1
|
Fazzari M, Lunghi G, Carsana EV, Valsecchi M, Spiombi E, Breccia M, Casati SR, Pedretti S, Mitro N, Mauri L, Ciampa MG, Sonnino S, Landsberger N, Frasca A, Chiricozzi E. GM1 Oligosaccharide Ameliorates Rett Syndrome Phenotypes In Vitro and In Vivo via Trk Receptor Activation. Int J Mol Sci 2024; 25:11555. [PMID: 39519108 PMCID: PMC11547101 DOI: 10.3390/ijms252111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. Despite advancements in research, no cure exists due to an incomplete understanding of the molecular effects of MeCP2 deficiency. Previous studies have identified impaired tropomyosin receptor kinase (Trk) neurotrophin (NTP) signaling and mitochondrial redox imbalances as key drivers of the pathology. Moreover, altered glycosphingolipid metabolism has been reported in RTT. GM1 ganglioside is a known regulator of the nervous system, and growing evidence indicates its importance in maintaining neuronal homeostasis via its oligosaccharide chain, coded as GM1-OS. GM1-OS directly interacts with the Trk receptors on the cell surface, triggering neurotrophic and neuroprotective pathways in neurons. In this study, we demonstrate that GM1-OS ameliorates RTT deficits in the Mecp2-null model. GM1-OS restored synaptogenesis and reduced mitochondrial oxidative stress of Mecp2-knock-out (ko) cortical neurons. When administered in vivo, GM1-OS mitigated RTT-like symptoms. Our findings indicate that GM1-OS effects were mediated by Trk receptor activation on the neuron's plasma membrane. Overall, our results highlight GM1-OS as a promising candidate for RTT treatment.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| |
Collapse
|
2
|
Shi YW, Xu CC, Sun CY, Liu JX, Zhao SY, Liu D, Fan XJ, Wang CP. GM1 Ameliorates Neuronal Injury in Rats after Cerebral Ischemia and Reperfusion: Potential Contribution of Effects on SPTBN1-mediated Signaling. Neuroscience 2024; 551:103-118. [PMID: 38810691 DOI: 10.1016/j.neuroscience.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 μM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China; School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chun-Cheng Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chun-Yan Sun
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Jia-Xing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Shu-Yong Zhao
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Xing-Juan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Cai-Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Yeh TY, Chu WJ, Huang YS. GM1 ganglioside protects against LPS-induced neuroinflammatory and oxidative responses by inhibiting the activation of Akt, TAK1 and NADPH oxidase in MG6 microglial cells. Glycobiology 2024; 34:cwad087. [PMID: 37935390 DOI: 10.1093/glycob/cwad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023] Open
Abstract
GM1 is a major brain ganglioside that exerts neurotrophic, neuroprotective and antineuroinflammatory effects. The aim of this study was to obtain insights into the antineuroinflammatory mechanisms of exogenous GM1 in lipopolysaccharide (LPS)-stimulated MG6 mouse transformed microglial cell line. First, we found that GM1 prevented the LPS-induced transformation of microglia into an amoeboid-like shape. GM1 treatment inhibited LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as TNF-α, IL-1β and IL-6 in MG6 cells. In LPS-treated mice, GM1 also reduced striatal microglia activation and attenuated COX-2 expression. Subsequent mechanistic studies showed that GM1 suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB) and activator protein-1 (AP-1), two critical transcription factors responsible for the production of proinflammatory mediators. GM1 exhibited antineuroinflammatory properties by suppressing Akt/NF-κB signaling and the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, GM1 suppressed LPS-induced activation of transforming growth factor-β-activated kinase 1 (TAK1) and NADPH oxidase 2 (NOX2), upstream regulators of the IκBα/NF-κB and MAPK/AP-1 signaling pathways. GM1 also inhibited NOX-mediated reactive oxygen species (ROS) production and protected against LPS-induced MG6 cell death, suggesting an antioxidant role of GM1. In conclusion, GM1 exerts both antineuroinflammatory and antioxidative effects by inhibiting Akt, TAK1 and NOX2 activation.
Collapse
Affiliation(s)
- Ting-Yin Yeh
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| | - Wen-Jui Chu
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| | - Yuahn-Sieh Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| |
Collapse
|
4
|
Lunghi G, Di Biase E, Carsana EV, Henriques A, Callizot N, Mauri L, Ciampa MG, Mari L, Loberto N, Aureli M, Sonnino S, Spedding M, Chiricozzi E, Fazzari M. GM1 ganglioside exerts protective effects against glutamate-excitotoxicity via its oligosaccharide in wild-type and amyotrophic lateral sclerosis motor neurons. FEBS Open Bio 2023; 13:2324-2341. [PMID: 37885330 PMCID: PMC10699117 DOI: 10.1002/2211-5463.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alterations in glycosphingolipid metabolism have been linked to the pathophysiological mechanisms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Accordingly, administration of GM1, a sialic acid-containing glycosphingolipid, is protective against neuronal damage and supports neuronal homeostasis, with these effects mediated by its bioactive component, the oligosaccharide head (GM1-OS). Here, we add new evidence to the therapeutic efficacy of GM1 in ALS: Its administration to WT and SOD1G93A motor neurons affected by glutamate-induced excitotoxicity significantly increased neuronal survival and preserved neurite networks, counteracting intracellular protein accumulation and mitochondria impairment. Importantly, the GM1-OS faithfully replicates GM1 activity, emphasizing that even in ALS the protective function of GM1 strictly depends on its pentasaccharide.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | | | | | - Laura Mauri
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Luigi Mari
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | | | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| |
Collapse
|
5
|
Fazzari M, Lunghi G, Di Biase E, Maggioni M, Carsana EV, Cioccarelli L, Vigani L, Loberto N, Aureli M, Mauri L, Ciampa MG, Valsecchi M, Takato K, Imamura A, Ishida H, Ben Mariem O, Saporiti S, Palazzolo L, Chiricozzi E, Eberini I, Sonnino S. GM1 structural requirements to mediate neuronal functions. Glycoconj J 2023; 40:655-668. [PMID: 38100017 DOI: 10.1007/s10719-023-10141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Vigani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Koichi Takato
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Simona Saporiti
- Analytical Excellence & Program Management, Merck Serono S.p.A, Rome, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
- Data Science Research Center, Università degli Studi di Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| |
Collapse
|
6
|
Fazzari M, Di Biase E, Zaccagnini L, Henriques A, Callizot N, Ciampa MG, Mauri L, Carsana EV, Loberto N, Aureli M, Mari L, Civera M, Vasile F, Sonnino S, Bartels T, Chiricozzi E, Lunghi G. GM1 oligosaccharide efficacy against α-synuclein aggregation and toxicity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159350. [PMID: 37330108 PMCID: PMC10579883 DOI: 10.1016/j.bbalip.2023.159350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | | | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Monica Civera
- Department of Chemistry, University of Milano, Milan, Italy
| | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy.
| | - Tim Bartels
- UK Dementia Research Institute at UCL, London, UK
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy.
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| |
Collapse
|
7
|
Sonnino S. The relationship between depletion of brain GM1 ganglioside and Parkinson's disease. FEBS Open Bio 2023; 13:1548-1557. [PMID: 36638010 PMCID: PMC10476573 DOI: 10.1002/2211-5463.13554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
GM1 is one of the main gangliosides of the nervous system, and it exerts neurotrophic and neuroprotective properties in neurons. It is involved in many processes necessary for the correct physiology of neuronal cells. In particular, it is necessary for the activity of neuronal receptors that control processes such as differentiation, survival, and mitochondrial activity. A shortage of GM1 in the substantia nigra is potentially responsible for the neurodegeneration present in Parkinson's disease patients. In this review, I report on the role played by GM1 in neurons and how its genetic shortage may be responsible for the onset of Parkinson's disease.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| |
Collapse
|
8
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Fazzari M, Lunghi G, Henriques A, Callizot N, Ciampa MG, Mauri L, Prioni S, Carsana EV, Loberto N, Aureli M, Mari L, Sonnino S, Chiricozzi E, Di Biase E. GM1 Oligosaccharide Efficacy in Parkinson's Disease: Protection against MPTP. Biomedicines 2023; 11:biomedicines11051305. [PMID: 37238977 DOI: 10.3390/biomedicines11051305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neuronal death in preclinical models of Parkinson's disease, a neurodegenerative disorder characterized by the progressive loss of dopamine-producing neurons: however, the physical and chemical properties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood-brain barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface, promotes the activation of a multivariate network of intracellular events regulating neuronal differentiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against the Parkinson's disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3β pathway. These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the implementation of mitochondrial function and reduction in oxidative stress.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| |
Collapse
|
10
|
Vasques J, de Jesus Gonçalves R, da Silva-Junior A, Martins R, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res 2023. [PMID: 35799513 PMCID: PMC9241395 DOI: 10.4103/1673-5374.343890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Lunghi G, Carsana EV, Loberto N, Cioccarelli L, Prioni S, Mauri L, Bassi R, Duga S, Straniero L, Asselta R, Soldà G, Di Fonzo A, Frattini E, Magni M, Liessi N, Armirotti A, Ferrari E, Samarani M, Aureli M. β-Glucocerebrosidase Deficiency Activates an Aberrant Lysosome-Plasma Membrane Axis Responsible for the Onset of Neurodegeneration. Cells 2022; 11:cells11152343. [PMID: 35954187 PMCID: PMC9367513 DOI: 10.3390/cells11152343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
β-glucocerebrosidase is a lysosomal hydrolase involved in the catabolism of the sphingolipid glucosylceramide. Biallelic loss of function mutations in this enzyme are responsible for the onset of Gaucher disease, while monoallelic β-glucocerebrosidase mutations represent the first genetic risk factor for Parkinson’s disease. Despite this evidence, the molecular mechanism linking the impairment in β-glucocerebrosidase activity with the onset of neurodegeneration in still unknown. In this frame, we developed two in vitro neuronal models of β-glucocerebrosidase deficiency, represented by mouse cerebellar granule neurons and human-induced pluripotent stem cells-derived dopaminergic neurons treated with the specific β-glucocerebrosidase inhibitor conduritol B epoxide. Neurons deficient for β-glucocerebrosidase activity showed a lysosomal accumulation of glucosylceramide and the onset of neuronal damage. Moreover, we found that neurons react to the lysosomal impairment by the induction of their biogenesis and exocytosis. This latter event was responsible for glucosylceramide accumulation also at the plasma membrane level, with an alteration in lipid and protein composition of specific signaling microdomains. Collectively, our data suggest that β-glucocerebrosidase loss of function impairs the lysosomal compartment, establishing a lysosome–plasma membrane axis responsible for modifications in the plasma membrane architecture and possible alterations of intracellular signaling pathways, leading to neuronal damage.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (S.D.); (L.S.); (R.A.); (G.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20072 Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.D.F.); (E.F.); (M.M.)
| | - Emanuele Frattini
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.D.F.); (E.F.); (M.M.)
| | - Manuela Magni
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.D.F.); (E.F.); (M.M.)
| | - Nara Liessi
- Analytical Chemistry Facility, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (N.L.); (A.A.)
| | - Andrea Armirotti
- Analytical Chemistry Facility, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy; (N.L.); (A.A.)
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;
| | - Maura Samarani
- Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France;
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20054 Milan, Italy; (G.L.); (E.V.C.); (N.L.); (L.C.); (S.P.); (L.M.); (R.B.)
- Correspondence: ; Tel.: +39-025-033-0364
| |
Collapse
|
12
|
Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines 2022; 10:biomedicines10020363. [PMID: 35203570 PMCID: PMC8962287 DOI: 10.3390/biomedicines10020363] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are glycosphingolipids which are particularly abundant in the plasma membrane of mammalian neurons. The knowledge of their presence in the human brain dates back to the end of 19th century, but their structure was determined much later, in the middle of the 1950s. From this time, neurochemical studies suggested that gangliosides, and particularly GM1 ganglioside, display neurotrophic and neuroprotective properties. The involvement of GM1 in modulating neuronal processes has been studied in detail by in vitro experiments, and the results indicated its direct role in modulating the activity of neurotrophin-dependent receptor signaling, the flux of calcium through the plasma membrane, and stabilizing the correct conformation of proteins, such as α-synuclein. Following, in vivo experiments supported the use of ganglioside drugs for the therapy of peripheral neuropathies, obtaining very positive results. However, the clinical use of gangliosides for the treatment of central neurodegeneration has not been followed due to the poor penetrability of these lipids at the central level. This, together with an ambiguous association (later denied) between ganglioside administration and Guillain-Barrè syndrome, led to the suspension of ganglioside drugs. In this critical review, we report on the evolution of research on gangliosides, on the current knowledge on the role played by gangliosides in regulating the biology of neurons, on the past and present use of ganglioside-based drugs used for therapy of peripheral neuropathies or used in human trials for central neurodegenerations, and on the therapeutic potential represented by the oligosaccharide chain of GM1 ganglioside for the treatment of neurodegenerative diseases.
Collapse
|
13
|
Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconj J 2022; 39:27-38. [PMID: 35064857 PMCID: PMC8979868 DOI: 10.1007/s10719-021-10019-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Abstract
GM1 is a crucial component of neuronal membrane residing both in the soma and nerve terminals. As reported in Parkinson’s disease patients, the reduction of GM1 determines the failure of fundamental functional processes leading to cumulative cell distress up to neuron death. This review reports on the role of GM1 in the pathogenesis of the disease, illustrating the current data available but also hypotheses on the additional mechanisms in which GM1 could be involved and which require further study. In the manuscript we discuss these points trying to explain the role of diminished content of brain GM1, particularly in the nigro-striatal system, in Parkinson’s disease etiology and progression.
Collapse
|
14
|
Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconj J 2021; 39:39-53. [PMID: 34757540 PMCID: PMC8979855 DOI: 10.1007/s10719-021-10023-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Collapse
|
15
|
Chiricozzi E. Plasma membrane glycosphingolipid signaling: a turning point. Glycoconj J 2021; 39:99-105. [PMID: 34398373 PMCID: PMC8979859 DOI: 10.1007/s10719-021-10008-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Plasma membrane interaction is highly recognized as an essential step to start the intracellular events in response to extracellular stimuli. The ways in which these interactions take place are less clear and detailed. Over the last decade my research has focused on developing the understanding of the glycosphingolipids-protein interaction that occurs at cell surface. By using chemical synthesis and biochemical approaches we have characterized some fundamental interactions that are key events both in the immune response and in the maintenance of neuronal homeostasis. In particular, for the first time it has been demonstrated that a glycolipid, present on the outer side of the membrane, the long-chain lactosylceramide, is able to directly modulate a cytosolic protein. But the real conceptual change was the demonstration that the GM1 oligosaccharide chain is able, alone, to replicate numerous functions of GM1 ganglioside and to directly interact with plasma membrane receptors by activating specific cellular signaling. In this conceptual shift, the development and application of multidisciplinary techniques in the field of biochemistry, from chemical synthesis to bioinformatic analysis, as well as discussions with several national and international colleagues have played a key role.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy.
| |
Collapse
|
16
|
Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J 2021; 38:101-117. [PMID: 33620588 PMCID: PMC7917043 DOI: 10.1007/s10719-021-09974-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named “OligoGM1”. These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson’s disease.
Collapse
|
17
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
18
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
19
|
Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconj J 2020; 37:713-727. [PMID: 33201378 PMCID: PMC7679337 DOI: 10.1007/s10719-020-09963-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Recently, we demonstrated that the oligosaccharide portion of ganglioside GM1 is responsible, via direct interaction and activation of the TrkA pathway, for the ability of GM1 to promote neuritogenesis and to confer neuroprotection in Neuro2a mouse neuroblastoma cells. Recalling the knowledge that ganglioside GM1 modulates calcium channels activity, thus regulating the cytosolic calcium concentration necessary for neuronal functions, we investigated if the GM1-oligosaccharide would be able to overlap the GM1 properties in the regulation of calcium signaling, excluding a specific role played by the ceramide moiety inserted into the external layer of plasma membrane. We observed, by calcium imaging, that GM1-oligosaccharide administration to undifferentiated Neuro2a cells resulted in an increased calcium influx, which turned out to be mediated by the activation of TrkA receptor. The biochemical analysis demonstrated that PLCγ and PKC activation follows the TrkA stimulation by GM1-oligosaccharide, leading to the opening of calcium channels both on the plasma membrane and on intracellular storages, as confirmed by calcium imaging experiments performed with IP3 receptor inhibitor. Subsequently, we found that neurite elongation in Neuro2a cells was blocked by subtoxic administration of extracellular and intracellular calcium chelators, suggesting that the increase of intracellular calcium is responsible of GM1-oligosaccharide mediated differentiation. These results suggest that GM1-oligosaccharide is responsible for the regulation of calcium signaling and homeostasis at the base of the neuronal functions mediated by plasma membrane GM1.
Collapse
|
20
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
21
|
Valsecchi M, Cazzetta V, Oriolo F, Lan X, Piazza R, Saleem MA, Singhal PC, Mavilio D, Mikulak J, Aureli M. APOL1 polymorphism modulates sphingolipid profile of human podocytes. Glycoconj J 2020; 37:729-744. [PMID: 32915357 PMCID: PMC7679335 DOI: 10.1007/s10719-020-09944-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/01/2022]
Abstract
Apolipoprotein L1 (APOL1) wild type (G0) plays a role in the metabolism of sphingolipids, glycosphingolipids, sphingomyelin and ceramide, which constitute bioactive components of the lipid rafts (DRM). We asked whether APOL1 variants (APOL1-Vs) G1 and G2 carry the potential to alter the metabolism of sphingolipids in human podocytes. The sphingolipid pattern in HPs overexpressing either APOL1G0 or APOL1-Vs was analysed by using a thin mono- and bi-dimensional layer chromatography, mass-spectrometry and metabolic labelling with [1-3H]sphingosine. HP G0 and G1/G2-Vs exhibit a comparable decrease in lactosylceramide and an increase in the globotriaosylceramide content. An analysis of the main glycohydrolases activity involved in glycosphingolipid catabolism showed an overall decrease in the activeness of the tested enzymes, irrespective of the type of APOL1-Vs expression. Similarly, the high throughput cell live-based assay showed a comparable increased action of the plasma membrane glycosphingolipid-glycohydrolases in living cells independent of the genetic APOL1 expression profile. Importantly, the most significative modification of the sphingolipid pattern induced by APOL1-Vs occurred in DRM resulted with a drastic reduction of radioactivity associated with sphingolipids. G1/G2-Vs present a decrease amount of globotriaosylceramide and globopentaosylceramide compared to G0. Additionally, ceramide at the DRM site and lactosylceramide in general, showed a greatest fall in G1/G2 in comparison with G0. Additionally, the levels of glucosylceramide decreased only in the DRM of human podocytes overexpressing G1/G2-Vs. These findings suggest that altered sphingolipidsprofiles may contribute to the deranged functionality of the plasma membrane in APOL1 risk milieu.
Collapse
Affiliation(s)
- Manuela Valsecchi
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Xiqian Lan
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Moin A Saleem
- Pediatric Academic Renal Unit, University of Bristol, Bristol, UK
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Joanna Mikulak
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Massimo Aureli
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.
| |
Collapse
|
22
|
Bouscary A, Quessada C, René F, Spedding M, Henriques A, Ngo S, Loeffler JP. Drug repositioning in neurodegeneration: An overview of the use of ambroxol in neurodegenerative diseases. Eur J Pharmacol 2020; 884:173446. [PMID: 32739173 DOI: 10.1016/j.ejphar.2020.173446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. While it is primarily characterized by the death of upper and lower motor neurons, there is a significant metabolic component involved in the progression of the disease. Two-thirds of ALS patients have metabolic alterations that are associated with the severity of symptoms. In ALS, as in other neurodegenerative diseases, the metabolism of glycosphingolipids, a class of complex lipids, is strongly dysregulated. We therefore assume that this pathway constitutes an interesting avenue for therapeutic approaches. We have shown that the glucosylceramide degrading enzyme, glucocerebrosidase (GBA) 2 is abnormally increased in the spinal cord of the SOD1G86R mouse model of ALS. Ambroxol, a chaperone molecule that inhibits GBA2, has been shown to have beneficial effects by slowing the development of the disease in SOD1G86R mice. Currently used in clinical trials for Parkinson's and Gaucher disease, ambroxol could be considered as a promising therapeutic treatment for ALS.
Collapse
Affiliation(s)
- Alexandra Bouscary
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Cyril Quessada
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Frédérique René
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
| | | | | | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jean-Philippe Loeffler
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.
| |
Collapse
|
23
|
GM1 Oligosaccharide Crosses the Human Blood-Brain Barrier In Vitro by a Paracellular Route. Int J Mol Sci 2020; 21:ijms21082858. [PMID: 32325905 PMCID: PMC7215935 DOI: 10.3390/ijms21082858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Ganglioside GM1 (GM1) has been reported to functionally recover degenerated nervous system in vitro and in vivo, but the possibility to translate GM1′s potential in clinical settings is counteracted by its low ability to overcome the blood–brain barrier (BBB) due to its amphiphilic nature. Interestingly, the soluble and hydrophilic GM1-oligosaccharide (OligoGM1) is able to punctually replace GM1 neurotrophic functions alone, both in vitro and in vivo. In order to take advantage of OligoGM1 properties, which overcome GM1′s pharmacological limitations, here we characterize the OligoGM1 brain transport by using a human in vitro BBB model. OligoGM1 showed a 20-fold higher crossing rate than GM1 and time–concentration-dependent transport. Additionally, OligoGM1 crossed the barrier at 4 °C and in inverse transport experiments, allowing consideration of the passive paracellular route. This was confirmed by the exclusion of a direct interaction with the active ATP-binding cassette (ABC) transporters using the “pump out” system. Finally, after barrier crossing, OligoGM1 remained intact and able to induce Neuro2a cell neuritogenesis by activating the TrkA pathway. Importantly, these in vitro data demonstrated that OligoGM1, lacking the hydrophobic ceramide, can advantageously cross the BBB in comparison with GM1, while maintaining its neuroproperties. This study has improved the knowledge about OligoGM1′s pharmacological potential, offering a tangible therapeutic strategy.
Collapse
|