1
|
Wu F, Zhang C, Chen R, Chu Z, Han B, Zhai R. Research Progress in Isotope Labeling/Tags-Based Protein Quantification and Metrology Technologies. J Proteome Res 2025; 24:13-26. [PMID: 39628444 DOI: 10.1021/acs.jproteome.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Advanced liquid chromatogram-mass spectrometry (LC-MS) and automated large-scale data processing have made MS-based quantitative analysis increasingly useful for research in fields such as biology, medicine, food safety, and beyond. This is because MS-based quantitative analysis can accurately and sensitively analyze thousands of proteins and peptides in a single experiment. However, the precision, coverage, complexity, and resilience of conventional quantification methods vary as a result of the modifications to the analytic environment and the physicochemical characteristics of analytes. Therefore, specially designed approaches are necessary for sample preparation. Dozens of methods have been developed and adapted for these needs based on stable isotopic labeling or isobaric tagging, each with distinct characteristics. In this review, we will summarize the leading strategies and techniques used thus far for MS-based protein quantification as well as analyze the advantages and shortcomings of different approaches. Additionally, we provide an overview of protein metrology development.
Collapse
Affiliation(s)
- Fan Wu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Rui Chen
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| |
Collapse
|
2
|
Niazi SK. A Critical Analysis of the FDA's Omics-Driven Pharmacodynamic Biomarkers to Establish Biosimilarity. Pharmaceuticals (Basel) 2023; 16:1556. [PMID: 38004421 PMCID: PMC10675618 DOI: 10.3390/ph16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Demonstrating biosimilarity entails comprehensive analytical assessment, clinical pharmacology profiling, and efficacy testing in patients for at least one medical indication, as required by the U.S. Biologics Price Competition and Innovation Act (BPCIA). The efficacy testing can be waived if the drug has known pharmacodynamic (PD) markers, leaving most therapeutic proteins out of this concession. To overcome this, the FDA suggests that biosimilar developers discover PD biomarkers using omics technologies such as proteomics, glycomics, transcriptomics, genomics, epigenomics, and metabolomics. This approach is redundant since the mode-action-action biomarkers of approved therapeutic proteins are already available, as compiled in this paper for the first time. Other potential biomarkers are receptor binding and pharmacokinetic profiling, which can be made more relevant to ensure biosimilarity without requiring biosimilar developers to conduct extensive research, for which they are rarely qualified.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Identification and Relative Quantification of hFSH Glycoforms in Women's Sera via MS-PRM-Based Approach. Pharmaceutics 2021; 13:pharmaceutics13060798. [PMID: 34071747 PMCID: PMC8226871 DOI: 10.3390/pharmaceutics13060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a glycohormone synthesized by adenohypophysis, and it stimulates ovulation in women and spermatogenesis in men by binding to its receptor (FSHR). FSHR is involved in several mechanisms to transduce intracellular signals in response to the FSH stimulus. Exogenous FSH is currently used in the clinic for ovarian hyperstimulation during in vitro fertilization in women, and for treatment of infertility caused by gonadotropin deficiency in men. The glycosylation of FSH strongly affects the binding affinity to its receptor, hence significantly influencing the biological activity of the hormone. Therefore, the accurate measurement and characterization of serum hFSH glycoforms will contribute to elucidating the complex mechanism of action by which different glycoforms elicit distinct biological activity. Nowadays ELISA is the official method with which to monitor serum hFSH, but the test is unable to distinguish between the different FSH glycovariants and is therefore unsuitable to study the biological activity of this hormone. This study presents a preliminary alternative strategy for identifying and quantifying serum hFSH glycoforms based on immunopurification assay and mass spectrometry (MS), and parallel reaction monitoring (PRM) analysis. In this study, we provide an MS–PRM data acquisition method for hFSH glycopeptides identification with high specificity and their quantification by extracting the chromatographic traces of selected fragments of glycopeptides. Once set up for all its features, the proposed method could be transferred to the clinic to improve fertility treatments and follow-ups in men and women.
Collapse
|
5
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Quantitative N-glycoproteomics using stable isotopic diethyl labeling. Talanta 2020; 219:121359. [DOI: 10.1016/j.talanta.2020.121359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
|
8
|
Duivelshof BL, Murisier A, Camperi J, Fekete S, Beck A, Guillarme D, D'Atri V. Therapeutic Fc-fusion proteins: Current analytical strategies. J Sep Sci 2020; 44:35-62. [PMID: 32914936 DOI: 10.1002/jssc.202000765] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Fc-Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc-Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc-Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N- and O-linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc-fusion proteins. We also present case studies on the structural assessment of all commercially available Fc-fusion proteins, based on the features and critical quality attributes of their ligand-binding domains.
Collapse
Affiliation(s)
- Bastiaan L Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Julien Camperi
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Chi B, Veyssier C, Kasali T, Uddin F, Sellick CA. At-line high throughput site-specific glycan profiling using targeted mass spectrometry. ACTA ACUST UNITED AC 2020; 25:e00424. [PMID: 32071892 PMCID: PMC7016254 DOI: 10.1016/j.btre.2020.e00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
High throughput, site-specific glycan profiling using targeted mass spectrometry. Rapid analysis of glycan profiles directly from culture media. Methodology is fully compatible with automation. Methodology can be integrated into cell line selection and process development. Strategy can be used for multi-attribute product quality screening/monitoring.
Protein post-translational modification (PTM) plays an important role in many biological processes; of which glycosylation is arguably one of the most complex and diverse modifications and is crucial for the safety and efficacy of biotherapeutic proteins. Mass spectrometric characterization of protein glycosylation is well established with clear advantages and disadvantages; on one hand it is precise and information-rich, as well as being relative inexpensive in terms of the reagents and consumables despite the instrumentation cost and, depending on the method, can give site specific information; on the other hand it generally suffers from low throughput, restriction to largely purified samples and is less quantitative, especially for sialylated glycan species. Here, we describe a high throughput, site-specific, targeted mass spectrometric peptide mapping approach to quickly screen/rank candidate production cell lines and culture conditions that give favourable glycosylation profiles directly from conditioned culture media for an Fc-fusion protein. The methodology is fully compatible with automation and combines the speed of ‘top-down’ mass spectrometry with the site-specific information of ‘bottom-up’ mass spectrometry. In addition, this strategy can be used for multi-attribute product quality screening/monitoring as an integral part of cell line selection and process development.
Collapse
Affiliation(s)
- Bertie Chi
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | | - Toyin Kasali
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Faisal Uddin
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | |
Collapse
|
10
|
Zhang S, Cao X, Liu C, Li W, Zeng W, Li B, Chi H, Liu M, Qin X, Tang L, Yan G, Ge Z, Liu Y, Gao Q, Lu H. N-glycopeptide Signatures of IgA 2 in Serum from Patients with Hepatitis B Virus-related Liver Diseases. Mol Cell Proteomics 2019; 18:2262-2272. [PMID: 31501225 PMCID: PMC6823847 DOI: 10.1074/mcp.ra119.001722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
N-glycosylation alteration has been reported in liver diseases. Characterizing N-glycopeptides that correspond to N-glycan structure with specific site information enables better understanding of the molecular pathogenesis of liver damage and cancer. Here, unbiased quantification of N-glycopeptides of a cluster of serum glycoproteins with 40-55 kDa molecular weight (40-kDa band) was investigated in hepatitis B virus (HBV)-related liver diseases. We used an N-glycopeptide method based on 18O/16O C-terminal labeling to obtain 82 comparisons of serum from patients with HBV-related hepatocellular carcinoma (HCC) and liver cirrhosis (LC). Then, multiple reaction monitoring (MRM) was performed to quantify N-glycopeptide relative to the protein content, especially in the healthy donor-HBV-LC-HCC cascade. TPLTAN205ITK (H5N5S1F1) and (H5N4S2F1) corresponding to the glycopeptides of IgA2 were significantly elevated in serum from patients with HBV infection and even higher in HBV-related LC patients, as compared with healthy donor. In contrast, the two glycopeptides of IgA2 fell back down in HBV-related HCC patients. In addition, the variation in the abundance of two glycopeptides was not caused by its protein concentration. The altered N-glycopeptides might be part of a unique glycan signature indicating an IgA-mediated mechanism and providing potential diagnostic clues in HBV-related liver diseases.
Collapse
Affiliation(s)
- Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Xinyi Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Precision Medicine, Beihang University, Beijing 100083, China
| | - Wei Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenfeng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Mingqi Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lingyi Tang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guoquan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zefan Ge
- State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China.
| | - Haojie Lu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry, Fudan University, Shanghai 200433, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Montacir O, Montacir H, Springer A, Hinderlich S, Mahboudi F, Saadati A, Parr MK. Physicochemical Characterization, Glycosylation Pattern and Biosimilarity Assessment of the Fusion Protein Etanercept. Protein J 2018; 37:164-179. [DOI: 10.1007/s10930-018-9757-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Hassett B, Scheinberg M, Castañeda-Hernández G, Li M, Rao URK, Singh E, Mahgoub E, Coindreau J, O'Brien J, Vicik SM, Fitzpatrick B. Variability of intended copies for etanercept (Enbrel®): Data on multiple batches of seven products. MAbs 2018; 10:166-176. [PMID: 29020508 PMCID: PMC5800383 DOI: 10.1080/19420862.2017.1387346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Fusion protein and monoclonal antibody-based tumor necrosis factor (TNF) inhibitors represent established treatment options for a range of inflammatory diseases. Regulatory authorities have outlined the structural characterization and clinical assessments necessary to establish biosimilarity of a new biotherapeutic product with the innovator biologic drug. Biologic products that would not meet the minimum World Health Organization's standard for evaluation of similar biotherapeutic products are available in some countries; in some cases relevant data to assess biosimilarity and appropriate regulatory approval pathways are lacking. Batches of seven intended copy (IC) products for etanercept (Enbrel®) were subjected to a subset of test methods used in the routine release and heightened characterization of Enbrel®, to determine key attributes of identity, quality, purity, strength, and activity. While a number of quality attributes of the IC lots tested met the release specifications for Enbrel®, none fell within these limits across all methods performed, and there were no IC lots that satisfied the criteria typically applied by the innovator to support comparability with Enbrel®. Although the consequences of these differences are largely unknown, the potential for unanticipated clinical outcomes should not be overlooked.
Collapse
Affiliation(s)
- Brian Hassett
- Pfizer, Biotechnology & Aseptic Sciences Group, Dublin, Ireland
| | - Morton Scheinberg
- Department of Rheumatology, Hospital Albert Einstein and Hospital AACD, São Paulo, Brazil
| | - Gilberto Castañeda-Hernández
- Departamento de Farmacología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Beijing, China
| | - Uppuluri R K Rao
- Department of Rheumatology, Sri Deepti Rheumatology Center, Hyderabad, Telangana, India
| | - Ena Singh
- Pfizer, Inflammation & Immunology Global Medical Affairs, Collegeville, PA, USA
| | - Ehab Mahgoub
- Pfizer, Inflammation & Immunology Regional Medical Affairs, Collegeville, PA, USA
| | | | - Julie O'Brien
- Pfizer, Europe & International Regulatory Policy, Dublin, Ireland
| | | | | |
Collapse
|
14
|
Yuan H, Zhang S, Zhao B, Weng Y, Zhu X, Li S, Zhang L, Zhang Y. Enzymatic Reactor with Trypsin Immobilized on Graphene Oxide Modified Polymer Microspheres To Achieve Automated Proteome Quantification. Anal Chem 2017; 89:6324-6329. [DOI: 10.1021/acs.analchem.7b00682] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huiming Yuan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shen Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yejing Weng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Zhu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|