TNF biological, etanercept, by the novel perispinal route, is consistent with a wide range of chronically diminished neurological function having been caused by persistent excessive cerebral levels of TNF. We propose that this TNF persistence, and cerebral disease chronicity, largely arises from a positive autocrine feedback loop of this cytokine, allowing the persistence of microglial activation caused by the excess TNF that these cells produce. It appears that many of these observations have never been exploited to construct a broad understanding and treatment of certain chronic, yet reversible, neurological illnesses. We propose that this treatment allows these chronically activated microglia to revert to their normal quiescent state, rather than simply neutralizing the direct harmful effects of this cytokine after its release from microglia. Logically, this also applies to the chronic cerebral aspects of various other neurological conditions characterized by activated microglia. These include long COVID, Lyme disease, post-stroke syndromes, traumatic brain injury, chronic traumatic encephalopathy, post-chemotherapy, post-irradiation cerebral dysfunction, cerebral palsy, fetal alcohol syndrome, hepatic encephalopathy, the antinociceptive state of morphine tolerance, and neurogenic pain. In addition, certain psychiatric states, in isolation or as sequelae of infectious diseases such as Lyme disease and long COVID, are candidates for being understood through this approach and treated accordingly. Perispinal etanercept provides the prospect of being able to treat various chronic central nervous system illnesses, whether they are of infectious or non-infectious origin, through reversing excess TNF generation by microglia.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical ResearchSt Vincent's HospitalDarlinghurstAustralia
- UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and HealthSchool of Clinical Medicine, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
11
|
Song W, Liang C, Sun Y, Morii S, Yomogida S, Isaji T, Fukuda T, Hang Q, Hara A, Nakano M, Gu J. Expression of GnT-III decreases chemoresistance via negatively regulating P-glycoprotein expression: Involvement of the TNFR2-NF-κB signaling pathway. J Biol Chem 2023; 299:103051. [PMID: 36813234 PMCID: PMC10033316 DOI: 10.1016/j.jbc.2023.103051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.
Collapse
Affiliation(s)
- Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Sendai, Miyagi, Japan
| | - Shin Yomogida
- Division of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Akiyoshi Hara
- Division of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
12
|
Wang YK, Li SJ, Zhou LL, Li D, Guo LW. GALNT3 protects against vascular calcification by reducing oxidative stress and apoptosis of smooth muscle cells. Eur J Pharmacol 2023; 939:175447. [PMID: 36473594 DOI: 10.1016/j.ejphar.2022.175447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Vascular calcification (VC) is the pathological deposition of calcium and phosphate minerals in blood vessels, which is a common complication of atherosclerosis. Polypeptide N-acetylgalactosamine transferase 3 (GALNT3) initiates O-glycosylation of proteins through addition of GalNAc to specific serine or threonine residues. Our previous studies revealed the potent role of GALNT3 in atherosclerosis, whereas the precise mechanisms remain obscure. This study investigated the regulatory effect and mechanism of GALNT3 on VC. Firstly, GALNT3 was overexpressed and knocked down by adenovirus in high-phosphate induced calcified HASMCs and overexpressed by adeno-associated virus in vitamin D3-induced arterial calcification mice. We showed that the calcium deposition and mRNA expression of osteogenic markers MSX2, ALPL, and Runx2 were all significantly reduced with GALNT3 overexpression. Moreover, overexpression of GALNT3 significantly down-regulated the expression of the oxidative stress markers Nox2 and Nox4, up-regulated total antioxidant capacity, decreased the expression of pro-inflammatory factors IL-1β, TNF-α and IL-8, matrix metalloproteinases MMP2 and MMP9, as well as reduced the apoptosis of cells in phosphate induced HASMCs. Furthermore, Vicia Villosa Lectin (VVL) pull down and TNFR1 immunoprecipitation assays showed that GALNT3 overexpression increased O-GalNAcylation of TNFR1 and blocked the activation of NF-κB signaling pathway. In addition, GALNT3 attenuates vitamin D3-induced aortic calcification in mice by alleviating oxidative stress and apoptosis of smooth muscle cells. In conclusion, this study indicates that GALNT3 protects against VC by reducing oxidative stress, vascular inflammation, and apoptosis of smooth muscle cells through the TNFR1/NF-κB signaling pathway. Thus, GALNT3 may be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yi-Kai Wang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang, Henan, China
| | - Shi-Jie Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang, Henan, China
| | - Lu-Lu Zhou
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang, Henan, China
| | - Duan Li
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Li-Wei Guo
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang, Henan, China.
| |
Collapse
|
13
|
Kumar Das A, Ghosh N, Mandal A, Sil PC. Glycobiology of cellular expiry: Decrypting the role of glycan-lectin regulatory complex and therapeutic strategies focusing on cancer. Biochem Pharmacol 2023; 207:115367. [PMID: 36481348 DOI: 10.1016/j.bcp.2022.115367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Often the outer leaflets of living cells bear a coat of glycosylated proteins, which primarily regulates cellular processes. Glycosylation of such proteins occurs as part of their post-translational modification. Within the endoplasmic reticulum, glycosylation enables the attachment of specific oligosaccharide moieties such as, 'glycan' to the transmembrane receptor proteins which confers precise biological information for governing the cell fate. The nature and degree of glycosylation of cell surface receptors are regulated by a bunch of glycosyl transferases and glycosidases which fine-tune attachment or detachment of glycan moieties. In classical death receptors, upregulation of glycosylation by glycosyl transferases is capable of inducing cell death in T cells, tumor cells, etc. Thus, any deregulated alternation at surface glycosylation of these death receptors can result in life-threatening disorder like cancer. In addition, transmembrane glycoproteins and lectin receptors can transduce intracellular signals for cell death execution. Exogenous interaction of lectins with glycan containing death receptors signals for cell death initiation by modulating downstream signalings. Subsequently, endogenous glycan-lectin interplay aids in the customization and implementation of the cell death program. Lastly, the glycan-lectin recognition system dictates the removal of apoptotic cells by sending accurate signals to the extracellular milieu. Since glycosylation has proven to be a biomarker of cellular death and disease progression; glycans serve as specific therapeutic targets of cancers. In this context, we are reviewing the molecular mechanisms of the glycan-lectin regulatory network as an integral part of cell death machinery in cancer to target them for successful therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Ankita Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
14
|
Yu H, Li M, Wen X, Yang J, Liang X, Li X, Bao X, Shu J, Ren X, Chen W, Li Z, Li Y. Elevation of α-1,3 fucosylation promotes the binding ability of TNFR1 to TNF-α and contributes to osteoarthritic cartilage destruction and apoptosis. Arthritis Res Ther 2022; 24:93. [PMID: 35488351 PMCID: PMC9052622 DOI: 10.1186/s13075-022-02776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis and is characterized by the degradation of articular cartilage and inflammation of the synovial membrane. Fucosylation is an important feature of protein N/O-glycosylation and is involved in a variety of pathological processes, including inflammation and cancer. However, whether fucosylation impacts the OA pathological process is unknown. METHODS Total proteins were extracted from cartilage samples obtained from patients with OA (n = 11) and OA rabbit models at different time points (n = 12). OA-associated abnormal glycopatterns were evaluated by lectin microarrays and lectin blots. The expression of fucosyltransferases involved in the synthesis of α-1,3 fucosylation was assessed by semi-qPCR. The synthesis of α-1,3 fucosylation mediated by FUT10 was interrupted by the transfection of siRNA, and the effect of α-1,3 fucosylation on OA-associated events was assessed. Then, immunoprecipitation and lectin blotting were used to investigate the relationship between the α-1,3 fucosylation level of tumor necrosis factor receptor superfamily member 1A (TNFR1) and OA. Finally, a TNFR1 antibody microarray was fabricated to evaluate the effect of α-1,3 fucosylation on the ability of TNFR1 to bind to tumor necrosis factor-α (TNF-α). RESULTS Elevated α-1,3 fucosylation was observed in cartilage from OA patients, rabbit models, and chondrocytes induced by TNF-α (fold change> 2, p< 0.01). Our results and the GEO database indicated that the overexpression of FUT10 contributed to this alteration. Silencing the expression of FUT10 impaired the ability of TNFR1 to bind to TNF-α, impeded activation of the NF-κB and P38/JNK-MAPK pathways, and eventually retarded extracellular matrix (ECM) degradation, senescence, and apoptosis in chondrocytes exposed to TNF-α. CONCLUSION The elevation of α-1,3 fucosylation is not only a characteristic of OA but also impacts the OA pathological process. Our work provides a new positive feedback loop of "inflammation conditions/TNF-α/FUT10/α-1,3 fucosylation of TNFR1/NF-κB and P38/JNK-MAPK pathways/proinflammatory processes" that contributes to ECM degradation and chondrocyte apoptosis.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, China
| | - Mingxiu Li
- The Second Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaodong Wen
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, 710054, Shaanxi Province, China
| | - Jie Yang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, 710054, Shaanxi Province, China
| | - Xiaojun Liang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, 710054, Shaanxi Province, China
| | - Xia Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, China
| | - Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, China.
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, 710054, Shaanxi Province, China.
| |
Collapse
|
15
|
Role and therapeutic implications of protein glycosylation in neuroinflammation. Trends Mol Med 2022; 28:270-289. [PMID: 35120836 DOI: 10.1016/j.molmed.2022.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The importance of glycosylation (post-translational attachment of glycan residues to proteins) in the context of neuroinflammation is only now beginning to be understood. Although the glycome is challenging to investigate due to its complexity, this field is gaining interest because of the emergence of novel analytical methods. These investigations offer the possibility of further understanding the molecular signature of disorders with underlying neuroinflammatory cascades. In this review, we portray the clinically relevant trends in glyconeurobiology and suggest glyco-related paths that could be targeted therapeutically to decrease neuroinflammation. A combinatorial insight from glycobiology and neurology can be harnessed to better understand neuroinflammatory-related conditions to identify relevant molecular targets.
Collapse
|
16
|
Age of Rats Affects the Degree of Retinal Neuroinflammatory Response Induced by High Acute Intraocular Pressure. DISEASE MARKERS 2022; 2022:9404977. [PMID: 35132339 PMCID: PMC8817888 DOI: 10.1155/2022/9404977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
Purpose To investigate whether retinal neuroinflammatory response was affected by aging in a rat model of acute glaucoma. Methods Young adult and aged rats were randomly assigned into normal control, 45 mmHg, 60 mmHg, and 90 mmHg groups. Intraocular pressure (IOP) of rats was acutely elevated to 45 mmHg, 60 mmHg, and 90 mmHg, respectively. Three days after high IOP treatment, loss of retinal ganglion cells (RGCs), formation of proinflammatory microglia/macrophages and neurotoxic astrocytes, and deposition of complement C3 in the retina were detected by immunofluorescence. ELISA was used to assess the protein levels of proinflammatory cytokines TNF and IL-1β in the retina. Results Compared with young adult retinae, (1) loss of RGCs was more severe in aged retinae under the same IOP treatment, (2) microglia/macrophages were more prone to adopt proinflammatory phenotype in aged retinae in response to elevated IOP, (3) high IOP treatment induced astrogliosis, formation of neurotoxic astrocytes, and deposition of complement C3 more easily in aged retinae, and (4) aged retinae induced higher levels of proinflammatory cytokines TNF and IL-1β under the same IOP treatment. Conclusion Our data indicated that aging affects the degree of retinal neuroinflammatory response initiated by ocular hypertension, which may contribute to the age-related susceptibility of RGCs to elevated IOP.
Collapse
|
17
|
Lan HW, Lu YN, Zhao XD, Jin GN, Lu JM, Jin CH, Ma J, Jin X, Xu X, Piao LX. New role of sertraline against Toxoplasma gondii-induced depression-like behaviours in mice. Parasite Immunol 2021; 43:e12893. [PMID: 34637545 DOI: 10.1111/pim.12893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii (T. gondii) is a neurotropic protozoan parasite, which can cause mental and behavioural disorders. The present study aimed to elucidate the effects and underlying molecular mechanisms of sertraline (SERT) on T. gondii-induced depression-like behaviours. In the present study, a mouse model and a microglial cell line (BV2 cells) model were established by infecting with the T. gondii RH strain. In in vivo and in vitro experiments, the underlying molecular mechanisms of SERT in inhibiting depression-like behaviours and cellular perturbations caused by T. gondii infection were investigated in the mouse brain and BV2 cells. The administration of SERT significantly ameliorated depression-like behaviours in T. gondii-infected mice. Furthermore, SERT inhibited T. gondii proliferation. Treatment with SERT significantly inhibited the activation of microglia and decreased levels of pro-inflammatory cytokines such as tumour necrosis factor-alpha, and interferon-gamma, by down-regulating tumour necrosis factor receptor 1/nuclear factor-kappa B signalling pathway, thereby ameliorating the depression-like behaviours induced by T. gondii infection. Our study provides insight into the underlying molecular mechanisms of the newly discovered role of SERT against T. gondii-induced depression-like behaviours.
Collapse
Affiliation(s)
- Hui-Wen Lan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
18
|
Marques GFO, Pires AF, Osterne VJS, Pinto-Junior VR, Silva IB, Martins MGQ, Oliveira MV, Gomes AM, de Souza LAG, Pavão MSG, Cavada BS, Assreuy AMS, Nascimento KS. Vatairea guianensis lectin stimulates changes in gene expression and release of TNF-α from rat peritoneal macrophages via glycoconjugate binding. J Mol Recognit 2021; 34:e2922. [PMID: 34132435 DOI: 10.1002/jmr.2922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/01/2021] [Indexed: 11/09/2022]
Abstract
Using a rat model of peritonitis, we herein report the inflammatory effect induced by the lectin isolated from Vatairea guianensis (VGL) seeds in the context of interactions between VGL and both toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1). Peritoneal macrophages were stimulated with VGL for dose-dependent gene expression and release of TNF-α. In vivo results showed that VGL (1 mg/kg; intraperitoneal) induced peritonitis in female Wistar rats. Leukocyte migration, macrophage activation, and protein leakage were measured 3 and 6 hours after induction. In vitro, peritoneal macrophages were stimulated with VGL for gene expression and TNF-α dosage (mean ± SEM (n = 6), analysis of variance, and Bonferroni's test (P < .05)). In silico, VGL structure was applied in molecular docking with representative glycans. It was found that (a) VGL increases vascular permeability and stimulates leukocyte migration, both rolling and adhesion; (b) lectin-induced neutrophil migration occurs via macrophage stimulation, both in vitro and in vivo; (c) lectin interacts with TLR4 and TNFR1; and (d) stimulates TNF-α gene expression (RT-PCR) and release from peritoneal macrophages. Thus, upon lectin-glycan binding on the cell surface, our results suggest that VGL induces an acute inflammatory response, in turn activating the release of peritoneal macrophages via TNF-α and TLR and/or TNFR receptor pathways.
Collapse
Affiliation(s)
| | - Alana Freitas Pires
- Instituto de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
- Departamento de Nutrição, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Vanir Reis Pinto-Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ivanice Bezerra Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Angelica Maciel Gomes
- Instituto de Bioquímica Médica e Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mauro Sérgio Gonçalves Pavão
- Instituto de Bioquímica Médica e Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | |
Collapse
|
19
|
Moriwaki K, Chan FKM, Miyoshi E. Sweet modification and regulation of death receptor signalling pathway. J Biochem 2021; 169:643-652. [PMID: 33752241 DOI: 10.1093/jb/mvab034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Death receptors, members of the tumour necrosis factor receptor (TNFR) superfamily, are characterized by the presence of a death domain in the cytosolic region. TNFR1, Fas and TNF-related apoptosis-inducing ligand receptors, which are prototypical death receptors, exert pleiotropic functions in cell death, inflammation and immune surveillance. Hence, they are involved in several human diseases. The activation of death receptors and downstream intracellular signalling is regulated by various posttranslational modifications, such as phosphorylation, ubiquitination and glycosylation. Glycosylation is one of the most abundant and versatile modifications to proteins and lipids, and it plays a critical role in the development and physiology of organisms, as well as the pathology of many human diseases. Glycans control a number of cellular events, such as receptor activation, signal transduction, endocytosis, cell recognition and cell adhesion. It has been demonstrated that oligo- and monosaccharides modify death receptors and intracellular signalling proteins and regulate their functions. Here, we review the current understanding of glycan modifications of death receptor signalling and their impact on signalling activity.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Francis K M Chan
- Department of Immunology, Duke University School of Medicine, 207 Research Drive, Durham, NC27710-3010, USA
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Park MS, Yang AY, Lee JE, Kim SK, Roe JS, Park MS, Oh MJ, An HJ, Kim MY. GALNT3 suppresses lung cancer by inhibiting myeloid-derived suppressor cell infiltration and angiogenesis in a TNFR and c-MET pathway-dependent manner. Cancer Lett 2021; 521:294-307. [PMID: 34416337 DOI: 10.1016/j.canlet.2021.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023]
Abstract
The deregulation of polypeptide N-acetyl-galactosaminyltransferases (GALNTs) contributes to several cancers, but their roles in lung cancer remain unclear. In this study, we have identified a tumor-suppressing role of GALNT3 in lung cancer. We found that GALNT3 suppressed lung cancer development and progression in both xenograft and syngeneic mouse models. Specifically, GALNT3 suppressed lung cancer initiation by inhibiting the self-renewal of lung cancer cells. More importantly, GALNT3 attenuated lung cancer growth by preventing the creation of a favorable tumor microenvironment (TME), which was attributed to GALNT3's ability to inhibit myeloid-derived suppressor cell (MDSC) infiltration into tumor sites and subsequent angiogenesis. We also identified a GALNT3-regulated gene (GRG) signature and found that lung cancer patients whose tumors exhibit the GRG signature showed more favorable prognoses. Further investigation revealed that GALNT3 suppressed lung cancer cell self-renewal by reducing β-catenin levels, which led to reduced expression of the downstream targets of the WNT pathway. In addition, GALNT3 inhibited MDSC infiltration into tumor sites by suppressing both the TNFR1-NFκB and cMET-pAKT pathways. Specifically, GALNT3 inhibited the nuclear localization of NFκB and the c-MET-induced phosphorylation of AKT. This then led to reduced production of CXCL1, a chemokine required for MDSC recruitment. Finally, we confirmed that the GALNT3-induced inhibition of the TNFR1-NFκB and cMET-pAKT pathways involved the O-GalNAcylation of the TNFR1 and cMET receptors. In summary, we have identified GALNT3 as the first GALNT member capable of suppressing lung cancer and uncovered a novel mechanism by which GALNT3 regulates the TME.
Collapse
Affiliation(s)
- Mi So Park
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - A-Yeong Yang
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - Seon Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Min-Seok Park
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
22
|
Rebelo AL, Gubinelli F, Roost P, Jan C, Brouillet E, Van Camp N, Drake RR, Saldova R, Pandit A. Complete spatial characterisation of N-glycosylation upon striatal neuroinflammation in the rodent brain. J Neuroinflammation 2021; 18:116. [PMID: 33993882 PMCID: PMC8127229 DOI: 10.1186/s12974-021-02163-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is an underlying pathology of all neurological conditions, the understanding of which is still being comprehended. A specific molecular pathway that has been overlooked in neuroinflammation is glycosylation (i.e., post-translational addition of glycans to the protein structure). N-glycosylation is a specific type of glycosylation with a cardinal role in the central nervous system (CNS), which is highlighted by congenital glycosylation diseases that result in neuropathological symptoms such as epilepsy and mental retardation. Changes in N-glycosylation can ultimately affect glycoproteins' functions, which will have an impact on cell machinery. Therefore, characterisation of N-glycosylation alterations in a neuroinflammatory scenario can provide a potential target for future therapies. METHODS With that aim, the unilateral intrastriatal injection of lipopolysaccharide (LPS) in the adult rat brain was used as a model of neuroinflammation. In vivo and post-mortem, quantitative and spatial characterisation of both neuroinflammation and N-glycome was performed at 1-week post-injection of LPS. These aspects were investigated through a multifaceted approach based on positron emission tomography (PET), quantitative histology, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), liquid chromatography and matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI). RESULTS In the brain region showing LPS-induced neuroinflammation, a significant decrease in the abundance of sialylated and core fucosylated structures was seen (approximately 7.5% and 8.5%, respectively), whereas oligomannose N-glycans were significantly increased (13.5%). This was confirmed by MALDI-MSI, which provided a high-resolution spatial distribution of N-glycans, allowing precise comparison between normal and diseased brain hemispheres. CONCLUSIONS Together, our data show for the first time the complete profiling of N-glycomic changes in a well-characterised animal model of neuroinflammation. These data represent a pioneering step to identify critical targets that may modulate neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Francesco Gubinelli
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Pauline Roost
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nadja Van Camp
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, USA
| | - Radka Saldova
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), University College Dublin, Dublin, Ireland
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
23
|
Glycosylation of Immune Receptors in Cancer. Cells 2021; 10:cells10051100. [PMID: 34064396 PMCID: PMC8147841 DOI: 10.3390/cells10051100] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.
Collapse
|
24
|
Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res 2021; 167:105576. [PMID: 33771700 DOI: 10.1016/j.phrs.2021.105576] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Macrophages are a type of functionally plastic cells that can create a pro-/anti-inflammatory microenvironment for organs by producing different kinds of cytokines, chemokines, and growth factors to regulate immunity and inflammatory responses. In addition, they can also be induced to adopt different phenotypes in response to extracellular and intracellular signals, a process defined as M1/M2 polarization. Growing evidence indicates that glycobiology is closely associated with this polarization process. In this research, we review studies of the roles of glycosylation, glucose metabolism, and key lectins in the regulation of macrophages function and polarization to provide a new perspective for immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110000, China
| | - Xibo Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaxin Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaoqing Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaohan Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xinghe Chen
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Haiyang Dong
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yu Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
25
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
26
|
Zou X, Zhang D, Song Y, Liu S, Long Q, Yao L, Li W, Duan Z, Wu D, Liu L. HRG switches TNFR1-mediated cell survival to apoptosis in Hepatocellular Carcinoma. Theranostics 2020; 10:10434-10447. [PMID: 32929358 PMCID: PMC7482824 DOI: 10.7150/thno.47286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Tumor necrosis factor receptor 1 (TNFR1) signaling plays a pleiotropic role in the development of hepatocellular carcinoma (HCC). The formation of TNFR1-complex I supports cell survival while TNFR1-complex II leads to apoptosis, and the underlying mechanisms of the transformation of these TNFR1 complexes in HCC remain poorly defined. Methods: The interaction protein of TNFR1 was identified by GST pulldown assay, immunoprecipitation and mass spectrometry. In vitro and in vivo assay were performed to explore the biological features and mechanisms underlying the regulation of TNFR1 signals by histidine-rich glycoprotein (HRG). Data from the public databases and HCC samples were utilized to analyze the expression and clinical relevance of HRG. Results: HRG directly interacted with TNFR1 and stabilized TNFR1 protein by decreasing the Lys(K)-48 ubiquitination mediated-degradation. The formation of TNFR1-complex II was prompted by HRG overexpression via upregulating Lys(K)-63 ubiquitination of TNFR1. Besides, overexpression of HRG suppressed expression of pro-survival genes by impairing the activation of NF-κB signaling in the presence of TNFR1. Moreover, downregulation of HRG was a result of feedback inhibition of NF-κB activation in HCC. In line with the pro-apoptotic switch of TNFR1 signaling after HRG induction, overexpression of HRG inhibited cell proliferation and increased apoptosis in HCC. Conclusions: Our findings illustrate a crucial role for HRG in suppressing HCC via inclining TNFR1 to a pro-apoptotic cellular phenotype. Restoring HRG expression in HCC tissues might be a promising pharmacological approach to blocking tumor progression by shifting cellular fate from cell survival to apoptosis.
Collapse
Affiliation(s)
- Xuejing Zou
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongyan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yang Song
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Long
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liheng Yao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhijiao Duan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehua Wu
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Cárdenas-Tueme M, Montalvo-Martínez L, Maldonado-Ruiz R, Camacho-Morales A, Reséndez-Pérez D. Neurodegenerative Susceptibility During Maternal Nutritional Programing: Are Central and Peripheral Innate Immune Training Relevant? Front Neurosci 2020; 14:13. [PMID: 32116490 PMCID: PMC7010854 DOI: 10.3389/fnins.2020.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal overnutrition modulates body weight, development of metabolic failure and, potentially, neurodegenerative susceptibility in the offspring. Overnutrition sets a chronic pro-inflammatory profile that integrates peripheral and central immune activation nodes, damaging neuronal physiology and survival. Innate immune cells exposed to hypercaloric diets might experience trained immunity. Here, we address the role of maternal overnutrition as a trigger for central and peripheral immune training and its contribution to neurodegeneration and the molecular nodes implicated in the Nod-like receptor protein 3 (NLRP3) inflammasome pathway leading to immune training. We propose that maternal overnutrition leads to peripheral or central immune training that favor neurodegenerative susceptibility in the offspring.
Collapse
Affiliation(s)
- Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
28
|
Hong S, Wang TY, Secombes CJ, Wang T. Different origins of paralogues of salmonid TNR1 and TNFR2: Characterisation and expression analysis of four TNF receptor genes in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103403. [PMID: 31150658 DOI: 10.1016/j.dci.2019.103403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Mammalian TNFR1 and TNFR2 bind TNFα and TNFβ, and provide key communication signals to a variety of cell types during development and immune responses that are crucial for cell survival, proliferation and apoptosis. In teleost fish TNFβ is absent but TNFα has been expanded by the third whole genome duplication (3R WGD) and again by a 4R WGD in some lineages, leading to the four TNFα paralogues known in salmonids. Two paralogues for each of TNFR1 and TNFR2 have been cloned in rainbow trout in this study and are present in other salmonid genomes. Whilst the TNFR2 paralogues were generated via the 4R salmonid WGD, the TNFR1 paralogues arose from a local en bloc duplication. Functional diversification of TNFR paralogues was evidenced by differential gene expression and modulation, upstream ATGs affecting translation, ATTTA motifs in the 3'-UTR regulating mRNA stability, and post-translational modification by N-glycosylation. Trout TNFR are highly expressed in immune tissues/organs, and other tissues, in a gene- and tissue-specific manner. Furthermore, their expression is differentially modulated by PAMPs and cytokines in a cell type- and stimulant-specific manner. Such findings suggest an important role of the TNF/TNFR axis in the immune response and other physiological processes in fish.
Collapse
Affiliation(s)
- Suhee Hong
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Ting-Yu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
29
|
Zingler P, Särchen V, Glatter T, Caning L, Saggau C, Kathayat RS, Dickinson BC, Adam D, Schneider-Brachert W, Schütze S, Fritsch J. Palmitoylation is required for TNF-R1 signaling. Cell Commun Signal 2019; 17:90. [PMID: 31382980 PMCID: PMC6683503 DOI: 10.1186/s12964-019-0405-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Binding of tumor necrosis factor (TNF) to TNF-receptor 1 (TNF-R1) can induce either cell survival or cell death. The selection between these diametrically opposed effects depends on the subcellular location of TNF-R1: plasma membrane retention leads to survival, while endocytosis leads to cell death. How the respective TNF-R1 associated signaling complexes are recruited to the distinct subcellular location is not known. Here, we identify palmitoylation of TNF-R1 as a molecular mechanism to achieve signal diversification. METHODS Human monocytic U937 cells were analyzed. Palmitoylated proteins were enriched by acyl resin assisted capture (AcylRAC) and analyzed by western blot and mass spectrometry. Palmitoylation of TNF-R1 was validated by metabolic labeling. TNF induced depalmitoylation and involvement of APT2 was analyzed by enzyme activity assays, pharmacological inhibition and shRNA mediated knock-down. TNF-R1 palmitoylation site analysis was done by mutated TNF-R1 expression in TNF-R1 knock-out cells. Apoptosis (nuclear DNA fragmentation, caspase 3 assays), NF-κB activation and TNF-R1 internalization were used as biological readouts. RESULTS We identify dynamic S-palmitoylation as a new mechanism that controls selective TNF signaling. TNF-R1 itself is constitutively palmitoylated and depalmitoylated upon ligand binding. We identified the palmitoyl thioesterase APT2 to be involved in TNF-R1 depalmitoylation and TNF induced NF-κB activation. Mutation of the putative palmitoylation site C248 interferes with TNF-R1 localization to the plasma membrane and thus, proper signal transduction. CONCLUSIONS Our results introduce palmitoylation as a new layer of dynamic regulation of TNF-R1 induced signal transduction at a very early step of the TNF induced signaling cascade. Understanding the underlying mechanism may allow novel therapeutic options for disease treatment in future.
Collapse
Affiliation(s)
- Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, MPI for Terrestrial Microbiology, Marburg, Germany
| | - Lotta Caning
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
30
|
Mantuano NR, Oliveira-Nunes MC, Alisson-Silva F, Dias WB, Todeschini AR. Emerging role of glycosylation in the polarization of tumor-associated macrophages. Pharmacol Res 2019; 146:104285. [PMID: 31132403 DOI: 10.1016/j.phrs.2019.104285] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Tumors are formed by several cell types interacting in a complex environment of soluble and matrix molecules. The crosstalk between the cells and extracellular components control tumor fate. Macrophages are highly plastic and diverse immune cells that are known to be key regulators of this complex network, which is mostly because they can adjust their metabolism and reprogram their phenotype and effector function. Here, we review the studies that disclose the central role of metabolism and tumor microenvironment in shaping the phenotype and function of macrophages, highlighting the importance of the hexosamine biosynthetic pathway. We further discuss growing evidence of nutrient-sensitive protein modifications such as O-GlcNAcylation and extracellular glycosylation in the function and polarization of tumor-associated macrophages.
Collapse
Affiliation(s)
- Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Maria Cecilia Oliveira-Nunes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Frederico Alisson-Silva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
31
|
Liu C, Shen Y, Tang Y, Gu Y. The role of N-glycosylation of CD200-CD200R1 interaction in classical microglial activation. JOURNAL OF INFLAMMATION-LONDON 2018; 15:28. [PMID: 30574022 PMCID: PMC6300008 DOI: 10.1186/s12950-018-0205-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
Background Microglial inflammatory activation is the common feature of the central nervous system (CNS) diseases. Microglia can be activated and particularly polarized toward a dual role in the injured CNS. The CD200 receptor 1 (CD200R1) inhibits inflammatory microglia activation as illustrated by studies. Publications show abnormal activation of microglia secondary to the deficient inhibit of CD200-CD200R interaction. In the present study, we established a neuronal-microglia co-culture system to investigate the association between CD200R1 engagement and classical microglial activation. We analyzed the glycosylation of CD200R1 and the CD200 binding. Secretion of pro-inflammatory cytokines were measured. Results CD200R1 was N-glycosylated at Asparagine 44 (Asn44, N44). Mutation of this site disrupted CD200-CD200R1 interaction and up-regulated the expression of cytokines iNOS, CD86, IL-1β and TNF-α. Conclusion N44 of CD200R1 is a significant binding site for CD200-CD200R1 interaction and play a critical role in the maintenance of microglia. The N-glycosylation of CD200R1 could serve as a therapeutic agent for CNS inflammation. Electronic supplementary material The online version of this article (10.1186/s12950-018-0205-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Liu
- Central Lab, First People's Hospital of Wujiang Dist, Suzhou, 215200 Jiangsu Province China
| | - Yifen Shen
- Central Lab, First People's Hospital of Wujiang Dist, Suzhou, 215200 Jiangsu Province China
| | - Ying Tang
- Central Lab, First People's Hospital of Wujiang Dist, Suzhou, 215200 Jiangsu Province China
| | - Yongchun Gu
- Central Lab, First People's Hospital of Wujiang Dist, Suzhou, 215200 Jiangsu Province China.,2Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
32
|
de Vreede G, Morrison HA, Houser AM, Boileau RM, Andersen D, Colombani J, Bilder D. A Drosophila Tumor Suppressor Gene Prevents Tonic TNF Signaling through Receptor N-Glycosylation. Dev Cell 2018; 45:595-605.e4. [PMID: 29870719 PMCID: PMC5995582 DOI: 10.1016/j.devcel.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 01/18/2023]
Abstract
Drosophila tumor suppressor genes have revealed molecular pathways that control tissue growth, but mechanisms that regulate mitogenic signaling are far from understood. Here we report that the Drosophila TSG tumorous imaginal discs (tid), whose phenotypes were previously attributed to mutations in a DnaJ-like chaperone, are in fact driven by the loss of the N-linked glycosylation pathway component ALG3. tid/alg3 imaginal discs display tissue growth and architecture defects that share characteristics of both neoplastic and hyperplastic mutants. Tumorous growth is driven by inhibited Hippo signaling, induced by excess Jun N-terminal kinase (JNK) activity. We show that ectopic JNK activation is caused by aberrant glycosylation of a single protein, the fly tumor necrosis factor (TNF) receptor homolog, which results in increased binding to the continually circulating TNF. Our results suggest that N-linked glycosylation sets the threshold of TNF receptor signaling by modifying ligand-receptor interactions and that cells may alter this modification to respond appropriately to physiological cues.
Collapse
Affiliation(s)
- Geert de Vreede
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Holly A Morrison
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Alexandra M Houser
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ryan M Boileau
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ditte Andersen
- University Nice Sophia Antipolis, CNRS, Inserm, iBV, Nice 06108, France
| | - Julien Colombani
- University Nice Sophia Antipolis, CNRS, Inserm, iBV, Nice 06108, France
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
33
|
Rong Y, Bansal PK, Wei P, Guo H, Correia K, Parris J, Morgan JI. Glycosylation of Cblns attenuates their receptor binding. Brain Res 2018; 1694:129-139. [PMID: 29782851 DOI: 10.1016/j.brainres.2018.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Cbln1 is the prototype of a family (Cbln1-Cbln4) of secreted glycoproteins and is essential for normal synapse structure and function in cerebellum by bridging presynaptic Nrxn to postsynaptic Grid2. Here we report the effects of glycosylation on the in vitro receptor binding properties of Cblns. Cbln1, 2 and 4 harbor two N-linked glycosylation sites, one at the N-terminus is in a region implicated in Nrxn binding and the second is in the C1q domain, a region involved in Grid2 binding. Mutation (asparagine to glutamine) of the N-terminal site, increased neurexin binding whereas mutation of the C1q site markedly increased Grid2 binding. These mutations did not influence subunit composition of Cbln trimeric complexes (mediated through the C1q domain) nor their assembly into hexamers (mediated by the N-terminal region). Therefore, glycosylation likely masks the receptor binding interfaces of Cblns. As Cbln4 has undetectable Grid2 binding in vitro we assessed whether transgenic expression of wild type Cbln4 or its glycosylation mutants rescued the Cbln1-null phenotype in vivo. Cbln4 partially rescued and both glycosylation mutants completely rescued ataxia in cbln1-null mice. Thus Cbln4 has intrinsic Grid2 binding that is attenuated by glycosylation, and glycosylation mutants exhibit gain of function in vivo.
Collapse
Affiliation(s)
- Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Parmil K Bansal
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peng Wei
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Guo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kristen Correia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Parris
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James I Morgan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
34
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
35
|
Wu X, Yu T, Xu H, Sun X, Kou D, Li L. Morphological and functional changes of microglia cultured under different oxygen concentrations and the analysis of related mechanisms. Exp Ther Med 2017; 15:2015-2019. [PMID: 29434798 PMCID: PMC5776651 DOI: 10.3892/etm.2017.5596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023] Open
Abstract
This study investigated the effects of different concentrations of oxygen exposure on the morphology and function of N9 microglia and analyzed its mechanisms. N9 microglia were cultured under the condition of high (95% O2 and 5% CO2), normal (95% air and 5% CO2) and low oxygen (95% CO2 and 5% O2) concentrations. The cell morphologies were observed under inverted phase contrast microscope after 24 h. Flow cytometry was applied to detect cell survival and apoptotic rate. The mRNA and protein expression levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis, respectively. The results showed that, N9 microglial apoptotic rates in hyperoxia and hypoxia conditions were significantly higher than those in the normal group (P<0.05) and the apoptosis rate in the hypoxia group was higher than that in the hyperoxia group (P<0.05). The mRNA and protein expression levels of IL-1β and TNF-α in the hyperoxia and hypoxia groups were significantly higher than those in the normal group (P<0.05) and the mRNA and protein expression levels in hypoxia group were higher than those in the hyperoxia group (P<0.05). Therefore, N9 microglia cultured under hyperoxia and hypoxia conditions can be activated, enhancing pro-inflammatory response and inducing cell apoptosis. The mechanism may be that the secretion of neurotoxic factors IL-1β and TNF-α is involved in these responses.
Collapse
Affiliation(s)
- Xing Wu
- Department of Pain Clinic, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Tengbo Yu
- Department of Bone Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hongyan Xu
- Zone One, Qingdao The First Sanatorium of PLA Navy, Qingdao, Shandong 266000, P.R. China
| | - Xiuming Sun
- Department of Pain Clinic, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dewei Kou
- Department of Pain Clinic, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Liping Li
- Department of Bone Surgery, Qingdao Central Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
36
|
Chen R, Gong P, Tao T, Gao Y, Shen J, Yan Y, Duan C, Wang J, Liu X. O-GlcNAc Glycosylation of nNOS Promotes Neuronal Apoptosis Following Glutamate Excitotoxicity. Cell Mol Neurobiol 2017; 37:1465-1475. [PMID: 28238085 PMCID: PMC11482135 DOI: 10.1007/s10571-017-0477-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/17/2017] [Indexed: 01/11/2023]
Abstract
Ischemic stroke is a dominant health problem with extremely high rates of mortality and disability. The main mechanism of neuronal injury after stroke is excitotoxicity, during which the activation of neuronal nitric oxide synthase (nNOS) exerts a vital role. However, directly blocking N-methyl-D-aspartate receptors or nNOS can lead to severe undesirable effects since they have crucial physiological functions in the central nervous system. Here, we report that nNOS undergoes O-linked-β-N-acetylglucosamine (O-GlcNAc) modification via interacting with O-GlcNAc transferase, and the O-GlcNAcylation of nNOS remarkably increases during glutamate-induced excitotoxicity. In addition, eliminating the O-GlcNAcylation of nNOS protects neurons from apoptosis during glutamate stimulation by decreasing the formation of nNOS-postsynaptic density protein 95 complexes. Taken together, our data suggest a novel function of the O-GlcNAcylation of nNOS in neuronal apoptosis during glutamate excitotoxicity, suggesting a novel therapy strategy for ischemic stroke.
Collapse
Affiliation(s)
- Rongrong Chen
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Peipei Gong
- Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yaohua Yan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chengwei Duan
- Department of Science and Education, Second People's Hospital of Nantong, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jun Wang
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
37
|
Tortarolo M, Lo Coco D, Veglianese P, Vallarola A, Giordana MT, Marcon G, Beghi E, Poloni M, Strong MJ, Iyer AM, Aronica E, Bendotti C. Amyotrophic Lateral Sclerosis, a Multisystem Pathology: Insights into the Role of TNF α. Mediators Inflamm 2017; 2017:2985051. [PMID: 29081600 PMCID: PMC5610855 DOI: 10.1155/2017/2985051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is considered a multifactorial, multisystem disease in which inflammation and the immune system play important roles in development and progression. The pleiotropic cytokine TNFα is one of the major players governing the inflammation in the central nervous system and peripheral districts such as the neuromuscular and immune system. Changes in TNFα levels are reported in blood, cerebrospinal fluid, and nerve tissues of ALS patients and animal models. However, whether they play a detrimental or protective role on the disease progression is still not clear. Our group and others have recently reported opposite involvements of TNFR1 and TNFR2 in motor neuron death. TNFR2 mediates TNFα toxic effects on these neurons presumably through the activation of MAP kinase-related pathways. On the other hand, TNFR2 regulates the function and proliferation of regulatory T cells (Treg) whose expression is inversely correlated with the disease progression rate in ALS patients. In addition, TNFα is considered a procachectic factor with a direct catabolic effect on skeletal muscles, causing wasting. We review and discuss the role of TNFα in ALS in the light of its multisystem nature.
Collapse
Affiliation(s)
- Massimo Tortarolo
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daniele Lo Coco
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- ALS Research Center, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Pietro Veglianese
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Antonio Vallarola
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Gabriella Marcon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- DAME, University of Udine, Udine, Italy
| | - Ettore Beghi
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marco Poloni
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Michael J. Strong
- Cell Biology Research Group, Robarts Research Institute, London, ON, Canada
| | - Anand M. Iyer
- Department of Neuropathology, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
38
|
Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun 2016; 474:452-461. [PMID: 27133719 PMCID: PMC4880150 DOI: 10.1016/j.bbrc.2016.04.141] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
Abstract
We have reported previously that activation of the MyD88-signaling network rapidly induces the formation of hybrid ubiquitin chains containing both Lys63-linked and Met1-linked ubiquitin (Ub) oligomers, some of which are attached covalently to Interleukin Receptor Associated kinase 1. Here we show that Lys63/Met1-Ub hybrids are also formed rapidly when the TNFR1/TRADD, TLR3/TRIF- and NOD1/RIP2-signaling networks are activated, some of which are attached covalently to Receptor-Interacting Protein 1 (TNFR1 pathway) or Receptor-Interacting Protein 2 (NOD1 pathway). These observations suggest that the formation of Lys63/Met1-Ub hybrids are of general significance for the regulation of innate immune signaling systems, and their potential roles in vivo are discussed. We also report that TNFα induces the attachment of Met1-linked Ub chains directly to TNF receptor 1, which do not seem to be attached covalently to Lys63-linked or other types of ubiquitin chain. Ubiquitin chains containing both Lys63 and Met1 linkages are commonly formed during innate immune signaling. Lys63/Met1-hybrid chains become attached to RIP1 and RIP2 in the TNFR1 and NOD1 signaling networks, respectively. Potential advantages of Lys63/Met1-hybrids over separate ubiquitin chains are proposed. Met1-linked ubiquitin is attached to TNFR1 without formation of a hybrid ubiquitin chain.
Collapse
|